Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Corrigendum to “Opinion paper about organic trace pollutants in wastewater: Toxicity assessment in a European perspective"
    Pedrazzani, Roberta ; Bertanza, Giorgio ; Brnardić, Ivan ; Cetecioglu, Zeynep ; Dries, Jan ; Dvarionienė, Jolanta ; García-Fernández, Antonio J. ; Langenhoff, Alette ; Libralato, Giovanni ; Lofrano, Giusy ; Škrbić, Biljana ; Martínez-López, Emma ; Meriç, Süreyya ; Mutavdžić Pavlović, Dragana ; Papa, Matteo ; Schröder, Peter ; Tsagarakis, Konstantinos P. ; Vogelsang, Christian - \ 2019
    Science of the Total Environment 669 (2019). - ISSN 0048-9697 - p. 1062 - 1062.

    The authors regret that, despite thoroughly reviewing the manuscript, the content of a paragraph has been duplicated and has to be ignored .

    Opinion paper about organic trace pollutants in wastewater : Toxicity assessment in a European perspective
    Pedrazzani, Roberta ; Bertanza, Giorgio ; Brnardić, Ivan ; Cetecioglu, Zeynep ; Dries, Jan ; Dvarionienė, Jolanta ; García-Fernández, Antonio J. ; Langenhoff, Alette ; Libralato, Giovanni ; Lofrano, Giusy ; Škrbić, Biljana ; Martínez-López, Emma ; Meriç, Süreyya ; Pavlović, Dragana Mutavdžić ; Papa, Matteo ; Schröder, Peter ; Tsagarakis, Konstantinos P. ; Vogelsang, Christian - \ 2019
    Science of the Total Environment 651 (2019). - ISSN 0048-9697 - p. 3202 - 3221.
    Aquatic ecosystem - Bioassays - Ecotoxicity - Micro-pollutants - Risk assessment - Wastewater treatment

    This opinion paper focuses on the role of eco-toxicological tools in the assessment of possible impacts of emerging contaminants on the aquatic ecosystem, hence, on human health. Indeed, organic trace pollutants present in raw and treated wastewater are the pivot targets: a multidisciplinary approach allows defining the basic principles for managing this issue, from setting a proper monitoring campaign up to evaluating the optimal process treatment. Giving hints on trace pollutants fate and behaviour, attention is focused on the choice of the bioassay(s), by analysing the meaning of possible biological answers. Data interpretation and exploitation are detailed with the final goal of providing criteria in order to be able to select the best targeted treatment options. The manuscript deals with conventional and innovative analytical approaches for assessing toxicity, by reviewing laboratory and field assays; illustrative real scale and laboratory applications integrate and exemplify the proposed approach.

    Biomethane from industrial and municipal wastewater
    Eekert, Miriam H.A. van; Zeeman, Grietje - \ 2017
    In: Microbial Fuels CRC Press - ISBN 9781498763790 - p. 47 - 76.

    Remains of drainage systems to remove waste and latrines have been found in houses from the Mesopotamian Empire (3500-2500 BC); ancient Rome had its Cloaca Maxima, and there still exists a working 4000-year-old sewer system in Greece. Nevertheless, it was not until the late nineteenth century, and after a fourteenth-century long dark age, that it was recognized that municipal waste water needs to be removed from its origin and treated to prevent the outbreak of diseases (Lofrano and Brown 2010). Until then, wastewater had been discharged in surface water or so-called “night soil” (toilet waste) and collected and used for fertilization. Later, in the early twentieth century, biological oxygen demand (BOD) was introduced as a measure of pollution and the first wastewater treatment systems were installed. Recently, the recovery of nutrients, reuse of water, production of intermediates, and generation of energy have become important incentives for the treatment of wastewater from both industrial and municipal origins. This may be more feasible through separation at the source and improved design of water usage and treatment systems (Guest et al. 2009; Larsen et al. 2009). Aerobic treatment was and still is the main technology used for the treatment of municipal wastewater in the north and cold climate areas. In the twentieth century, the possible application of anaerobic systems for the treatment of industrial wastewater and municipal wastewater in warmer climates was recognized after the development of the upflow anaerobic sludge bed (UASB) system in Wageningen in the 1970s (Lettinga 2014; van Lier et al. 2015). Nowadays, with new treatment designs and the paradigm shift toward seeing wastewater as a source of valuable resources, the application of anaerobic technology may be expanded toward treating municipal sewage in cold climates as well. Anaerobic treatment has its advantages, for example, lower excess sludge production, high applicable loadings, and lower energy demands, combined with biogas production. Initially, those were the reasons for the application of anaerobic treatment. Nowadays, the fact that nutrients (N and P) are not destroyed (e.g., emitted as N2) but released as recoverable ions is considered an additional advantage, since this facilitates recovery. Therefore, anaerobic technology has a central role in existing and newly developed waste treatment systems (Figure 3.1). It is, however, important to consider that in most cases, posttreatment of anaerobic effluent is warranted to guarantee that limits for safe discharge of the effluent are met (von Sperling and de Lemos Chrenicharo 2002).

    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.