Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 5 / 5

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Assessment of Dickeya and Pectobacterium spp. on vegetables and ornamentals (Soft rot)
    Wolf, J.M. van der; Bergsma-Vlami, M. ; Saddler, G. ; Hélias, V. ; Tsror, L. ; Yedida, Iris ; Pirhonen, M. ; Degefu, Yeshtila ; Tuomisto, J.T. ; Lojkowska, Ewa ; Li, Sean - \ 2020
    Zenodo - 109 p.
    Euphresco - Plant health - Dickeya - Pectobacterium - soft rot - vegetables - ornamentals - diagnostics - surveys - epidemiology - management
    Dickeya and Pectobacterium belonging to the group of soft rot Pectobacteriaceae (SRP) are causing emerging problems in a wide range of vegetable and ornamental crops in Europe, including potato, carrot, cabbage, Chinese cabbage, celery, leek, pepper, parsley, Zantedeschia, hyacinth, Dahlia, Chrysanthemum, Philodendron, Freesia, Saintpaulia, Iris, Aglaonema, Crocus, Campanula and Phalaenopsis. The phytopathogens in both genera are genetically and phenotypically highly diverse. Disease problems in the different hosts are associated with the introduction of new variants or by spread of groups already present in Europe. Within this Euphresco project we aimed to identify and assess the risks of these new variants, and to develop management strategies, including reliable diagnostic methods to prevent introductions and further spread of SRP. To reach our goals, meetings were organized and collaborations were established with specialists worldwide. All information on meetings, protocols and activities of the Euphresco group are published on the Dickeya/Pectobacterium website, conveyed by the James Hutton Institute in Invergowrie (Scotland) (https://engage.hutton.ac.uk, contact person Dr I. Toth/Dr J. Fairly).

    During the project, 1.5 days meetings were held in 2015 in Gdansk (Poland), in 2016 in Helsinki (Finland), in 2017 in Edinburgh (Scotland) and in 2018 in Emmeloord (The Netherlands). Meetings were attended by an average of 30 participants from organizations in EU member states, North- and Latin America, Africa, Asia and Australia.

    One project’s objective was to develop methods for the detection and identification of Pectobacterium and Dickeya species in different matrices. For this, a panel of reference strains has been compiled for Dickeya and Pectobacterium species. Most strains have been deposited in international collections. For most strains also whole genome sequence data are available. During the course of this project, several diagnostic tests were developed and evaluated, often based on the TaqMan technology.

    In several countries, surveys in potato and ornamental crops were conducted, but also in other matrices of the potato ecosystem, including water used for irrigation. In addition, new taxonomic groups that have been identified, are now new species including: P. versatile, P. aquaticum, P. fontis and P. polonicum. In potato, P. brasiliense became dominant as blackleg causing organism and has largely outcompeted D. solani in the last five years. In surface water in Europe, D. zeae was found to be the dominant SRP. In other continents, serious outbreaks of potato blackleg with other SRP has been reported, such as D. dianthicola in the USA and Australia. Various new SRP have been described, namely P. punjabense, P. peruviense, P. polaris, D. lacustris and D. zantedeschia. For the first time, D. fangzhongdai was described in Phalaenopsis. Not all species can cause potato blackleg.

    Studies on various virulence factors were conducted for SRP, such as on chemoreceptors, small phenolic plant compounds interacting with signal molecules of Pectobacterium involved in the quorum sensing mechanism of the pathogen. A Tn-seq approach was developed and used to identify new virulence factors.

    Information was exchanged on disease management strategies which include cultivation practices, resistance breeding, hygiene and the use of (bio-) control agents. A strict hygiene and an intensive monitoring of seed lots was found to be associated with a significant reduction of infections with blackleg causing SRP. A phage therapy has been developed to protect (seed) potato tubers against soft rot during storage. Various bacteriophages and bacterial antagonists were characterized and some evaluated for control of potato soft rot and/or blackleg. Steam treatments for seed tubers were found to decrease the blackleg incidence. Cold plasma treatment was found to kill SRP grown in vitro. Similarly, stabilized silver nanostructures killed SRP. It was found that seed potato lots can differ in suppressiveness against D. solani. Indications were found that the microbiome in tuber tissue plays a role in this.
    Author Correction: The potential of future foods for sustainable and healthy diets
    Parodi, A. ; Leip, A. ; Boer, I.J.M. De; Slegers, P.M. ; Ziegler, F. ; Temme, E.H.M. ; Herrero, M. ; Tuomisto, H. ; Valin, H. ; Middelaar, C.E. Van; Loon, J.J.A. Van; Zanten, H.H.E. Van - \ 2019
    Nature Sustainability 2 (2019)4. - ISSN 2398-9629 - p. 342 - 347.

    In the version of this Article originally published, in Supplementary Table 7, the energy and land-use values for mealworms in Thevenot et al. were mistakenly swapped. The correct values are 65.39 MJ for energy use and 4.31 m 2 for land use. In the same table, the energy and land use values for black soldier fly in Salome et al. were incorrectly given as 0.14 MJ and 41.67 m 2 ; they should have read 7.248 MJ and 0.024 m 2 (respectively). Correcting these values has led to corresponding changes in Fig. 3, Supplementary Figs 2 and 4 and Supplementary Table 8. Additionally, in the panel of Fig. 3 that contains information about vitamin A, the land-use values of 593 for pork and 1914 for beef were incorrect, and should have been 666 and 3238, respectively.

    The potential of future foods for sustainable and healthy diets
    Parodi, Alejandro ; Leip, Adrian ; Boer, I.J.M. de; Slegers, P.M. ; Ziegler, Friederike ; Temme, Elisabeth H.M. ; Herrero, Mario ; Tuomisto, Hanna ; Valin, Hugo ; Middelaar, C.E. van; Loon, J.J.A. van; Zanten, H.H.E. van - \ 2019
    In: Trade-offs in Science : Keeping the Balance. - Wageningen University & Research - p. 35 - 35.
    Altering diets is increasingly acknowledged as an important solution to feed the world’s growing population within the planetary boundaries. In our search for a planet-friendly diet, the main focus has been on eating more plant-source foods, and eating no or less animal-source foods, while the potential of future foods, such as insects, seaweed or cultured meat has been underexplored. Here we show that compared to current animal-source foods, future foods have major environmental benefits while safeguarding the intake of essential micronutrients. The complete array of essential nutrients in the mixture of future foods makes them good-quality alternatives for current animal-source foods compared to plant-source foods. Moreover, future foods are land-efficient alternatives for animal-source foods, and if produced with renewable energy, they also offer greenhouse gas benefits. Further research on nutrient bioavailability and digestibility, food safety, production costs and consumer acceptance will determine their role as main food sources in future diets.
    The potential of future foods for sustainable and healthy diets
    Parodi, A. ; Leip, A. ; Boer, I.J.M. De; Slegers, P.M. ; Ziegler, F. ; Temme, E.H.M. ; Herrero, M. ; Tuomisto, H. ; Valin, H. ; Middelaar, C.E. Van; Loon, J.J.A. Van; Zanten, H.H.E. Van - \ 2018
    Nature Sustainability 1 (2018). - ISSN 2398-9629 - p. 782 - 789.
    Altering diets is increasingly acknowledged as an important solution to feed the world’s growing population within the planetary boundaries. In our search for a planet-friendly diet, the main focus has been on eating more plant-source foods, and eating no or less animal-source foods, while the potential of future foods, such as insects, seaweed or cultured meat has been underexplored. Here we show that compared to current animal-source foods, future foods have major environmental benefits while safeguarding the intake of essential micronutrients. The complete array of essential nutrients in the mixture of future foods makes them good-quality alternatives for current animal-source foods compared to plant-source foods. Moreover, future foods are land-efficient alternatives for animal-source foods, and if produced with renewable energy, they also offer greenhouse gas benefits. Further research on nutrient bioavailability and digestibility, food safety, production costs and consumer acceptance will determine their role as main food sources in future diets.
    State of the art in benefit–risk analysis: Economics and Marketing-Finance
    Kalogeras, N. ; Odekerken-Schröder, G. ; Pennings, J.M.E. ; Gunnlaugsdóttir, H. ; Holm, F. ; Leino, O. ; Luteijn, J.M. ; Magnússon, S.H. ; Pohjola, M.V. ; Tijhuis, M.J. ; Tuomisto, J.T. ; Ueland, O. ; White, B.C. ; Verhagen, H. - \ 2012
    Food and Chemical Toxicology 50 (2012)1. - ISSN 0278-6915 - p. 56 - 66.
    perceived risk - utility-functions - expected utility - empirical-test - product quality - consumer choice - attitudes - farmers - model - aversion
    All market participants (e.g., investors, producers, consumers) accept a certain level of risk as necessary to achieve certain benefits. There are many types of risk including price, production, financial, institutional, and individual human risks. All these risks should be effectively managed in order to derive the utmost of benefits and avoid disruption and/or catastrophic economic consequences for the food industry. The identification, analysis, determination, and understanding of the benefit–risk trade-offs of market participants in the food markets may help policy makers, financial analysts and marketers to make wellinformed and effective corporate investment strategies in order to deal with highly uncertain and risky situations. In this paper, we discuss the role that benefits and risks play in the formation of the decision-making process of market-participants, who are engaged in the upstream and downstream stages of the food supply chain. In addition, we review the most common approaches (expected utility model and psychometrics) for measuring benefit–risk trade-offs in the economics and marketing-finance literature, and different factors that may affect the economic behaviour in the light of benefit–risk analyses. Building on the findings of our review, we introduce a conceptual framework to study the benefit–risk behaviour of market participants. Specifically, we suggest the decoupling of benefits and risks into the separate components of utilitarian benefits, hedonic benefits, and risk attitude and risk perception, respectively. Predicting and explaining how market participants in the food industry form their overall attitude in light of benefit–risk trade-offs may be critical for policy-makers and managers who need to understand the drivers of the economic behaviour of market participants with respect to production, marketing and consumption of food products Keywords: Benefit–risk trade-offs Decoupling Utility Economics Marketing-Finance
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.