Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 6 / 6

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Steffens
Check title to add to marked list
Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti
Göertz, Giel P. ; Bree, Joyce W.M. van; Hiralal, Anwar ; Fernhout, Bas M. ; Steffens, Carmen ; Boeren, Sjef ; Visser, Tessa M. ; Vogels, Chantal B.F. ; Abbo, Sandra R. ; Fros, Jelke J. ; Koenraadt, Constantianus J.M. ; Oers, Monique M. van; Pijlman, Gorben P. - \ 2019
Proceedings of the National Academy of Sciences of the United States of America 116 (2019)38. - ISSN 0027-8424 - p. 19136 - 19144.
Aedes aegypti - Purification - RNA-affinity - Subgenomic flavivirus RNA - Transmission - Zika virus

Zika virus (ZIKV) is an arthropod-borne flavivirus predominantly transmitted by Aedes aegypti mosquitoes and poses a global human health threat. All flaviviruses, including those that exclusively replicate in mosquitoes, produce a highly abundant, noncoding subgenomic flavivirus RNA (sfRNA) in infected cells, which implies an important function of sfRNA during mosquito infection. Currently, the role of sfRNA in flavivirus transmission by mosquitoes is not well understood. Here, we demonstrate that an sfRNA-deficient ZIKV (ZIKVΔSF1) replicates similar to wild-type ZIKV in mosquito cell culture but is severely attenuated in transmission by Ae. aegypti after an infectious blood meal, with 5% saliva-positive mosquitoes for ZIKVΔSF1 vs. 31% for ZIKV. Furthermore, viral titers in the mosquito saliva were lower for ZIKVΔSF1 as compared to ZIKV. Comparison of mosquito infection via infectious blood meals and intrathoracic injections showed that sfRNA is important for ZIKV to overcome the mosquito midgut barrier and to promote virus accumulation in the saliva. Next-generation sequencing of infected mosquitoes showed that viral small-interfering RNAs were elevated upon ZIKVΔSF1 as compared to ZIKV infection. RNA-affinity purification followed by mass spectrometry analysis uncovered that sfRNA specifically interacts with a specific set of Ae. aegypti proteins that are normally associated with RNA turnover and protein translation. The DEAD/H-box helicase ME31B showed the highest affinity for sfRNA and displayed antiviral activity against ZIKV in Ae. aegypti cells. Based on these results, we present a mechanistic model in which sfRNA sequesters ME31B to promote flavivirus replication and virion production to facilitate transmission by mosquitoes.

Soil aggregation and soil organic matter in conventionally and organically farmed Austrian Chernozems
Sandén, Taru ; Lair, Georg J. ; Leeuwen, Jeroen P. Van; Gísladóttir, Guorún ; Bloem, Jaap ; Ragnarsdóttir, Kristín Vala ; Steffens, Markus ; Blum, Winfried E.H. - \ 2017
Bodenkultur 68 (2017)1. - ISSN 0006-5471 - p. 41 - 55.
Aggregate hierarchy - Aggregate stability - Organic matter dynamics - Particulate organic matter (POM) - Solid-state 13C NMR spectroscopy
In order to study the soil aggregate distributions and soil organic matter (SOM), we sampled top- and subsoils in four intensively farmed croplands (two organic (Org-OB and Org-LA), and two conventional (Con-OB and Con-LA)) on Haplic Chernozems located in Marchfeld in the east of Vienna (Austria). Soil structure and SOM quantity, quality and distribution between free and occluded particulate organic matter and aggregate size fractions (<20 μm, 20-250 μm, 250-5000 μm) were studied by following a density fractionation procedure with low-energy ultrasound treatment. Te relation of the soil physicochemical (e.g., particle size distribution, pH, organic carbon, total nitrogen) and biological properties (e.g., fungal biomass, active fungi) with stable soil aggregate size fractions and SOM was studied. Te mean weight diameter (MWD) showed no significant difference between all studied sites and was between 3.8 mm and 10.0 mm in topsoils and between 6.7 mm and 11.9 mm in subsoils. In topsoils, the contents of calcium-acetate-lactate (CAL)-extractable P, active fungal biomass, dithionite-extractable Fe and sand were significantly positively correlated with the amount of the macroaggregates and with the MWD. We observed that most soil organic carbon, depending on soil texture, was stored in the microaggregate size classes <20 μm and 20-250 μm.
Aggregation and organic matter in subarctic Andosols under different grassland management
Lehtinen, T. ; Gisladottir, G. ; Lair, G.J. ; Leeuwen, J.P. van; Blum, W.E.H. ; Bloem, J. ; Steffens, M. ; Ragnarsdottir, K.V. - \ 2015
Acta Agriculturae Scandinavica Section B-Soil and Plant Science 65 (2015)3. - ISSN 0906-4710 - p. 246 - 263.
c-13 nmr-spectroscopy - soil microbial biomass - mediterranean conditions - structural stability - cultivated soils - farming systems - volcanic soils - carbon stocks - land-use - tillage
Quantity and quality of soil organic matter (SOM) affect physical, chemical, and biological soil properties, and are pivotal to productive and healthy grasslands. Thus, we analyzed the distribution of soil aggregates and assessed quality, quantity, and distribution of SOM in two unimproved and improved (two organic and two conventional) grasslands in subarctic Iceland, in Haplic and Histic Andosols. We also evaluated principal physicochemical and biological soil properties, which influence soil aggregation and SOM dynamics. Macroaggregates (>250 µm) in topsoils were most prominent in unimproved (62–77%) and organically (58–69%) managed sites, whereas 20–250 µm aggregates were the most prominent in conventionally managed sites (51–53%). Macroaggregate stability in topsoils, measured as mean weight diameter, was approximately twice as high in organically managed (12–20 mm) compared with the conventionally managed (5–8 mm) sites, possibly due to higher organic inputs (e.g., manure, compost, and cattle urine). In unimproved grasslands and one organic site, macroaggregates contributed between 40% and 70% of soil organic carbon (SOC) and nitrogen to bulk soil, whereas in high SOM concentration sites free particulate organic matter contributed up to 70% of the SOC and nitrogen to bulk soil. Aggregate hierarchy in Haplic Andosols was confirmed by different stabilizing mechanisms of micro- and macroaggregates, however, somewhat diminished by oxides (pyrophosphate-, oxalate-, and dithionite-extractable Fe, Al, and Mn) acting as binding agents for macroaggregates. In Histic Andosols, no aggregate hierarchy was observed. The higher macroaggregate stability in organic farming practice compared with conventional farming is of interest due to the importance of macroaggregates in protecting SOM and soils from erosion, which is a prerequisite for soil functions in grasslands that are envisaged for food production in the future.
Do aggregate stability and soil organic matter content increase following organic inputs?
Bloem, J. ; Lehtinen, T. ; Gisladottir, G. ; Leeuwen, J.P. van; Steffens, M. - \ 2014
Agriculture is facing several challenges such as loss of soil organic matter (SOM); thus, sustainable farming management practices are needed. Organic farming is growing as an alternative to conventional farming; in Iceland approximately 1% and in Austria 16% of utilized agricultural area is under organic farming practice. We analyzed the effect of different farming practices (organic, and conventional) on soil physicochemical and microbiological properties in grassland soils in Iceland and cropland soils in Austria. Organic farms differed from conventional farms by absence of chemical fertilizers and pesticide use. At these farms, we investigated soil physicochemical (e.g. soil texture, pH, CAL-extractable P and K) and microbiological properties (fungal and bacterial biomass and activity). The effects of farming practices on soil macroaggregate stability and SOM quantity, quality and distribution between different fractions were studied following a density fractionation. In Iceland, we sampled six grassland sites on Brown (BA) and Histic (HA) Andosols; two sites on extensively managed grasslands, two sites under organic and two sites under conventional farming practice. In Austria, we sampled four cropland sites on Haplic Chernozems; two sites under organic and two sites under conventional farming practice. We found significantly higher macroaggregate stability in the organic compared to the conventional grasslands in Iceland. In contrast, slightly higher macroaggregation in conventional compared to the organic farming practice was found in croplands in Austria, although the difference was not significant. Macroaggregates were positively correlated with fungal biomass in Iceland, and with Feo and fungal activity in Austria. In Austria, SOM content and nutrient status (except for lower CAL-extractable P at one site) were similar between organic and conventional farms. Our results show that the organic inputs may have enhanced macroaggregation in organic farming practice compared to conventional in the permanent grassland soils in Iceland but were only enough to maintain the SOM content and macroaggregation in the cropland soils in Austria.
Further evidence that shallot yellow stripe virus (SYSV) is a distinct potyvirus and reidentification of Welsh onion yellow stripe virus as a SYSV strain
Vlugt, R.A.A. van der; Steffens, P. ; Cuperus, C. ; Lesemann, D.E. ; Bos, L. ; Vetten, H.J. - \ 1999
Phytopathology 89 (1999). - ISSN 0031-949X - p. 148 - 155.
Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers.
Bachem, C.W.B. ; Speckmann, G.J. ; Linde, P.C.G. van der; Verheggen, F.T.M. ; Hunt, M.D. ; Steffens, J.C. ; Zabeau, M. - \ 1994
Bio/Technology 12 (1994). - ISSN 0733-222X - p. 1101 - 1105.
Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.