Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 16 / 16

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Rödenbeck
Check title to add to marked list
Global carbon budget 2019
Friedlingstein, Pierre ; Jones, Matthew W. ; O'Sullivan, Michael ; Andrew, Robbie M. ; Hauck, Judith ; Peters, Glen P. ; Peters, Wouter ; Pongratz, Julia ; Sitch, Stephen ; Quéré, Corinne Le; Bakker, Dorothee C.E. ; Canadell1, Josep G. ; Ciais1, Philippe ; Jackson, Robert B. ; Anthoni, Peter ; Barbero, Leticia ; Bastos, Ana ; Bastrikov, Vladislav ; Becker, Meike ; Bopp, Laurent ; Buitenhuis, Erik ; Chandra, Naveen ; Chevallier, Frédéric ; Chini, Louise P. ; Currie, Kim I. ; Feely, Richard A. ; Gehlen, Marion ; Gilfillan, Dennis ; Gkritzalis, Thanos ; Goll, Daniel S. ; Gruber, Nicolas ; Gutekunst, Sören ; Harris, Ian ; Haverd, Vanessa ; Houghton, Richard A. ; Hurtt, George ; Ilyina, Tatiana ; Jain, Atul K. ; Joetzjer, Emilie ; Kaplan, Jed O. ; Kato, Etsushi ; Goldewijk, Kees Klein ; Korsbakken, Jan Ivar ; Landschützer, Peter ; Lauvset, Siv K. ; Lefèvre, Nathalie ; Lenton, Andrew ; Lienert, Sebastian ; Lombardozzi, Danica ; Marland, Gregg ; McGuire, Patrick C. ; Melton, Joe R. ; Metzl, Nicolas ; Munro, David R. ; Nabel, Julia E.M.S. ; Nakaoka, Shin Ichiro ; Neill, Craig ; Omar, Abdirahman M. ; Ono, Tsuneo ; Peregon, Anna ; Pierrot, Denis ; Poulter, Benjamin ; Rehder, Gregor ; Resplandy, Laure ; Robertson, Eddy ; Rödenbeck, Christian ; Séférian, Roland ; Schwinger, Jörg ; Smith, Naomi ; Tans, Pieter P. ; Tian, Hanqin ; Tilbrook, Bronte ; Tubiello, Francesco N. ; Werf, Guido R. Van Der; Wiltshire, Andrew J. ; Zaehle, Sönke - \ 2019
Earth System Science Data 11 (2019)4. - ISSN 1866-3508 - p. 1783 - 1838.

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009-2018), EFF was 9:5±0:5 GtC yr-1, ELUC 1:5±0:7 GtC yr-1, GATM 4:9±0:02 GtC yr-1 (2:3±0:01 ppm yr-1), SOCEAN 2:5±0:6 GtC yr-1, and SLAND 3:2±0:6 GtC yr-1, with a budget imbalance BIM of 0.4 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1% and fossil emissions increased to 10:0±0:5 GtC yr-1, reaching 10 GtC yr-1 for the first time in history, ELUC was 1:5±0:7 GtC yr-1, for total anthropogenic CO2 emissions of 11:5±0:9 GtC yr-1 (42:5±3:3 GtCO2). Also for 2018, GATM was 5:1±0:2 GtC yr-1 (2:4±0:1 ppm yr-1), SOCEAN was 2:6±0:6 GtC yr-1, and SLAND was 3:5±0:7 GtC yr-1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407:38±0:1 ppm averaged over 2018. For 2019, preliminary data for the first 6-10 months indicate a reduced growth in EFF of C0:6% (range of.0:2% to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959-2018, but discrepancies of up to 1 GtC yr-1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).

Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate
Gaubert, Benjamin ; Stephens, Britton B. ; Basu, Sourish ; Chevallier, Frédéric ; Deng, Feng ; Kort, Eric A. ; Patra, Prabir K. ; Peters, Wouter ; Rödenbeck, Christian ; Saeki, Tazu ; Schimel, David ; Laan-Luijkx, Ingrid van der; Wofsy, Steven ; Yin, Yi - \ 2019
Biogeosciences 16 (2019)1. - ISSN 1726-4170 - p. 117 - 134.

We have compared a suite of recent global CO2 atmospheric inversion results to independent airborne observations and to each other, to assess their dependence on differences in northern extratropical (NET) vertical transport and to identify some of the drivers of model spread. We evaluate posterior CO2 concentration profiles against observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-To-Pole Observations (HIPPO) aircraft campaigns over the mid-Pacific in 2009-2011. Although the models differ in inverse approaches, assimilated observations, prior fluxes, and transport models, their broad latitudinal separation of land fluxes has converged significantly since the Atmospheric Carbon Cycle Inversion Intercomparison (TransCom 3) and the REgional Carbon Cycle Assessment and Processes (RECCAP) projects, with model spread reduced by 80% since TransCom 3 and 70% since RECCAP. Most modeled CO2 fields agree reasonably well with the HIPPO observations, specifically for the annual mean vertical gradients in the Northern Hemisphere. Northern Hemisphere vertical mixing no longer appears to be a dominant driver of northern versus tropical (T) annual flux differences. Our newer suite of models still gives northern extratropical land uptake that is modest relative to previous estimates (Gurney et al., 2002; Peylin et al., 2013) and near-neutral tropical land uptake for 2009- 2011. Given estimates of emissions from deforestation, this implies a continued uptake in intact tropical forests that is strong relative to historical estimates (Gurney et al., 2002; Peylin et al., 2013). The results from these models for other time periods (2004-2014, 2001-2004, 1992-1996) and reevaluation of the TransCom 3 Level 2 and RECCAP results confirm that tropical land carbon fluxes including deforestation have been near neutral for several decades. However, models still have large disagreements on ocean-land partitioning. The fossil fuel (FF) and the atmospheric growth rate terms have been thought to be the best-known terms in the global carbon budget, but we show that they currently limit our ability to assess regional-scale terrestrial fluxes and ocean-land partitioning from the model ensemble.

Global Carbon Budget 2017
Quéré, Corinne Le; Andrew, Robbie M. ; Friedlingstein, Pierre ; Sitch, Stephen ; Pongratz, Julia ; Manning, Andrew C. ; Ivar Korsbakken, Jan ; Peters, Glen P. ; Canadell, Josep G. ; Jackson, Robert B. ; Boden, Thomas A. ; Tans, Pieter P. ; Andrews, Oliver D. ; Arora, Vivek K. ; Bakker, Dorothee C.E. ; Barbero, Leticia ; Becker, Meike ; Betts, Richard A. ; Bopp, Laurent ; Chevallier, Frédéric ; Chini, Louise P. ; Ciais, Philippe ; Cosca, Catherine E. ; Cross, Jessica ; Currie, Kim ; Gasser, Thomas ; Harris, Ian ; Hauck, Judith ; Haverd, Vanessa ; Houghton, Richard A. ; Hunt, Christopher W. ; Hurtt, George ; Ilyina, Tatiana ; Jain, Atul K. ; Kato, Etsushi ; Kautz, Markus ; Keeling, Ralph F. ; Klein Goldewijk, Kees ; Körtzinger, Arne ; Landschützer, Peter ; Lefèvre, Nathalie ; Lenton, Andrew ; Lienert, Sebastian ; Lima, Ivan ; Lombardozzi, Danica ; Metzl, Nicolas ; Millero, Frank ; Monteiro, Pedro M.S. ; Munro, David R. ; Nabel, Julia E.M.S. ; Nakaoka, Shin Ichiro ; Nojiri, Yukihiro ; Padin, X.A. ; Peregon, Anna ; Pfeil, Benjamin ; Pierrot, Denis ; Poulter, Benjamin ; Rehder, Gregor ; Reimer, Janet ; Rödenbeck, Christian ; Schwinger, Jörg ; Séférian, Roland ; Skjelvan, Ingunn ; Stocker, Benjamin D. ; Tian, Hanqin ; Tilbrook, Bronte ; Tubiello, Francesco N. ; Laan-Luijkx, Ingrid T. van der; Werf, Guido R. van der; Heuven, Steven Van; Viovy, Nicolas ; Vuichard, Nicolas ; Walker, Anthony P. ; Watson, Andrew J. ; Wiltshire, Andrew J. ; Zaehle, Sönke ; Zhu, Dan - \ 2018
Earth System Science Data 10 (2018)1. - ISSN 1866-3508 - p. 405 - 448.
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1δ. For the last decade available (2007-2016), EFF was 9.4±0.5 GtC yr-1, ELUC 1.3±0.7 GtC yr-1, GATM 4.7±0.1 GtC yr-1, SOCEAN 2.4±0.5 GtC yr-1, and SLAND 3.0±0.8 GtC yr-1, with a budget imbalance BIM of 0.6 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9±0.5 GtC yr-1. Also for 2016, ELUC was 1.3±0.7 GtC yr-1, GATM was 6.1±0.2 GtC yr-1, SOCEAN was 2.6±0.5 GtC yr-1, and SLAND was 2.7±1.0 GtC yr-1, with a small BIM of-0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Ninõ conditions. The global atmospheric CO2 concentration reached 402.8±0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6-9 months indicate a renewed growth in EFF of C2.0% (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).
Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations
Zscheischler, Jakob ; Mahecha, Miguel D. ; Avitabile, Valerio ; Calle, Leonardo ; Carvalhais, Nuno ; Ciais, Philippe ; Gans, Fabian ; Gruber, Nicolas ; Hartmann, Jens ; Herold, Martin ; Ichii, Kazuhito ; Jung, Martin ; Landschützer, Peter ; Laruelle, Goulven G. ; Lauerwald, Ronny ; Papale, Dario ; Peylin, Philippe ; Poulter, Benjamin ; Ray, Deepak K. ; Regnier, Pierre ; Rödenbeck, Christian ; Roman-Cuesta, Rosa M. ; Schwalm, Christopher ; Tramontana, Gianluca ; Tyukavina, Alexandra ; Valentini, Riccardo ; Werf, Guido R. van der; West, Tristram O. ; Wolf, Julie E. ; Reichstein, Markus - \ 2017
Biogeosciences 14 (2017)15. - ISSN 1726-4170 - p. 3685 - 3703.
Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface–atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr−1), East Asia (1.6 ± 0.3 PgC yr−1), South Asia (0.3 ± 0.1 PgC yr−1), Australia (0.2 ± 0.3 PgC yr−1), and most of the Ocean regions. Our NCE estimates give a likely too large CO2 sink in tropical areas such as the Amazon, Congo, and Indonesia. Overall, and because of the overestimated CO2 uptake in tropical lands, our global bottom-up NCE amounts to a net sink of −5.4 ± 2.0 PgC yr−1. By contrast, the accurately measured mean atmospheric growth rate of CO2 over 2001–2010 indicates that the true value of NCE is a net CO2 source of 4.3 ± 0.1 PgC yr−1. This mismatch of nearly 10 PgC yr−1 highlights observational gaps and limitations of data-driven models in tropical lands, but also in North America. Our uncertainty assessment provides the basis for setting priority regions where to increase carbon observations in the future. High on the priority list are tropical land regions, which suffer from a lack of in situ observations. Second, extensive pCO2 data are missing in the Southern Ocean. Third, we lack observations that could enable seasonal estimates of shelf, estuary, and inland water–atmosphere C exchange. Our consistent derivation of data uncertainties could serve as prior knowledge in multicriteria optimization such as the Carbon Cycle Data Assimilation System (CCDAS) and atmospheric inversions, without over- or under-stating bottom-up data credibility. In the future, NCE estimates of carbon sinks could be aggregated at national scale to compare with the official national inventories of CO2 fluxes in the land use, land use change, and forestry sector, upon which future emission reductions are proposed.
Global Carbon Budget 2016
Quéré, C. Le; Andrew, R.M. ; Canadell, J.G. ; Sitch, Stephen ; Korsbakken, Jan Ivar ; Peters, Glen P. ; Manning, Andrew C. ; Boden, Thomas A. ; Tans, Pieter P. ; Houghton, Richard A. ; Keeling, Ralph F. ; Alin, Simone ; Andrews, Oliver D. ; Anthoni, Peter ; Barbero, Leticia ; Bopp, Laurent ; Chevallier, Frédéric ; Chini, Louise P. ; Ciais, Philippe ; Currie, Kim ; Delire, Christine ; Doney, Scott C. ; Friedlingstein, Pierre ; Gkritzalis, Thanos ; Harris, Ian ; Hauck, Judith ; Haverd, Vanessa ; Hoppema, Mario ; Klein Goldewijk, Kees ; Jain, Atul K. ; Kato, Etsushi ; Körtzinger, Arne ; Landschützer, Peter ; Lefèvre, Nathalie ; Lenton, Andrew ; Lienert, Sebastian ; Lombardozzi, Danica ; Melton, Joe R. ; Metzl, Nicolas ; Millero, Frank ; Monteiro, Pedro M.S. ; Munro, David R. ; Nabel, Julia E.M.S. ; Nakaoka, Shin-Ichiro ; O'Brien, Kevin ; Olsen, Are ; Omar, Abdirahman M. ; Ono, Tsuneo ; Pierrot, Denis ; Poulter, Benjamin ; Rödenbeck, Christian ; Salisbury, Joe ; Schuster, Ute ; Séférian, Roland ; Skjelvan, Ingunn ; Stocker, Benjamin D. ; Sutton, Adrienne J. ; Takahashi, Taro ; Tian, Hanqin ; Tilbrook, Bronte ; Laan-Luijkx, I.T. van der; Werf, Guido R. Van Der; Viovy, Nicolas ; Walker, Anthony P. ; Wiltshire, Andrew J. ; Zaehle, Sönke - \ 2016
Global Carbon Budget 2016
Quéré, Corinne Le; Andrew, Robbie M. ; Canadell, Josep G. ; Sitch, Stephen ; Korsbakken, Jan Ivar ; Peters, Glen P. ; Manning, Andrew C. ; Boden, Thomas A. ; Tans, Pieter P. ; Houghton, Richard A. ; Keeling, Ralph F. ; Alin, Simone ; Andrews, Oliver D. ; Anthoni, Peter ; Barbero, Leticia ; Bopp, Laurent ; Chevallier, Frédéric ; Chini, Louise P. ; Ciais, Philippe ; Currie, Kim ; Delire, Christine ; Doney, Scott C. ; Friedlingstein, Pierre ; Gkritzalis, Thanos ; Harris, Ian ; Hauck, Judith ; Haverd, Vanessa ; Hoppema, Mario ; Klein Goldewijk, Kees ; Jain, Atul K. ; Kato, Etsushi ; Körtzinger, Arne ; Landschützer, Peter ; Lefèvre, Nathalie ; Lenton, Andrew ; Lienert, Sebastian ; Lombardozzi, Danica ; Melton, Joe R. ; Metzl, Nicolas ; Millero, Frank ; Monteiro, Pedro M.S. ; Munro, David R. ; Nabel, Julia E.M.S. ; Nakaoka, S. ; O'Brien, Kevin ; Olsen, Are ; Omar, Abdirahman M. ; Ono, Tsuneo ; Pierrot, Denis ; Poulter, Benjamin ; Rödenbeck, Christian ; Salisbury, Joe ; Schuster, Ute ; Schwinger, Jörg ; Séférian, Roland ; Skjelvan, Ingunn ; Stocker, Benjamin D. ; Sutton, Adrienne J. ; Takahashi, Taro ; Tian, Hanqin ; Tilbrook, Bronte ; Laan-Luijkx, Ingrid T. van der; Werf, Guido R. van der; Viovy, Nicolas ; Walker, Anthony P. ; Wiltshire, Andrew J. ; Zaehle, Sönke - \ 2016
Earth System Science Data 8 (2016)2. - ISSN 1866-3508 - p. 605 - 649.
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), EFF was 9.3 ± 0.5 GtC yr−1, ELUC 1.0 ± 0.5 GtC yr−1, GATM 4.5 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 3.1 ± 0.9 GtC yr−1. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1, showing a slowdown in growth of these emissions compared to the average growth of 1.8 % yr−1 that took place during 2006–2015. Also, for 2015, ELUC was 1.3 ± 0.5 GtC yr−1, GATM was 6.3 ± 0.2 GtC yr−1, SOCEAN was 3.0 ± 0.5 GtC yr−1, and SLAND was 1.9 ± 0.9 GtC yr−1. GATM was higher in 2015 compared to the past decade (2006–2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2 % (range of −1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Niño conditions of 2015–2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565 ± 55 GtC (2075 ± 205 GtCO2) for 1870–2016, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center.
Global Carbon Budget 2015
Quéré, C. Le; Moriarty, R. ; Andrew, R.M. ; Canadell, J.G. ; Sitch, S. ; Korsbakken, J.I. ; Friedlingstein, P. ; Peters, G.P. ; Andres, R.J. ; Houghton, R.A. ; House, J.I. ; Keeling, R.F. ; Tans, P.P. ; Arneth, A. ; Bakker, D. ; Barbero, L. ; Bopp, L. ; Chang, J. ; Chevallier, F. ; Chini, L.P. ; Ciais, P. ; Feely, R.A. ; Gkritzalis, T. ; Harris, I. ; Hauck, J. ; Ilyina, T. ; Jain, A.K. ; Kato, E. ; Kitidis, V. ; Klein-Goldewijk, K. ; Koven, C. ; Landschützer, Peter ; Lauvset, S.K. ; Lefèvre, N. ; Metzl, N. ; Millero, F. ; Munro, D.R. ; Murata, A. ; Nabel, Julia E.M.S. ; Nakaoka, S. ; Nojiri, Y. ; O'Brien, Kate ; Olson, A. ; Ono, T. ; Pérez, N. ; Pfeil, B. ; Pierrot, D. ; Poulter, B. ; Rehder, G. ; Rödenbeck, C. ; Saito, S. ; Schuster, U. ; Schwinger, J. ; Séférian, R. ; Steinhoff, T. ; Stocker, B.D. ; Sutton, A.J. ; Takahashi, T. ; Tilbrook, B. ; Laan-Luijkx, I.T. van der; Werf, G.R. van de; Heuven, S. Van; Vandemark, D. ; Viovy, N. ; Wiltshire, A. ; Zaehle, S. ; Zeng, N. - \ 2015
Global Carbon Budget 2014
Quéré, C. Le; Moriarty, R. ; Andrew, R.M. ; Peters, G.P. ; Ciais, P. ; Friedlingstein, P. ; Jones, S.D. ; Sitch, S. ; Tans, P.P. ; Arneth, A. ; Boden, T.A. ; Bopp, L. ; Bozec, Y. ; Canadell, J.G. ; Chevallier, F. ; Cosca, C.E. ; Harris, I. ; Hoppema, Mario ; Houghton, R.A. ; House, J.I. ; Jain, A.K. ; Johannessen, T. ; Kato, E. ; Keeling, R.F. ; Kitidis, V. ; Klein Goldewijk, Kees ; Koven, C. ; Landa, C.S. ; Landschützer, P. ; Lenton, A. ; Lima, I.D. ; Marland, G. ; Mathis, J.T. ; Metzl, N. ; Nojiri, Y. ; Olson, A. ; Ono, T. ; Peters, Wouter ; Pfeil, B. ; Poulter, Benjamin ; Raupach, M.R. ; Regnier, P. ; Rödenbeck, C. ; Saito, S. ; Sailsbury, J.E. ; Schuster, U. ; Schwinger, J. ; Séférian, R. ; Segschneider, J. ; Steinhoff, T. ; Stocker, B.D. ; Sutton, A.J. ; Takahashi, T. ; Tilbrook, B. ; Werf, G.R. van der; Viovy, N. ; Wang, Y.P. ; Wanninkhof, R. ; Wiltshire, A. ; Zeng, N. - \ 2015
CDIAC
Global Carbon Budget 2015
Quéré, C. Le; Moriarty, R. ; Andrew, R.M. ; Canadell, J.G. ; Sitch, S. ; Korsbakken, J.I. ; Friedlingstein, P. ; Peters, G.P. ; Andres, R.J. ; Boden, T.A. ; Houghton, R.A. ; House, J.I. ; Keeling, R.F. ; Tans, P. ; Arneth, A. ; Bakker, D.C.E. ; Barbero, L. ; Bopp, L. ; Chang, J. ; Chevallier, F. ; Chini, L.P. ; Ciais, P. ; Fader, M. ; Feely, R.A. ; Gkritzalis, T. ; Harris, I. ; Hauck, J. ; Ilyina, T. ; Jain, A.K. ; Kato, E. ; Kitidis, V. ; Klein Goldewijk, K. ; Koven, C. ; Landschützer, P. ; Lauvset, S.K. ; Lefèvre, N. ; Lenton, A. ; Lima, I.D. ; Metzl, N. ; Millero, F. ; Munro, D.R. ; Murata, A. ; Nabel, J.E.M.S. ; Nakaoka, S. ; Nojiri, Y. ; O'Brien, K. ; Olsen, A. ; Ono, T. ; Pérez, F.F. ; Pfeil, B. ; Pierrot, D. ; Poulter, B. ; Rehder, G. ; Rödenbeck, C. ; Saito, S. ; Schuster, U. ; Schwinger, J. ; Séférian, R. ; Steinhoff, T. ; Stocker, B.D. ; Sutton, A.J. ; Takahashi, T. ; Tilbrook, B. ; Laan-Luijkx, I.T. Van Der; Werf, G.R. Van Der; Heuven, S. Van; Vandemark, D. ; Viovy, N. ; Wiltshire, A. ; Zaehle, S. ; Zeng, N. - \ 2015
Earth System Science Data 7 (2015)2. - ISSN 1866-3508 - p. 349 - 396.

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005-2014), EFF was 9.0 ± 0.5 GtC yrg'1, ELUC was 0.9 ± 0.5 GtC yrg'1, GATM was 4.4 ± 0.1 GtC yrg'1, SOCEAN was 2.6 ± 0.5 GtC yrg'1, and SLAND was 3.0 ± 0.8 GtC yrg'1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yrg'1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yrg'1 that took place during 2005-2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yrg'1, GATM was 3.9 ± 0.2 GtC yrg'1, SOCEAN was 2.9 ± 0.5 GtC yrg'1, and SLAND was 4.1 ± 0.9 GtC yrg'1. GATM was lower in 2014 compared to the past decade (2005-2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of g'0.6 [range of g'1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870-2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP-2015).

Atmospheric CO2, d(O2/N2), APO and oxidative ratios from aircraft flask samples over Fyodorovskoye, Western Russia
Laan, S. van der; Laan-Luijkx, I.T. van der; Rödenbeck, C. ; Varlagin, A. ; Shironya, I. ; Neubert, R.E.M. - \ 2014
Atmospheric Environment 97 (2014). - ISSN 1352-2310 - p. 174 - 181.
southern taiga - carbon-cycle - oxygen - o-2/n-2 - siberia - air - climatology - variability - network - tower
We present atmospheric CO2 and d(O2/N2) from flask samples taken on board aircraft over Fyodorovskoye (56°27'N, 32°55'E) at heights of 3000 m and 100 m between 1998 and 2008. The long-term trends for CO2 and d(O2/N2) are similar for both sampling heights, and also similar to observations from marine background station Mace Head (Ireland) and coastal station Lutjewad (the Netherlands). The seasonal CO2 amplitude at 100 m was almost twice as large as at 3000 m and a phase shift in the seasonality of about two weeks between both sampling heights was observed. This indicates a dominant influence on CO2 in the boundary layer from the regional biosphere which is confirmed by analysis of the d(O2/N2) to CO2 oxidative ratio (OR). Together with simulations with the TM3 model, our data suggest that the observed OR of -1.7 ± 0.2 in the free troposphere is mainly driven by exchange processes with the ocean. Within the boundary layer an OR of -0.89 ± 0.12 was observed which supports the results of other recent studies suggesting the commonly used value of -1.1 for biospheric OR is likely too low.
Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions.
Peylin, P. ; Law, R.M. ; Gurney, K.R. ; Chevallier, F. ; Jacobsen, A.R. ; Maki, T. ; Niwa, Y. ; Patra, P.K. ; Peters, W. ; Rayner, P.J. ; Rödenbeck, C. ; Laan-Luijkx, I.T. van der; Zhang, X. - \ 2013
Biogeosciences 10 (2013). - ISSN 1726-4170 - p. 6699 - 6720.
interannual variability - dioxide exchange - transport model - sinks - fluxes - sensitivity - ocean - land - cycle - emissions
Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001-2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean) carbon uptake in the north (-3.4 Pg C yr(-1) (+/- 0.5 Pg C yr(-1) standard deviation), with slightly more uptake over land than over ocean), a significant although more variable source over the tropics (1.6 +/- 0.9 Pg C yr(-1)) and a compensatory sink of similar magnitude in the south (-1.4 +/- 0.5 Pg C yr(-1)) corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV) in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr(-1) for the 1996-2007 period), with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation similar to 0.65 Pg C yr(-1)), the northern and southern land also contribute (standard deviation similar to 0.39 Pg C yr(-1)). Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr(-1)), predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over the northern land (at the continental scale), but still highly dependent on the prior flux seasonality over the ocean. Finally we provide recommendations to interpret the regional fluxes, along with the uncertainty estimates.
The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005
Luyssaert, S. ; Abril, G. ; Andres, R. ; Bastviken, D. ; Bellassen, V. ; Bergamaschi, P. ; Bousquet, P. ; Chevallier, F. ; Ciais, P. ; Corazza, M. ; Dechow, R. ; Erb, K.H. ; Etiope, G. ; Fortems-Cheiney, A. ; Grassi, G. ; Hartmann, J. ; Jung, M. ; Lathiere, J. ; Lohila, A. ; Mayorga, E. ; Moosdorf, N. ; Njakou, D.S. ; Otto, J. ; Papale, D. ; Peters, W. ; Peylin, P. ; Raymond, P. ; Rodenbeck, C. ; Saarnio, S. ; Schulze, E.D. ; Szopa, S. ; Thompson, R. ; Verkerk, P.J. ; Vuichard, N. ; Wang, R. ; Wattenbach, M. ; Zaehle, S. - \ 2012
Biogeosciences 9 (2012)8. - ISSN 1726-4170 - p. 3357 - 3380.
north-atlantic oscillation - net ecosystem exchange - organic-carbon changes - atmospheric co2 - climate-change - nitrous-oxide - terrestrial biosphere - dioxide - fluxes - emissions
Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000-2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294 +/- 545 Tg C in CO2-eq yr(-1)), inventories (1299 +/- 200 Tg C in CO2-eq yr(-1)) and inversions (1210 +/- 405 Tg C in CO2-eq yr(-1)) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205 +/- 72 Tg C yr(-1) from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.
Letter tot the editor: Iconic CO2 Time Series at Risk
Houweling, S. ; Badawy, B. ; Baker, D.F. ; Basu, S. ; Belikov, D. ; Bergamaschi, P. ; Bousquet, P. ; Broquet, G. ; Butler, T. ; Canadell, J.G. ; Chen, J. ; Chevallier, F. ; Ciais, P. ; Collatz, G.J. ; Denning, S. ; Engelen, R. ; Enting, I.G. ; Fischer, M.L. ; Fraser, A. ; Gerbig, C. ; Gloor, M. ; Jacobson, A.R. ; Jones, D.B.A. ; Heimann, M. ; Khalil, A. ; Kaminski, T. ; Kasibhatla, P.S. ; Krakauer, N.Y. ; Krol, M. ; Maki, T. ; Maksyutov, S. ; Manning, A. ; Meesters, A. ; Miller, J.B. ; Palmer, P.I. ; Patra, P. ; Peters, W. ; Peylin, P. ; Poussi, Z. ; Prather, M.J. ; Randerson, J.T. ; Rockmann, T. ; Rodenbeck, C. ; Sarmiento, J.L. ; Schimel, D.S. ; Scholze, M. ; Schuh, A. ; Suntharalingam, P. ; Takahashi, T. ; Turnbull, J. ; Yurganov, L. ; Vermeulen, A. - \ 2012
Science 337 (2012)6098. - ISSN 0036-8075 - p. 1038 - 1040.
Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison
Peylin, P. ; Houweling, S. ; Krol, M.C. ; Karstens, U. ; Rödenbeck, C. - \ 2011
Atmospheric Chemistry and Physics 11 (2011)13. - ISSN 1680-7316 - p. 6607 - 6622.
atmospheric transport models - part 1 - land - inversions - (co2)-c-14 - fluxes - sinks
Inverse modeling techniques used to quantify surface carbon fluxes commonly assume that the uncertainty of fossil fuel CO2 (FFCO2) emissions is negligible and that intra-annual variations can be neglected. To investigate these assumptions, we analyzed the differences between four fossil fuel emission inventories with spatial and temporal differences over Europe and their impact on the model simulated CO2 concentration. Large temporal flux variations characterize the hourly fields (~40 % and ~80 % for the seasonal and diurnal cycles, peak-to-peak) and annual country totals differ by 10 % on average and up to 40 % for some countries (i.e., the Netherlands). These emissions have been prescribed to seven different transport models, resulting in 28 different FFCO2 concentrations fields. The modeled FFCO2 concentration time series at surface sites using time-varying emissions show larger seasonal cycles (+2 ppm at the Hungarian tall tower (HUN)) and smaller diurnal cycles in summer (-1 ppm at HUN) than when using constant emissions. The concentration range spanned by all simulations varies between stations, and is generally larger in winter (up to ~10 ppm peak-to-peak at HUN) than in summer (~5 ppm). The contribution of transport model differences to the simulated concentration std-dev is 2–3 times larger than the contribution of emission differences only, at typical European sites used in global inversions. These contributions to the hourly (monthly) std-dev's amount to ~1.2 (0.8) ppm and ~0.4 (0.3) ppm for transport and emissions, respectively. First comparisons of the modeled concentrations with 14C-based fossil fuel CO2 observations show that the large transport differences still hamper a quantitative evaluation/validation of the emission inventories. Changes in the estimated monthly biosphere flux (Fbio) over Europe, using two inverse modeling approaches, are relatively small (less that 5 %) while changes in annual Fbio (up to ~0.15 % GtC yr-1) are only slightly smaller than the differences in annual emission totals and around 30 % of the mean European ecosystem carbon sink. These results point to an urgent need to improve not only the transport models but also the assumed spatial and temporal distribution of fossil fuel emission inventories.
Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting?
Ciais, P. ; Canadell, J. ; Luyssaert, S. ; Chevallier, F. ; Shvidenko, A. ; Poussi, Z. ; Jonas, M. ; Peylin, P. ; King, A. ; Schulze, E.D. ; Piao, S. ; Rödenbeck, C. ; Peters, W. ; Bréon, F.M. - \ 2010
Current Opinion in Environmental Sustainability 2 (2010)4. - ISSN 1877-3435 - p. 225 - 230.
co2 sources - dioxide exchange - transport - inversion - balance - fluxes - sensitivity - emissions
We estimate the northern hemisphere (NH) terrestrial carbon sink by comparing four recent atmospheric inversions with land-based C accounting data for six large northern regions. The mean NH terrestrial CO2 sink from the inversion models is 1.7 Pg C year-1 over the period 2000–2004. The uncertainty of this estimate is based on the typical individual (1-sigma) precision of one inversion (0.9 Pg C year-1) and is consistent with the min–max range of the four inversion mean estimates (0.8 Pg C year-1). Inversions agree within their uncertainty for the distribution of the NH sink of CO2 in longitude, with Russia being the largest sink. The land-based accounting estimate of NH carbon sink is 1.7 Pg C year-1 for the sum of the six regions studied. The 1-sigma uncertainty of the land-based estimate (0.3 Pg C year-1) is smaller than that of atmospheric inversions, but no independent land-based flux estimate is available to derive a ‘between accounting model’ uncertainty. Encouragingly, the top-down atmospheric and the bottom-up land-based methods converge to consistent mean estimates within their respective errors, increasing the confidence in the overall budget. These results also confirm the continued critical role of NH terrestrial ecosystems in slowing down the atmospheric accumulation of anthropogenic CO2
Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance
Schulze, E.D. ; Luyssaert, S. ; Ciais, P. ; Freibauer, A. ; Janssens, I.A. ; Soussana, J.F. ; Smith, P. ; Grace, J. ; Levin, I. ; Thiruchittampalam, B. ; Heimann, M. ; Dolman, A.J. ; Valentini, R. ; Bousquet, P. ; Peylin, P. ; Peters, W. ; Rödenbeck, C. ; Etiope, G. ; Vuichard, N. ; Wattenbach, M. ; Nabuurs, G.J. ; Poussi, Z. ; Nieschulze, J. ; Gash, J.H.C. - \ 2009
Nature Geoscience 2 (2009). - ISSN 1752-0894 - p. 842 - 850.
atmospheric methane - carbon budget - emissions - co2 - ecosystems - fluxes - soils - sink
Climate change negotiations aim to reduce net greenhouse-gas emissions by encouraging direct reductions of emissions and crediting countries for their terrestrial greenhouse-gas sinks. Ecosystem carbon dioxide uptake has offset nearly 10% of Europe's fossil fuel emissions, but not all of this may be creditable under the rules of the Kyoto Protocol. Although this treaty recognizes the importance of methane and nitrous oxide emissions, scientific research has largely focused on carbon dioxide. Here we review recent estimates of European carbon dioxide, methane and nitrous oxide fluxes between 2000 and 2005, using both top-down estimates based on atmospheric observations and bottom-up estimates derived from ground-based measurements. Both methods yield similar fluxes of greenhouse gases, suggesting that methane emissions from feedstock and nitrous oxide emissions from arable agriculture are fully compensated for by the carbon dioxide sink provided by forests and grasslands. As a result, the balance for all greenhouse gases across Europe's terrestrial biosphere is near neutral, despite carbon sequestration in forests and grasslands. The trend towards more intensive agriculture and logging is likely to make Europe's land surface a significant source of greenhouse gases. The development of land management policies which aim to reduce greenhouse-gas emissions should be a priority
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.