Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Space-time detection of deforestation, forest degradation and regeneration in montane forests of Eastern Tanzania
    Hamunyela, Eliakim ; Brandt, Patric ; Shirima, Deo ; Do, Ha Thi Thanh ; Herold, Martin ; Roman-Cuesta, Rosa Maria - \ 2020
    International Journal of applied Earth Observation and Geoinformation 88 (2020). - ISSN 1569-8432
    Forest loss - Montane forest - Regeneration - SAGCOT - Tanzania

    Naturally isolated montane forests in East Africa are hotspots of biodiversity, often characterised by high species endemism, and are fundamental contributors to water services. However, they are located in areas highly suitable for agriculture, making them a prime target for agricultural activities. The Eastern Arc Mountains (EAM) in Eastern Tanzania are within the target regions for agricultural development under the Southern Agricultural Growth Corridor of Tanzania (SAGCOT). However, forest monitoring initiatives that track long-term forest dynamics and the ecological impact of current agricultural development policies on forests, are lacking. Here, we use the STEF (Space-Time Extremes and Features) algorithm and Landsat time series to track forest disturbances (deforestation and degradation) and forest gains (regeneration) as spatio-temporal events over seventeen years (2001–2017) in the montane forests of the Mvomero District in Tanzania. We found that 27 % (∼ 20 487 ha) of montane forests were disturbed between 2001 and 2017, mainly led by deforestation (70 %). Small-scale crop farms with maize, banana, and cassava crops, were the most planted on deforested areas. Most disturbances occurred at lower elevation (lowland montane), but there was an increasing shift to higher elevations in recent years (2011–2017). Forest disturbances exclusively occurred at small spatial scales, a pattern similar to other forest montane landscapes in Africa, which lowers detection capabilities in global forest loss products. Our locally calibrated and validated deforestation map (Producer's accuracy = 80 %; User's accuracy = 78 %) shows a gross underestimation of forest cover loss (>10 000 ha) by global forest loss products in these mountainous forest landscapes. Overall, we found few areas undergoing forest regeneration, with only 9 % of the disturbed forest regenerating over 17 years. Long-term conversion to cropland prevented regeneration in the lowlands, with regeneration mainly happening at higher elevations. However, the shift of deforestation and forest degradation to higher elevations may challenge high elevation regeneration trends, leaving the remaining blocks of montane forest in the Mvomero District at a risk of degradation and disappearance. Without effective forest conservation measures, market-driven agricultural development is likely to trigger an expansion of cropland at the expense of forests to meet the increased demand for the agricultural products promoted, with negative impact on biodiversity, carbon sequestration and water services.

    Scenarios of Land Use and Land Cover Change and Their Multiple Impacts on Natural Capital in Tanzania
    Capitani, Claudia ; Soesbergen, Arnout van; Mukama, Kusaga ; Malugu, Isaac ; Mbilinyi, Boniface ; Chamuya, Nurdin ; Kempen, Bas ; Malimbwi, Rogers ; Mant, Rebecca ; Munishi, Panteleo ; Njana, Marco Andrew ; Ortmann, Antonia ; Platts, Philip J. ; Runsten, Lisen ; Sassen, Marieke ; Sayo, Philippina ; Shirima, Deo ; Zahabu, Elikamu ; Burgess, Neil D. ; Marchant, Rob - \ 2019
    Environmental Conservation 46 (2019)1. - ISSN 0376-8929 - p. 17 - 24.
    Reducing emissions from deforestation and forest degradation plus the conservation of forest carbon stocks, sustainable management of forests and enhancement of forest carbon stocks in developing countries (REDD+) requires information on land-use and land-cover changes (LULCCs) and carbon emission trends from the past to the present and into the future. Here, we use the results of participatory scenario development in Tanzania to assess the potential interacting impacts on carbon stock, biodiversity and water yield of alternative scenarios where REDD+ is or is not effectively implemented by 2025, a green economy (GE) scenario and a business as usual (BAU) scenario, respectively. Under the BAU scenario, LULCCs will cause 296 million tonnes of carbon (MtC) national stock loss by 2025, reduce the extent of suitable habitats for endemic and rare species (mainly in encroached protected mountain forests) and change water yields. In the GE scenario, national stock loss decreases to 133 MtC. In this scenario, consistent LULCC impacts occur within small forest patches with high carbon density, water catchment capacity and biodiversity richness. Opportunities for maximizing carbon emission reductions nationally are largely related to sustainable woodland management, but also contain trade-offs with biodiversity conservation and changes in water availability.
    Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements
    Pfeifer, Marion ; Gonsamo, Alemu ; Woodgate, William ; Cayuela, Luis ; Marshall, Andrew R. ; Ledo, Alicia ; Paine, Timothy C.E. ; Marchant, Rob ; Burt, Andrew ; Calders, Kim ; Courtney-mustaphi, Colin ; Cuni-sanchez, Aida ; Deere, Nicolas J. ; Denu, Dereje ; Gonzalez De Tanago Meñaca, J. ; Hayward, Robin ; Lau Sarmiento, A.I. ; Macía, Manuel J. ; Olivier, Pieter I. ; Pellikka, Petri ; Seki, Hamidu ; Shirima, Deo ; Trevithick, Rebecca ; Wedeux, Beatrice ; Wheeler, Charlotte ; Munishi, Pantaleo K.T. ; Martin, Thomas ; Mustari, Abdul ; Platts, Philip J. - \ 2018
    Forest Ecosystems 5 (2018). - ISSN 2095-6355 - 14 p.
    Background: Canopy structure, defined by leaf area index (LAI), fractional vegetation cover (FCover) and fraction of absorbed photosynthetically active radiation (fAPAR), regulates a wide range of forest functions and ecosystem services. Spatially consistent field-measurements of canopy structure are however lacking, particularly for the tropics. Methods: Here, we introduce the Global LAI database: a global dataset of field-based canopy structure measurements spanning tropical forests in four continents (Africa, Asia, Australia and the Americas). We use these measurements to test for climate dependencies within and across continents, and to test for the potential of anthropogenic disturbance and forest protection to modulate those dependences. Results: Using data collected from 887 tropical forest plots, we show that maximum water deficit, defined across the most arid months of the year, is an important predictor of canopy structure, with all three canopy attributes declining significantly with increasing water deficit. Canopy attributes also increase with minimum temperature, and with the protection of forests according to both active (within protected areas) and passive measures (through topography). Once protection and continent effects are accounted for, other anthropogenic measures (e.g. human population) do not improve the model. Conclusions: We conclude that canopy structure in the tropics is primarily a consequence of forest adaptation to the maximum water deficits historically experienced within a given region. Climate change, and in particular changes in drought regimes may thus affect forest structure and function, but forest protection may offer some resilience against this effect.
    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.