Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Sewald
Check title to add to marked list
Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation
Ismail, Mohamed ; Schroeder, Lea ; Frese, Marcel ; Kottke, Tilman ; Hollmann, Frank ; Paul, Caroline E. ; Sewald, Norbert - \ 2019
ACS Catalysis 9 (2019)2. - ISSN 2155-5435 - p. 1389 - 1395.
enzymatic cofactor regeneration - FADH - flavin-dependent halogenases - hydride transfer - NADH mimics - regioselective chlorination

Flavin-dependent halogenases are known to regioselectively introduce halide substituents into aromatic moieties, for example, the indole ring of tryptophan. The process requires halide salts and oxygen instead of molecular halogen in the chemical halogenation. However, the reduced cofactor flavin adenine dinucleotide (FADH2) has to be regenerated using a flavin reductase. Consequently, coupled biocatalytic steps are usually applied for cofactor regeneration. Nicotinamide adenine dinucleotide (NADH) mimics can be employed stoichiometrically to replace enzymatic cofactor regeneration in biocatalytic halogenation. Chlorination of l-tryptophan is successfully performed using such NADH mimics. The efficiency of this approach has been compared to the previously established enzymatic regeneration system using the two auxiliary enzymes flavin reductase (PrnF) and alcohol dehydrogenase (ADH). The reaction rates of some of the tested mimics were found to exceed that of the enzymatic system. Continuous enzymatic halogenation reaction for reaction scale-up is also possible.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.