Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 6 / 6

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Antenatal multiple micronutrient supplementation: call to action for change in recommendation
    Bourassa, Megan W. ; Osendarp, Saskia J.M. ; Adu‐Afarwuah, Seth ; Ahmed, Saima ; Ajello, Clayton ; Bergeron, Gilles ; Black, Robert ; Christian, Parul ; Cousens, Simon ; Pee, Saskia de; Dewey, Kathryn G. ; Arifeen, Shams El ; Engle‐Stone, Reina ; Fleet, Alison ; Gernand, Alison D. ; Hoddinott, John ; Klemm, Rolf ; Kraemer, Klaus ; Kupka, Roland ; McLean, Erin ; Moore, Sophie E. ; Neufeld, Lynnette M. ; Persson, L. ; Rasmussen, Kathleen M. ; Shankar, Anuraj H. ; Smith, Emily ; Sudfeld, Christopher R. ; Udomkesmalee, Emorn ; Vosti, Stephen A. - \ 2020
    Annals of the New York Academy Of Sciences 1465 (2020)1. - ISSN 0077-8923 - p. 5 - 7.
    Innovatiesubsidie voor medicijnmakers
    Wijffels, Rene ; Adamo, Sarah D'; Barbosa, Maria ; Martens, Dirk ; Südfeld, Christian - \ 2020
    Review of the evidence regarding the use of antenatal multiple micronutrient supplementation in low- and middle-income countries
    Bourassa, Megan W. ; Osendarp, Saskia J.M. ; Adu-Afarwuah, Seth ; Ahmed, Saima ; Ajello, Clayton ; Bergeron, Gilles ; Black, Robert ; Christian, Parul ; Cousens, Simon ; Pee, Saskia de; Dewey, Kathryn G. ; Arifeen, Shams El ; Engle-Stone, Reina ; Fleet, Alison ; Gernand, Alison D. ; Hoddinott, John ; Klemm, Rolf ; Kraemer, Klaus ; Kupka, Roland ; McLean, Erin ; Moore, Sophie E. ; Neufeld, Lynnette M. ; Persson, Lars Åke ; Rasmussen, Kathleen M. ; Shankar, Anuraj H. ; Smith, Emily ; Sudfeld, Christopher R. ; Udomkesmalee, Emorn ; Vosti, Stephen A. - \ 2019
    Annals of the New York Academy Of Sciences 1444 (2019)1. - ISSN 0077-8923 - p. 6 - 21.
    LMICs - micronutrient - pregnancy - supplements

    Inadequate micronutrient intakes are relatively common in low- and middle-income countries (LMICs), especially among pregnant women, who have increased micronutrient requirements. This can lead to an increase in adverse pregnancy and birth outcomes. This review presents the conclusions of a task force that set out to assess the prevalence of inadequate micronutrient intakes and adverse birth outcomes in LMICs; the data from trials comparing multiple micronutrient supplements (MMS) that contain iron and folic acid (IFA) with IFA supplements alone; the risks of reaching the upper intake levels with MMS; and the cost-effectiveness of MMS compared with IFA. Recent meta-analyses demonstrate that MMS can reduce the risks of preterm birth, low birth weight, and small for gestational age in comparison with IFA alone. An individual-participant data meta-analysis also revealed even greater benefits for anemic and underweight women and female infants. Importantly, there was no increased risk of harm for the pregnant women or their infants with MMS. These data suggest that countries with inadequate micronutrient intakes should consider supplementing pregnant women with MMS as a cost-effective method to reduce the risk of adverse birth outcomes.

    CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1
    Naduthodi, Mihris Ibnu Saleem ; Mohanraju, Prarthana ; Südfeld, Christian ; Adamo, Sarah D'; Barbosa, Maria J. ; Oost, John Van Der - \ 2019
    Biotechnology for Biofuels 12 (2019)1. - ISSN 1754-6834
    Cas12a - Cas9 - CRISPR - Genome editing - Homologous recombination - Homology-directed repair - Microalgae - Nannochloropsis - Ribonucleoproteins

    Background: Microalgae are considered as a sustainable feedstock for the production of biofuels and other value-added compounds. In particular, Nannochloropsis spp. stand out from other microalgal species due to their capabilities to accumulate both triacylglycerol (TAG) and polyunsaturated fatty acids (PUFAs). However, the commercialization of microalgae-derived products is primarily hindered by the high production costs compared to less sustainable alternatives. Efficient genome editing techniques leading to effective metabolic engineering could result in strains with enhanced productivities of interesting metabolites and thereby reduce the production costs. Competent CRISPR-based genome editing techniques have been reported in several microalgal species, and only very recently in Nannochloropsis spp. (2017). All the reported CRISPR-Cas-based systems in Nannochloropsis spp. rely on plasmid-borne constitutive expression of Cas9 and a specific guide, combined with repair of double-stranded breaks (DSB) by non-homologous end joining (NHEJ) for the target gene knockout. Results: In this study, we report for the first time an alternative approach for CRISPR-Cas-mediated genome editing in Nannochloropsis sp.; the Cas ribonucleoproteins (RNP) and an editing template were directly delivered into microalgal cells via electroporation, making Cas expression dispensable and homology-directed repair (HDR) possible with high efficiency. Apart from widely used SpCas9, Cas12a variants from three different bacterium were used for this approach. We observed that FnCas12a from Francisella novicida generated HDR-based targeted mutants with highest efficiency (up to 93% mutants among transformants) while AsCas12a from Acidaminococcus sp. resulted in the lowest efficiency. We initially show that the native homologous recombination (HR) system in N. oceanica IMET1 is not efficient for easy isolation of targeted mutants by HR. Cas9/sgRNA RNP delivery greatly enhanced HR at the target site, generating around 70% of positive mutant lines. Conclusion: We show that the delivery of Cas RNP by electroporation can be an alternative approach to the presently reported plasmid-based Cas9 method for generating mutants of N. oceanica. The co-delivery of Cas-RNPs along with a dsDNA repair template efficiently enhanced HR at the target site, resulting in a remarkable higher percentage of positive mutant lines. Therefore, this approach can be used for efficient generation of targeted mutants in Nannochloropsis sp. In addition, we here report the activity of several Cas12a homologs in N. oceanica IMET1, identifying FnCas12a as the best performer for high efficiency targeted genome editing.

    High-throughput phenotype and genotype screening of Nannochloropsis oceanica random insertional libraries
    Südfeld, C.A.K.B. - \ 2018
    Tailored microalgae as a sustainable oil crop production platform
    Südfeld, C.A.K.B. - \ 2017
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.