Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Saane
Check title to add to marked list
Acute effects of ∆9-tetrahydrocannabinol (THC) on resting state brain function and their modulation by COMT genotype
Bossong, Matthijs G. ; Hell, Hendrika H. van; Schubart, Chris D. ; Saane, Wesley van; Iseger, Tabitha A. ; Jager, Gerry ; Osch, Matthias J.P. van; Jansma, J.M. ; Kahn, René S. ; Boks, Marco P. ; Ramsey, Nick F. - \ 2019
European Neuropsychopharmacology 29 (2019)6. - ISSN 0924-977X - p. 766 - 776.
Arterial spin labelling - Cannabis - Catechol-methyl-transferase (COMT) - Delta9-tetrahydrocannabinol (THC) - Resting state connectivity - Salience

Cannabis produces a broad range of acute, dose-dependent psychotropic effects. Only a limited number of neuroimaging studies have mapped these effects by examining the impact of cannabis on resting state brain neurophysiology. Moreover, how genetic variation influences the acute effects of cannabis on resting state brain function is unknown. Here we investigated the acute effects of ∆9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, on resting state brain neurophysiology, and their modulation by catechol-methyl-transferase (COMT) Val158Met genotype. Thirty-nine healthy volunteers participated in a pharmacological MRI study, where we applied Arterial Spin Labelling (ASL) to measure perfusion and functional MRI to assess resting state connectivity. THC increased perfusion in bilateral insula, medial superior frontal cortex, and left middle orbital frontal gyrus. This latter brain area showed significantly decreased connectivity with the precuneus after THC administration. THC effects on perfusion in the left insula were significantly related to subjective changes in perception and relaxation. These findings indicate that THC enhances metabolism and thus neural activity in the salience network. Furthermore, results suggest that recruitment of brain areas within this network is involved in the acute effects of THC. Resting state perfusion was modulated by COMT genotype, indicated by a significant interaction effect between drug and genotype on perfusion in the executive network, with increased perfusion after THC in Val/Met heterozygotes only. This finding suggests that prefrontal dopamine levels are involved in the susceptibility to acute effects of cannabis.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.