Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 4 / 4

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Data from: A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle-of-attack
    Mizumo Tomotani, Barbara ; Muijres, F.T. - \ 2019
    European pied flycatcher - avian flight - wingbeat kinematics - Ficedula hypoleuca
    During molt, birds replace their feathers to retain feather quality and maintain flight performance. However, wing gaps inherent of this process can also reduce flight capacities, which could be detrimental when foraging or escaping predators. Still, many bird species will not stop their normal activities when molting. In this study, we investigated whether and how birds adjust their escape flight behavior to compensate for the reduction in performance when flying with wing gaps. Using stereoscopic high-speed videography, we filmed 146 upward-directed escape flights of 19 and 22 pied flycatchers (Ficedula hypoleuca) with and without simulated molt gaps, respectively. We then reconstructed the three-dimensional body and wing movements throughout each maneuver. By comparing flights with and without gaps, we determined how wing molt gaps affected wing morphology, escape flight performance, and how the birds adjusted their flight kinematics in order to negate possible negative aerodynamic effects. Our manipulations resulted in a lower second-moment-of-area of the wings, but flight speed and net aerodynamic force production did not differ between the two groups. We found that in manipulated birds, the size of the gap was reduced as the flight feathers adjacent to the gap had moved towards each other. Moreover, the experimental decrease in second-moment-of-area was associated with an increase in angle-of-attack, whereas changes in wingbeat-induced speeds were associated with variations in aerodynamic force production. This suggests that the control of escape flight in molting birds might be modular, allowing relatively simple flight control, thus reducing the burden on the neuro-muscular flight control system.
    Data from: Carrying a logger reduces escape flight speed in a passerine bird, but relative logger mass may be a misleading measure of this flight performance detriment
    Mizumo Tomotani, Barbara ; Bil, Wender ; Jeugd, Henk P. van der; Pieters, R.P.M. ; Muijres, F.T. - \ 2018
    Wageningen University & Research
    bird flight - experiment - Eurasian blackcap - geolocator - predation - Sylvia atricapilla
    1. The recent boost in bird migration studies following the development of various tracking devices raised awareness of how detrimental attaching devices can be for animals. Such effects can occur during migration, but also immediately post-release if the device impairs escape flight performance and, consequently, the bird’s ability to evade predators. 2. In this study, we investigated the effect of carrying a device on the escape flight speed and aerodynamic force production in a migratory passerine. We recorded upward-directed escape flights of 15 male blackcaps. Each individual was tested without a tag, and when equipped with three different leg-loop dummy tags with masses representing around 3%, 5% and 7% of their body mass. The experiment was designed such that all individuals passed through all treatments in a randomized order. 3. We found that two factors affected flight speed in roughly equal amounts: first, tagged escape flights had lower flight speeds compared to the control flights, irrespective of tag mass. Second, we found an effect of the total mass, i.e. the sum of the masses of the individual bird and of the tag, with heavier birds being slower. In contrast, flight speed was not correlated with relative tag mass in percentage of body mass, the metric commonly used in ethical guidelines for tag attachment. Aerodynamic flight force production also depended on total mass, with heavier birds producing higher forces. But these flight forces did not differ between flights with or without a tag. 4. We conclude that, when tagging birds, it is misleading to choose heavy individuals for tagging in order to minimize the tag mass as a percentage of body mass. This is particularly relevant in species for which body mass is not necessarily related to size, like migratory birds that accumulate large fat reserves. The lower escape speed in “tagged” flights could not be explained by differences in net flight force production, because these did not differ between flights with and without a tag. This suggests that the tag also affected pre-flight take-off dynamics, possibly due to a leg harness-induced reduction in leg push-off performance.
    Simulated moult reduces flight performance but overlap with breeding does not affect breeding success in a long-distance migrant
    Mizumo Tomotani, Barbara ; Muijres, F.T. ; Koelman, Julia ; Casagrande, Stefania ; Visser, Marcel E. - \ 2018
    Functional Ecology 32 (2018)2. - ISSN 0269-8463 - p. 389 - 401.
    1.Long-distance migrants are time-constrained as they need to incorporate many annual cycle stages within a year. Migratory passerines moult in the short interval between breeding and migration. To widen this interval, moult may start while still breeding, but this results in flying with moulting wings when food provisioning.
    2.We experimentally simulated wing gaps in breeding male pied flycatchers by plucking two primary feathers from both wings. We quantified the nest visitations of both parents, proportion of high-quality food brought to the nestlings and adults and nestlings condition. Differences in oxidative damage caused by a possible reduction in flight efficiency were measured in amounts of ROMs and OXY in the blood. We also measured how flight performance was affected with recordings of the male`s escape flight using high-speed cameras. Finally, we collected data on adult survival, clutch size and laying date in the following year.
    3.“Plucked” males travelled a 5% shorter distance per wingbeat, showing that our treatment reduced flight performance. In line with this, “plucked” males visited their nests less often. Females of “plucked” males, however, visited the nest more often than controls, and fully compensated their partner's reduced visitation rate. As a result, there were no differences between treatments in food quality brought to the nest, adult or chick mass or number of successfully fledged chicks. Males did not differ in their oxidative damage or local survival to the following year. In contrast, females paired with plucked males tended to return less often to breed in the next year in comparison to controls, but this difference was not significant. For the birds that did return, there were no effects on breeding.
    4.Our results reveal that wing gaps in male pied flycatchers reduce their flight performance, but when it occurs during breeding they prioritise their future reproduction by reducing parental care. As a result, there is no apparent detriment to their condition during breeding. Because non-moulting females are able to compensate their partner's reduced care, there is also no immediate cost to the offspring, but females may pay the cost suffering from a reduced survival.
    Data from: Simulated moult reduces flight performance but overlap with breeding does not affect breeding success in a long-distance migrant
    Mizumo Tomotani, Barbara ; Muijres, F.T. ; Koelman, Julia ; Casagrande, Stefania ; Visser, Marcel E. - \ 2017
    NIOO-KNAW
    trade-off - pied flycatcher - high-speed camera - parental care - PIT-TAG - oxidative stress - plumage - Ficedula hypoleuca
    1. Long-distance migrants are time-constrained as they need to incorporate many annual cycle stages within a year. Migratory passerines moult in the short interval between breeding and migration. To widen this interval, moult may start while still breeding, but this results in flying with moulting wings when food provisioning. 2. We experimentally simulated wing gaps in breeding male pied flycatchers by plucking 2 primary feathers from both wings. We quantified the nest visitations of both parents, proportion of high-quality food brought to the nestlings and adults and nestlings condition. Differences in oxidative damage caused by a possible reduction in flight efficiency were measured in amounts of ROMs and OXY in the blood. We also measured how flight performance was affected with recordings of the male`s escape flight using high-speed cameras. Finally, we collected data on adult survival, clutch size and laying date in the following year. 3. “Plucked” males travelled a 5% shorter distance per wingbeat, showing that our treatment reduced flight performance. In line with this, “plucked” males visited their nests less often. Females of “plucked” males, however, visited the nest more often than controls, and fully compensated their partner’s reduced visitation rate. As a result, there were no differences between treatments in food quality brought to the nest, adult or chick mass or number of successfully fledged chicks. Males did not differ in their oxidative damage or local survival to the following year. In contrast, females paired with plucked males tended to return less often to breed in the next year in comparison to controls, but this difference was not significant. For the birds that did return there were no effects on breeding. 5. Our results reveal that wing gaps in male pied flycatchers reduce their flight performance, but when it occurs during breeding they prioritise their future reproduction by reducing parental care. As a result, there is no apparent detriment to their condition during breeding. Because non-moulting females are able to compensate their partner’s reduced care, there is also no immediate costs to the offspring, but females may pay the cost suffering from a reduced survival.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.