Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 5 / 5

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Senn-Irlet
Check title to add to marked list
European mushroom assemblages are darker in cold climates
Krah, Franz Sebastian ; Büntgen, Ulf ; Schaefer, Hanno ; Müller, Jörg ; Andrew, Carrie ; Boddy, Lynne ; Diez, Jeffrey ; Egli, Simon ; Freckleton, Robert ; Gange, Alan C. ; Halvorsen, Rune ; Heegaard, Einar ; Heideroth, Antje ; Heibl, Christoph ; Heilmann-Clausen, Jacob ; Høiland, Klaus ; Kar, Ritwika ; Kauserud, Håvard ; Kirk, Paul M. ; Kuyper, Thomas W. ; Krisai-Greilhuber, Irmgard ; Norden, Jenni ; Papastefanou, Phillip ; Senn-Irlet, Beatrice ; Bässler, Claus - \ 2019
Nature Communications 10 (2019). - ISSN 2041-1723

Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species’ geographical distributions will be critical in predicting ecosystem responses to global warming.

Continental-scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition
Andrew, Carrie ; Halvorsen, Rune ; Heegaard, Einar ; Kuijper, Thomas W. ; Heilmann-Clausen, Jacob ; Krisai-Greilhuber, Irmgard ; Bässler, Claus ; Egli, Simon ; Gange, Alan C. ; Høiland, Klaus ; Kirk, Paul M. ; Senn-Irlet, Beatrice ; Boddy, Lynne ; Büntgen, Ulf ; Kauserud, Håvard - \ 2018
Journal of Biogeography 45 (2018)8. - ISSN 0305-0270 - p. 1942 - 1953.
assemblage - biogeography - climate - ectomycorrhizal - Europe - fungi - macroecology - saprotrophic - temporal change

Aim: Macroecological scales of species compositional trends are well documented for a variety of plant and animal groups, but remain sparse for fungi, despite their ecological importance in carbon and nutrient cycling. It is, thus, essential to understand the composition of fungal assemblages across broad geographical scales and the underlying drivers. Our overall aim was to describe these patterns for fungi across two nutritional modes (saprotrophic and ectomycorrhizal). Furthermore, we aimed to elucidate the temporal component of fruiting patterns and to relate these to soil carbon and nitrogen deposition. Location: Central and Northern Europe. Methods: A total of 4.9 million fungal fruit body observations throughout Europe, collected between 1970 and 2010, were analysed to determine the two main environmental and geographical gradients structuring fungal assemblages for two main nutritional modes, saprotrophic and ectomycorrhizal fungi. Results: Two main gradients explaining the geography of compositional patterns were identified, for each nutritional mode. Mean annual temperature (and related collinear, seasonal measures) correlated most strongly with the first gradient for both nutritional modes. Soil organic carbon was the highest correlate of the second compositional gradient for ectomycorrhizal fungi, suspected as an indicator of vegetation- and pH-related covariates. In contrast, nitrogen deposition constituted a second gradient for saprotrophic fungi, likely a proxy for anthropogenic pollution. Compositional gradients and environmental conditions correlated similarly when the data were divided into two time intervals of 1970–1990 and 1991–2010. Evidence of compositional temporal change was highest with increasing elevation and latitude. Main conclusions: Fungal assemblage patterns demonstrate clear biogeographical patterns that relate the nutritional modes to their main environmental correlates of temperature, soil organic carbon and nitrogen deposition. With respect to global change impacts, the highest rates of compositional change by time suggest targeting higher latitudes and elevations for a better understanding of fungal dynamics. We, finally, suggest further examination of the ranges and dispersal abilities of fungi to better assess responses to global change.

Data from: Explaining European fungal fruiting phenology with climate variability
Andrew, Carrie ; Heegaard, Einar ; Høiland, Klaus ; Senn-Irlet, Beatrice ; Kuijper, T.W.M. ; Krisai-Greilhuber, Irmgard ; Kirk, Paul M. ; Heilmann-Clausen, Jacob ; Gange, Alan C. ; Egli, Simon ; Bässler, Claus ; Büntgen, Ulf ; Boddy, Lynne ; Kauserud, Håvard - \ 2018
climate - fungi - fruit bodies - distribution - NDVI - nutritional mode - path analysis - phenology
Here we assess the impact of geographically dependent (latitude, longitude and altitude) changes in bioclimatic (temperature, precipitation and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path‐analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 days, primarily with latitude. Altitude affected fruiting by up to 30 days, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large‐scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic, as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring‐fruiting ectomycorrhizal fungi. Species‐specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems.
Explaining European fungal fruiting phenology with climate variability
Andrew, Carrie ; Heegaard, Einar ; Høiland, Klaus ; Senn-Irlet, Beatrice ; Kuyper, Thomas W. ; Krisai-Greilhuber, Irmgard ; Kirk, Paul M. ; Heilmann-Clausen, Jacob ; Gange, Alan C. ; Egli, Simon ; Bässler, Claus ; Büntgen, Ulf ; Boddy, Lynne ; Kauserud, Håvard - \ 2018
Ecology 99 (2018)6. - ISSN 0012-9658 - p. 1306 - 1315.
climate - distribution - Europe - fruit bodies - fungi - NDVI - nutritional mode - path analysis - phenology
Here we assess the impact of geographically dependent (latitude, longitude, and altitude) changes in bioclimatic (temperature, precipitation, and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 d, primarily with latitude. Altitude affected fruiting by up to 30 d, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large-scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic groups as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring-fruiting ectomycorrhizal fungi. Species-specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems.
Big data integration : Pan-European fungal species observations' assembly for addressing contemporary questions in ecology and global change biology
Andrew, Carrie ; Heegaard, Einar ; Kirk, Paul M. ; Bässler, Claus ; Heilmann-Clausen, Jacob ; Krisai-Greilhuber, Irmgard ; Kuijper, Thomas ; Senn-Irlet, Beatrice ; Büntgen, Ulf ; Kauserud, Håvard - \ 2017
Fungal Biology Reviews 31 (2017)2. - ISSN 1749-4613 - p. 88 - 98.
Biogeography - Citizen science - Fungi - Global change - Meta-database - Open-source

Species occurrence observations are increasingly available for scientific analyses through citizen science projects and digitization of museum records, representing a largely untapped ecological resource. When combined with open-source data, there is unparalleled potential for understanding many aspects of the ecology and biogeography of organisms. Here we describe the process of assembling a pan-European mycological meta-database (ClimFun) and integrating it with open-source data to advance the fields of macroecology and biogeography against a backdrop of global change. Initially 7.3 million unique fungal species fruit body records, spanning nine countries, were processed and assembled into 6 million records of more than 10,000 species. This is an extraordinary amount of fungal data to address macro-ecological questions. We provide two examples of fungal species with different life histories, one ectomycorrhizal and one wood decaying, to demonstrate how such continental-scale meta-databases can offer unique insights into climate change effects on fungal phenology and fruiting patterns in recent decades.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.