Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 100 / 712

    • help
    • print

      Print search results

    • export
      A maximum of 250 titles can be exported. Please, refine your queryYou can also select and export up to 30 titles via your marked list.
    Check title to add to marked list
    Opportunities for fraudsters : When would profitable milk adulterations go unnoticed by common, standardized FTIR measurements?
    Yang, Yuzheng ; Hettinga, Kasper A. ; Erasmus, Sara W. ; Pustjens, Annemieke M. ; Ruth, Saskia M. van - \ 2020
    Food Research International 136 (2020). - ISSN 0963-9969
    Ammonium chloride (PubChem CID: 25517) - Ammonium sulphate (PubChem CID: 6097028) - Dicyandiamide (PubChem CID: 10005) - Formaldehyde (PubChem CID: 712) - Fourier transform infrared - Fructose (PubChem CID: 5984) - Glucose (PubChem CID: 79025) - Hydrogen peroxide (PubChem CID: 784) - Lactose (PubChem CID: 104938) - Maltodextrin (PubChem CID: 68229136) - Melamine (PubChem CID: 7955) - Milk adulteration - Milk composition - Milkoscan measurements - One class classification - Profitability - Sodium bicarbonate (PubChem CID: 516892) - Sodium carbonate (PubChem CID: 10340) - Sodium citrate (PubChem CID: 23666341) - Sodium hydroxide (PubChem CID: 14798) - Starch (PubChem CID: 24836924) - Sucrose (PubChem CID: 5988) - Urea (PubChem CID: 1176)

    Milk is regarded as one of the top food products susceptible to adulteration where its valuable components are specifically identified as high-risk indicators for milk fraud. The current study explores the impact of common milk adulterants on the apparent compositional parameters of milk from the Dutch market as measured by standardized Fourier transform infrared (FTIR) spectroscopy. More precisely, it examines the detectability of these adulterants at various concentration levels using the compositional parameters individually, in a univariate manner, and together in a multivariate approach. In this study we used measured boundaries but also more practical variance-adjusted boundaries to set thresholds for detection of adulteration. The potential economic impact of these adulterations under a milk payment scheme is also evaluated. Twenty-four substances were used to produce various categories of milk adulterations, each at four concentration levels. These substances comprised five protein-rich adulterants, five nitrogen-based adulterants, seven carbohydrate-based adulterants, six preservatives and water, resulting in a set of 360 samples to be analysed. The results showed that the addition of protein-rich adulterants, as well as dicyandiamide and melamine, increased the apparent protein content, while the addition of carbohydrate-based adulterants, whey protein isolate, and skimmed milk powder, increased the apparent lactose content. When considering the compositional parameters univariately, especially protein- and nitrogen-based adulterants did not raise a flag of unusual apparent concentrations at lower concentration levels. Addition of preservatives also went unnoticed. The multivariate approach did not improve the level of detection. Regarding the potential profit of milk adulteration, whey protein and corn starch seem particularly interesting. Combining the artificial inflation of valuable components, the resulting potential profit, and the gaps in detection, it appears that the whey protein isolates deserve particular attention when thinking like a criminal.

    Chemical structure predicts the effect of plant‐derived low molecular weight compounds on soil microbiome structure and pathogen suppression
    Gu, Yian ; Wang, Xiaofang ; Yang, Tianjie ; Friman, Ville Petri ; Geisen, Stefan ; Wei, Zhong ; Xu, Yangchun ; Jousset, Alexandre ; Shen, Qirong - \ 2020
    Functional Ecology (2020). - ISSN 0269-8463


    1. Plant‐derived low molecular weight compounds play a crucial role in shaping soil microbiome functionality. While various compounds have been demonstrated to affect soil microbes, mout data are case‐specific and do not provide generalizable predictions on their effects. Here we show that the chemical structural affiliation of low molecular weight compounds typically secreted by plant roots – sugars, amino acids, organic acids and phenolic acids – can predictably affect microbiome diversity, composition and functioning in terms of plant disease suppression.

    2. We amended soil with single or mixtures of representative compounds, mimicking carbon deposition by plants. We then assessed how different classes of compounds, or their combinations, affected microbiome composition and the protection of tomato plants from the soil‐borne Ralstonia solanacearum bacterial pathogen.

    3. We found that chemical class predicted well the changes in microbiome composition and diversity. Organic and amino acids generally decreased the microbiome diversity compared to sugars and phenolic acids. These changes were also linked to disease incidence, with amino acids and nitrogen‐containing compound mixtures inducing more severe disease symptoms connected with a reduction in bacterial community diversity.

    4. Together, our results demonstrate that low molecular weight compounds can predictably steer rhizosphere microbiome functioning providing guidelines to engineer microbiomes based on root exudation patterns by specific plant cultivars or crop regimes.
    The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion
    Gu, Yian ; Dong, Ke ; Geisen, Stefan ; Yang, Wei ; Yan, Yaner ; Gu, Dalu ; Liu, Naisen ; Borisjuk, Nikolai ; Luo, Yuming ; Friman, Ville Petri - \ 2020
    Plant and Soil 452 (2020). - ISSN 0032-079X - p. 105 - 117.
    Diversity - Microbial inoculation - Microbial transplants - Plant growth-promotion - Rhizosphere microbiota - Soil functioning

    Aims: Microbial inoculation has been proposed as a potential approach for rhizosphere engineering. However, it is still unclear to what extent successful plant growth-promoting effects are driven by the origin of the microbial inocula and which taxa are responsible for the plant-beneficial effects. Methods: We conducted a microbial transplant experiment by using different microbial inocula (and nutrient controls) isolated from forest, soybean and tomato field soils and determined their effects on tomato plant biomass and nutrient assimilation in sterilized tomato soil. Rhizosphere bacterial communities were compared at the end of the experiment and correlative and machine learning analyses used to identify potential keystone taxa associated with the plant growth-promotion. Results: Microbial inoculants had a clear positive effect on plant growth compared to control nutrient inoculants. Specifically, positive effects on the plant biomass were significantly associated with microbial inoculants from the forest and soybean field soils, while microbial inoculants from the forest and tomato field soils had clear positive effects on the plant nutrient assimilation. Soil nutrients alone had relatively minor effects on rhizosphere bacterial communities. However, the origin of microbial inoculants had clear effects on the structure of bacterial community structure with tomato and soybean inoculants having positive effects on the diversity and abundance of bacterial communities, respectively. Specifically, Streptomyces, Luteimonas and Enterobacter were identified as the potential keystone genera affecting plant growth. Conclusions: The origin of soil microbiome inoculant can predictably influence plant growth and nutrient assimilation and that these effects are associated with certain key bacterial genera.

    Impact of plastic mulch film debris on soil physicochemical and hydrological properties
    Qi, Yueling ; Beriot, Nicolas ; Gort, Gerrit ; Huerta Lwanga, Esperanza ; Gooren, Harm ; Yang, Xiaomei ; Geissen, Violette - \ 2020
    Environmental Pollution 266 (2020). - ISSN 0269-7491
    Agricultural soil - Biodegradable plastic - Microplastics - Plastic pollution - Soil quality

    The plastic mulch films used in agriculture are considered to be a major source of the plastic residues found in soil. Mulching with low-density polyethylene (LDPE) is widely practiced and the resulting macro- and microscopic plastic residues in agricultural soil have aroused concerns for years. Over the past decades, a variety of biodegradable (Bio) plastics have been developed in the hope of reducing plastic contamination of the terrestrial ecosystem. However, the impact of these Bio plastics in agroecosystems have not been sufficiently studied. Therefore, we investigated the impact of macro (around 5 mm) and micro (<1 mm) sized plastic debris from LDPE and one type of starch-based Bio mulch film on soil physicochemical and hydrological properties. We used environmentally relevant concentrations of plastics, ranging from 0 to 2% (w/w), identified by field studies and literature review. We studied the effects of the plastic residue on a sandy soil for one month in a laboratory experiment. The bulk density, porosity, saturated hydraulic conductivity, field capacity and soil water repellency were altered significantly in the presence of the four kinds of plastic debris, while pH, electrical conductivity and aggregate stability were not substantially affected. Overall, our research provides clear experimental evidence that microplastics affect soil properties. The type, size and content of plastic debris as well as the interactions between these three factors played complex roles in the variations of the measured soil parameters. Living in a plastic era, it is crucial to conduct further interdisciplinary studies in order to have a comprehensive understanding of plastic debris in soil and agroecosystems.

    Disentangling the direct and indirect effects of cropland abandonment on soil microbial activity in grassland soil at different depths
    Xu, Hongwei ; Qu, Qing ; Chen, Yanhua ; Wang, Minggang ; Liu, Guobin ; Xue, Sha ; Yang, Xiaomei - \ 2020
    Catena 194 (2020). - ISSN 0341-8162
    Plant-soil interactions - Soil enzyme activity - Soil nutrients - Structural equation models - Vegetation restoration

    Cropland abandonment strongly affects plant-soil interactions. However, knowledge remains limited about how the production and diversity of plants and soil physicochemical parameters drive changes in soil microbial activity (such as microbial biomass, respiration, and enzyme activity) after cropland abandonment. Here, we investigated a grassland restoration chronosequence (0–30 years) to determine the dynamics of soil microbial biomass, respiration, and enzyme activity in the Loess Hilly, Region (China). Overall, cropland abandonment caused an increase in soil microbial activity primarily in the 0–20 cm soil layers. The metabolic quotient in the 0–10 cm layer decreased linearly with time since abandonment (recovery years). Structural equation models showed that recovery years directly and indirectly affected changes to soil microbial activity. Plant species richness, aboveground biomass, and soil organic carbon explained a large proportion of the variability in soil microbial activity in the 0–20 cm layer. However, the variability in soil microbial activity was mostly explained by plant species richness, belowground biomass, and soil total nitrogen in the 20–50 cm layers. Our results indicate that during recovery after cropland abandonment, changes in soil microbial activity are driven by plant characteristics and soil physicochemical parameters, with different drivers at different soil depths.

    Resource scarcity and cooperation : Evidence from a gravity irrigation system in China
    Nie, Zihan ; Yang, Xiaojun ; Tu, Qin - \ 2020
    World Development 135 (2020). - ISSN 0305-750X
    China - Cooperation - Irrigation - Public goods game - Water scarcity

    Resource scarcity has become an increasingly pressing challenge to the world. How scarcity affects people's preferences and behavior has been taken as an important issue for development. This study examines the impact of long-term exposure to resource scarcity on farmers’ cooperation. Specifically, we focus on water scarcity in irrigation agriculture, and examine the effect of water scarcity on cooperation in the context of a gravity irrigation system in western China. A historical irrigation water quota system provides an opportunity to measure exogenous variations of water scarcity within an otherwise homogeneous region. We use the ratio of the arable land area to the irrigation water quota of each village as our measure of water scarcity. Moreover, we use the contributions in a public goods game to measure the farmers’ willingness to cooperate. Combining a household survey and a lab-in-the-field experiment with 312 rural residents in northwestern China, we find that irrigation water scarcity significantly increases farmers’ willingness to cooperate. The results are robust to potential endogeneity concerns and many confounding factors. We also find that water scarcity is positively correlated with irrigation management activities and canal conditions. Our findings provide important policy implications for common pool resource management and collective actions in rural communities.

    The mechanism and application of bidirectional extracellular electron transport in the field of energy and environment
    Xie, Qingqing ; Lu, Yue ; Tang, Lin ; Zeng, Guangming ; Yang, Zhaohui ; Fan, Changzheng ; Wang, Jingjing ; Atashgahi, Siavash - \ 2020
    Critical Reviews in Environmental Science and Technology (2020). - ISSN 1064-3389
    Bioremediation - energy production - extracellular electron transfer

    Bidirectional extracellular electron transfer (EET) is mediated by back and forth electron delivery between microorganisms and extracellular substances. This enables the exchange of biochemical information and energy with the surrounding environments. As a novel bioenergy strategy, bidirectional EET provides low-cost opportunities for the production of clean energy sources and carriers (e.g., hydrogen and methane) as well as the production of value-added chemicals from carbon dioxide. Electrochemically active bacteria (EAB) can also transform pollutants to less toxic or benign substances in contaminated environments, and therefore they have been widely applied in bioremediation studies. Among all the available EAB, Geobacter and Shewanella are well-known for their versatility to accept/donate electrons from/to external environments. In this review, we focus on how these model EAB generate or harvest energy through bidirectional EET, as well as recent advances in the application of EET in bioelectrochemical technology and environmental bioremediation. Finally, the challenges, perspectives and new directions in the bidirectional EET studies are discussed. (Figure presented.).

    Salt stress and fluctuating light have separate effects on photosynthetic acclimation, but interactively affect biomass
    Zhang, Yuqi ; Kaiser, Elias ; Marcelis, Leo F.M. ; Yang, Qichang ; Li, Tao - \ 2020
    Plant, Cell & Environment (2020). - ISSN 0140-7791 - 15 p.
    fluctuating light - light acclimation - photosynthesis - salt stress - stomatal conductance - tomato

    In nature, soil salinity and fluctuating light (FL) often occur concomitantly. However, it is unknown whether salt stress interacts with FL on leaf photosynthesis, architecture, biochemistry, pigmentation, mineral concentrations, as well as whole-plant biomass. To elucidate this, tomato (Solanum lycopersicum) seedlings were grown under constant light (C, 200 μmol m−2 s−1) or FL (5–650 μmol m−2 s−1), in combination with no (0 mM NaCl) or moderate (80 mM NaCl) salinity, for 14 days, at identical photoperiods and daily light integrals. FL and salt stress had separate effects on leaf anatomy, biochemistry and photosynthetic capacity: FL reduced leaf thickness as well as nitrogen, chlorophyll and carotenoid contents per unit leaf area, but rarely affected steady-state and dynamic photosynthetic properties along with abundance of key proteins in the electron transport chain. Salt stress, meanwhile, mainly disorganized chloroplast grana stacking, reduced stomatal density, size and aperture as well as photosynthetic capacity. Plant biomass was affected interactively by light regime and salt stress: FL reduced biomass in salt stressed plants by 17%, but it did not affect biomass of non-stressed plants. Our results stress the importance of considering FL when inferring effects of salt-stress on photosynthesis and productivity under fluctuating light intensities.

    Estimation of nitrogen supply for winter wheat production through a long-term field trial in China
    Huang, Shaohui ; Ding, Wencheng ; Yang, Junfang ; Zhang, Jiajia ; Ullah, Sami ; Xu, Xinpeng ; Liu, Yingxia ; Yang, Yunma ; Liu, Mengchao ; He, Ping ; Jia, Liangliang - \ 2020
    Journal of Environmental Management 270 (2020). - ISSN 0301-4797
    Nitrogen use efficiency - Relative yield - Total nitrogen supply - Winter wheat

    Excessive synthetic nitrogen (N) applications, high mineral N accumulation and low N use efficiency (NUE) are current issues in intensively cultivated winter wheat production system impeding the sustainable development of agriculture in China. To solve these problems, soil accumulated N in the top 1 m of the soil profile before sowing (Nsoil), returned straw-N from the previous maize crop (Nstraw) and fertilizer N application (Nfertilizer) should be comprehensively considered N supply sources in N management. As such, the objective of this research was to determine the optimal total N supply (TNsupply) level needed to meet crop requirements while minimizing environmental impacts. A 9-year on-farm experiment was conducted in accordance with a split-plot design involving two different fertilizer management systems (main treatments) and three N application strategies (sub treatments). Extensive TNsupply levels (ranging from 61 kg ha−1 to 813 kg ha−1) were detected, and relative yield (RY), N input and N output in response to the TNsupply were measured. The relationships between TNsupply and RY, N input, and N output strongly fit linear-plateau, linear, and linear-plateau models, respectively. The minimum TNsupply levels needed to achieve the maximum RY and N output were 325 and 392 kg ha−1, respectively. On the basis of N supply capacity, the TNsupply was removed from the growing system by 61% (N input). As the N input increased past 209 kg ha−1, the NUE declined, at which point the TNsupply reached 433 kg ha−1. Therefore, the suitable TNsupply should range from 325 kg ha−1 (ensuring a total N supply for high yield and N uptake) to 433 kg ha−1 (obtaining a relatively higher NUE and less N loss to the environment). The TNsupply was highlighted to be an indicator for use in N management recommendations. Considering the average high N accumulation in winter wheat production systems, N management should essentially take into account the consumption of Nsoil, the levels of Nstraw and the minimum application of Nfertilizer to obtain high yields while minimizing environmental impacts under suitable TNsupply levels.

    Scaling relationships among functional traits are similar across individuals, species, and communities
    Long, Wenxing ; Zhou, Yadong ; Schamp, Brandon S. ; Zang, Runguo ; Yang, Xiaobo ; Poorter, Lourens ; Xiao, Chuchu ; Xiong, Menghui - \ 2020
    Journal of Vegetation Science 31 (2020)4. - ISSN 1100-9233 - p. 571 - 580.
    bivariate trait relationships - environmental stress - leaf mass per area - plant height - plant strategy - soil phosphorus - tropical forest - wood density

    Question: Bivariate relationships among functional traits reflect how plants adjust to environments through the allocation of limiting resources. Bivariate relationships are well studied across species, but whether the nature of these trait relationships changes across organizational levels (individual, species, community), and whether processes driving these relationships vary across these levels, is seldom explored. Location: The tropical cloud forests of the Bawangling Nature Reserve, Jianfengling Nature Reserve and Limushan Nature Reserve on Hainan Island, Southern China. Methods: We measured leaf mass per area (LMA), plant height (H) and wood density (WD) for 4,748 individual trees, 174 species and 48 communities in three tropical cloud forests, and recorded five soil characteristics that are important for plant growth. We evaluated bivariate relationships between these traits across the three organizational levels, and assessed the effects of soil conditions on these trait relationships. Results: LMA versus H, WD versus H, and LMA versus WD were all positively and disproportionately related, suggesting differential carbon investment between leaves and stem, as well as between stem height and stem density. The slopes of these relationships did not differ significantly across the three levels, suggesting a similar allocation strategy operating at different hierarchical levels. Soil phosphorus had a significant effect on the scaling exponents across all three organizational levels, indicating that phosphorus limitation in cloud forests is a principal driver of resource allocation patterns in trees. conclusions: We conclude that tropical cloud forest trees have relatively consistent scaling relationships between three primary functional traits across the individual, species, and community levels. The coordinated resource allocation strategies in plants are most likely driven by the prevailing environmental constraints.

    Comparisons with wheat reveal root anatomical and histochemical constraints of rice under water-deficit stress
    Ouyang, Wenjing ; Yin, Xinyou ; Yang, Jianchang ; Struik, Paul C. - \ 2020
    Plant and Soil 452 (2020). - ISSN 0032-079X - p. 547 - 568.
    Lignin - Rice - Root anatomy - Root morphology - Suberin - Water deficit - Wheat

    Aims: To face the challenge of decreasing freshwater availability for agriculture, it is important to explore avenues for developing rice genotypes that can be grown like dryland cereals. Roots play a key role in plant adaptation to dry environments. Methods: We examined anatomical and histochemical root traits that affect water acquisition in rice (Oryza sativa) and wheat (Triticum aestivum). These traits and root growth were measured at two developmental stages for three rice and two wheat cultivars that were grown in pots under three water regimes. Results: Wheat roots had larger xylem sizes than rice roots, which potentially led to a higher axial conductance, especially under water-deficit conditions. Suberization, lignification and thickening of the endodermis in rice roots increased with increasing water deficit, resulting in stronger radial barriers for water flow in rice than in wheat, especially near the root apex. In addition, water deficit strongly impeded root growth and lateral root proliferation in rice, but only slightly in wheat, and cultivars within a species differed little in these responses. The stress sensitivity of rice attributes was slightly more prominent at vegetative than at flowering stages. Conclusions: Rice root characteristics, which are essential for growth under inundated conditions, are not conducive to growth under water deficit. Although rice roots show considerable plasticity under different watering regimes, improving root xylem size and reducing the radial barriers would be required if rice is to grow like dryland cereals.

    Effect of dietary fiber fermentation on short-chain fatty acid production and microbial composition in vitro
    Bai, Yu ; Zhao, Jin Biao ; Tao, Shi Yu ; Zhou, Xing Jian ; Pi, Yu ; Gerrits, Walter J.J. ; Johnston, Lee J. ; Zhang, Shi Yi ; Yang, Hong Jian ; Liu, Ling ; Zhang, Shuai ; Wang, Jun Jun - \ 2020
    Journal of the Science of Food and Agriculture 100 (2020)11. - ISSN 0022-5142 - p. 4282 - 4291.
    fiber-rich co-products - gas production - in vitro fermentation - microbial community - short chain fatty acid

    BACKGROUND: The efficient utilization of fiber-rich co-products is important for optimizing feed resource utilization and animal health. This study was conducted to evaluate the fermentation characteristics of fiber-rich co-products, which had equal quantities of total dietary fiber (TDF), at different time points using batch in vitro methods. It considered their gas production, short-chain fatty acid (SCFA) production, and microbial composition. RESULTS: The fermentation of wheat bran (WB) and oat bran (OB) showed higher and faster (P < 0.05) gas and SCFA production than corn bran (CB), sugar beet pulp (SBP), and soybean hulls (SH). The α-diversity was higher in the CB, SBP, and SH groups than in the WB and OB groups (P < 0.05). At the phylum level, OB and WB fermentation showed lower (P < 0.05) relative abundance of Actinobacteria than the CB, SBP, and SH groups. At the genus level, OB and WB fermentation increased the Enterococcus population in comparison with the CB, SBP, and SH groups, whereas CB and SBP fermentation improved the relative abundance of the Christensenellaceae R-7 group more than the WB, OB, and SH groups (P < 0.05). CONCLUSION: Overall, WB and OB were rapidly fermented by fecal microbiota, in contrast with SBP, SH, and CB. Fermentation of different fiber-rich co-products with an equal TDF content gives different responses in terms of microbial composition and SCFA production due to variations in their physicochemical properties and molecular structure.

    Correction to: Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein
    Keating, Samuel T. ; Groh, Laszlo ; Thiem, Kathrin ; Bekkering, Siroon ; Li, Yang ; Matzaraki, Vasiliki ; Heijden, Charlotte D.C.C. van der; Puffelen, Jelmer H. van; Lachmandas, Ekta ; Jansen, Trees ; Oosting, Marije ; Bree, L.C.J. de; Koeken, Valerie A.C.M. ; Moorlag, Simone J.C.F.M. ; Mourits, Vera P. ; Diepen, Janna van; Stienstra, Rinke ; Novakovic, Boris ; Stunnenberg, Hendrik G. ; Crevel, Reinout van; Joosten, Leo A.B. ; Netea, Mihai G. ; Riksen, Niels P. - \ 2020
    Journal of Molecular Medicine 98 (2020). - ISSN 0946-2716

    The correct name of the 17th Author is presented in this paper. In the paragraph “Metabolic analysis” of the Method section “an XFp Analyzer” should be changed to “an XFe96 Analyzer”.

    Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein
    Keating, Samuel T. ; Groh, Laszlo ; Thiem, Kathrin ; Bekkering, Siroon ; Li, Yang ; Matzaraki, Vasiliki ; Heijden, Charlotte D.C.C. van der; Puffelen, Jelmer H. van; Lachmandas, Ekta ; Jansen, Trees ; Oosting, Marije ; Bree, L.C.J. de; Koeken, Valerie A.C.M. ; Moorlag, Simone J.C.F.M. ; Mourits, Vera P. ; Diepen, Janna van; Stienstra, Rinke ; Novakovic, Boris ; Stunnenberg, Hendrik G. ; Crevel, Reinout van; Joosten, Leo A.B. ; Netea, Mihai G. ; Riksen, Niels P. - \ 2020
    Journal of Molecular Medicine 98 (2020). - ISSN 0946-2716 - p. 819 - 831.
    Atherosclerosis - Cardiovascular disease - Diabetes complications - Glycolysis - Immunometabolism - Inflammation - Trained immunity

    Abstract: Stimulation of monocytes with microbial and non-microbial products, including oxidized low-density lipoprotein (oxLDL), induces a protracted pro-inflammatory, atherogenic phenotype sustained by metabolic and epigenetic reprogramming via a process called trained immunity. We investigated the intracellular metabolic mechanisms driving oxLDL-induced trained immunity in human primary monocytes and observed concomitant upregulation of glycolytic activity and oxygen consumption. In two separate cohorts of healthy volunteers, we assessed the impact of genetic variation in glycolytic genes on the training capacity of monocytes and found that variants mapped to glycolytic enzymes PFKFB3 and PFKP influenced trained immunity by oxLDL. Subsequent functional validation with inhibitors of glycolytic metabolism revealed dose-dependent inhibition of trained immunity in vitro. Furthermore, in vivo administration of the glucose metabolism modulator metformin abrogated the ability for human monocytes to mount a trained response to oxLDL. These findings underscore the importance of cellular metabolism for oxLDL-induced trained immunity and highlight potential immunomodulatory strategies for clinical management of atherosclerosis. Key messages: Brief stimulation of monocytes to oxLDL induces a prolonged inflammatory phenotype.This is due to upregulation of glycolytic metabolism.Genetic variation in glycolytic genes modulates oxLDL-induced trained immunity.Pharmacological inhibition of glycolysis prevents trained immunity.

    Mitochondrial genomes as phylogenetic backbone
    Brankovics, Balázs ; Yang, Meixin ; Waalwijk, Cees ; Lee, Theo van der; Diepeningen, Anne van - \ 2020
    Population Genomic Analysis Reveals a Highly Conserved Mitochondrial Genome in Fusarium asiaticum
    Yang, Meixin ; Zhang, Hao ; Lee, T.A.J. van der; Waalwijk, C. ; Diepeningen, A.D. van; Feng, Jie ; Brankovics, Balázs ; Chen, Wanquan - \ 2020
    Frontiers in Microbiology 11 (2020). - ISSN 1664-302X
    Fusarium asiaticum is one of the pivotal members of the Fusarium graminearum species complex (FGSC) causing Fusarium head blight (FHB) on wheat, barley and rice in large parts of Asia. Besides resulting in yield losses, FHB also causes the accumulation of mycotoxins such as nivalenol (NIV) and deoxynivalenol (DON). The aim of this study was to conduct population studies on F. asiaticum from Southern China through mitochondrial genome analyses. All strains were isolated from wheat or rice from several geographic areas in seven provinces in Southern China. Based on geographic location and host, 210 isolates were selected for next generation sequencing, and their mitogenomes were assembled by GRAbB and annotated to explore the mitochondrial genome variability of F. asiaticum. The F. asiaticum mitogenome proves extremely conserved and variation is mainly caused by absence/presence of introns harboring homing endonuclease genes. These variations could be utilized to develop molecular markers for track and trace of migrations within and between populations. This study illustrates how mitochondrial introns can be used as markers for population genetic analysis. SNP analysis demonstrate the occurrence of mitochondrial recombination in F. asiaticum as was previously found for F. oxysporum and implied for F. graminearum. Furthermore, varying degrees of genetic diversity and recombination showed a high association with different geographic regions as well as with cropping systems. The mitogenome of F. graminearum showed a much higher SNP diversity while the interspecies intron variation showed no evidence of gene flow between the two closely related and sexual compatible species
    Field performance of different maize varieties in growth cores at natural and reduced mycorrhizal colonization : yield gains and possible fertilizer savings in relation to phosphorus application
    Wang, Xin Xin ; Werf, Wopke van der; Yu, Yang ; Hoffland, Ellis ; Feng, Gu ; Kuyper, Thomas W. - \ 2020
    Plant and Soil 450 (2020)1-2. - ISSN 0032-079X - p. 613 - 624.
    Crop - Genetic variation - In-growth cores - Landrace - Maize - Mycorrhizal colonization - Phosphorus

    Aims: The benefits of arbuscular mycorrhizal fungi (AMF) on yield and phosphorus (P) uptake of crops have commonly been studied by inoculating a single mycorrhizal fungal species in pot experiments. Yet, how the native AMF community affects the performance of different maize varieties under field conditions remains obscure. Methods: In-growth cores with and without rotation were used in three soils that differed in P application to assess shoot biomass, P uptake, and mycorrhizal colonization of three maize varietal groups, encompassing four inbred lines, 12 hybrids, and four landraces. Results: Rotating cores drastically reduced mycorrhizal colonization, biomass and P uptake for each varietal group at every P level. Performance of plants at natural mycorrhizal colonization at 30 kg P ha−1 was equal to that of reduced-mycorrhizal plants at 60 kg P ha−1, suggesting the potential for adequate mycorrhizal management to save P fertilizer. Conclusion: There were no significant differences between varietal groups for mycorrhizal responsiveness, confirming that the ability to associate with and benefit from AMF has been maintained in modern breeding. Mycorrhizal plants both exhibited higher P acquisition efficiency and higher P use efficiency than reduced-mycorrhizal plants. Disadvantages of in-growth cores should be duly considered.

    Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes : A pooled analysis of prospective cohort studies
    Imamura, Fumiaki ; Fretts, Amanda M. ; Marklund, Matti ; Ardisson Korat, Andres V. ; Yang, Wei Sin ; Lankinen, Maria ; Qureshi, Waqas ; Helmer, Catherine ; Chen, Tzu An ; Virtanen, Jyrki K. ; Wong, Kerry ; Bassett, Julie K. ; Murphy, Rachel ; Tintle, Nathan ; Yu, Chaoyu Ian ; Brouwer, Ingeborg A. ; Chien, Kuo Liong ; Chen, Yun Yu ; Wood, Alexis C. ; Gobbo, Liana C. Del; Djousse, Luc ; Geleijnse, Johanna M. ; Giles, Graham G. ; Goede, Janette de; Gudnason, Vilmundur ; Harris, William S. ; Hodge, Allison ; Hu, Frank ; Koulman, Albert ; Laakso, Markku ; Lind, Lars ; Lin, Hung Ju ; McKnight, Barbara ; Rajaobelina, Kalina ; Riserus, Ulf ; Robinson, Jennifer G. ; Samieri, Cecilia ; Senn, Mackenzie ; Siscovick, David S. ; Soedamah-Muthu, Sabita S. ; Sotoodehnia, Nona ; Sun, Qi ; Tsai, Michael Y. ; Tuomainen, Tomi Pekka ; Uusitupa, Matti ; Wagenknecht, Lynne E. ; Wareham, Nick J. ; Wu, Jason H.Y. ; Micha, Renata ; Lemaitre, Rozenn N. - \ 2020
    PLOS Medicine 17 (2020)6. - ISSN 1549-1676 - p. e1003102 - e1003102.

    BACKGROUND: De novo lipogenesis (DNL) is the primary metabolic pathway synthesizing fatty acids from carbohydrates, protein, or alcohol. Our aim was to examine associations of in vivo levels of selected fatty acids (16:0, 16:1n7, 18:0, 18:1n9) in DNL with incidence of type 2 diabetes (T2D). METHODS AND FINDINGS: Seventeen cohorts from 12 countries (7 from Europe, 7 from the United States, 1 from Australia, 1 from Taiwan; baseline years = 1970-1973 to 2006-2010) conducted harmonized individual-level analyses of associations of DNL-related fatty acids with incident T2D. In total, we evaluated 65,225 participants (mean ages = 52.3-75.5 years; % women = 20.4%-62.3% in 12 cohorts recruiting both sexes) and 15,383 incident cases of T2D over the 9-year follow-up on average. Cohort-specific association of each of 16:0, 16:1n7, 18:0, and 18:1n9 with incident T2D was estimated, adjusted for demographic factors, socioeconomic characteristics, alcohol, smoking, physical activity, dyslipidemia, hypertension, menopausal status, and adiposity. Cohort-specific associations were meta-analyzed with an inverse-variance-weighted approach. Each of the 4 fatty acids positively related to incident T2D. Relative risks (RRs) per cohort-specific range between midpoints of the top and bottom quintiles of fatty acid concentrations were 1.53 (1.41-1.66; p < 0.001) for 16:0, 1.40 (1.33-1.48; p < 0.001) for 16:1n-7, 1.14 (1.05-1.22; p = 0.001) for 18:0, and 1.16 (1.07-1.25; p < 0.001) for 18:1n9. Heterogeneity was seen across cohorts (I2 = 51.1%-73.1% for each fatty acid) but not explained by lipid fractions and global geographical regions. Further adjusted for triglycerides (and 16:0 when appropriate) to evaluate associations independent of overall DNL, the associations remained significant for 16:0, 16:1n7, and 18:0 but were attenuated for 18:1n9 (RR = 1.03, 95% confidence interval (CI) = 0.94-1.13). These findings had limitations in potential reverse causation and residual confounding by imprecisely measured or unmeasured factors. CONCLUSIONS: Concentrations of fatty acids in the DNL were positively associated with T2D incidence. Our findings support further work to investigate a possible role of DNL and individual fatty acids in the development of T2D.

    Correction to: Genome-wide SNP data unveils the globalization of domesticated pigs
    Yang, Bin ; Cui, Leilei ; Perez-Enciso, Miguel ; Traspov, Aleksei ; Crooijmans, Richard P.M.A. ; Zinovieva, Natalia ; Schook, Lawrence B. ; Archibald, Alan ; Gatphayak, Kesinee ; Knorr, Christophe ; Triantafyllidis, Alex ; Alexandri, Panoraia ; Semiadi, Gono ; Hanotte, Olivier ; Dias, Deodália ; Dovč, Peter ; Uimari, Pekka ; Iacolina, Laura ; Scandura, Massimo ; Groenen, Martien A.M. ; Huang, Lusheng ; Megens, Hendrik Jan - \ 2020
    Genetics, Selection, Evolution 52 (2020)1. - ISSN 0999-193X - 1 p.

    An amendment to this paper has been published and can be accessed via the original article.

    Institutional preferences, social preferences and cooperation : Evidence from a lab-in-the-field experiment in rural China
    Yang, Xiaojun ; Nie, Zihan ; Qiu, Jianying ; Tu, Qin - \ 2020
    Journal of Behavioral and Experimental Economics 87 (2020). - ISSN 2214-8043
    Cooperation - Institutional preferences - Punishment - Reward - Social preferences

    We examine institutional preferences, social preferences, contribution in public goods games, and their relationships by conducting a lab-in-the-field experiment in rural China. Specifically, we examine whether people contribute differently depending on whether they are facing their preferred enforcement institution (punishment versus reward); that is, whether there is an institutional match or mismatch effect on cooperation. We also examine what factors are behind their institutional preferences. We find that most subjects prefer reward over punishment. However, institutional (mis)match does not have significant impacts on contributions in the public goods game. Moreover, subjects who prefer punishment tend to be free-riders. We further find that there is a robust relationship between the preference for punishment and certain efficiency-reducing social preference profiles, such as anti-social preferences, which may help understand the institutional preferences.

    Genome-wide identification of small G protein ROPs and their potential roles in Solanaceous family
    Yang, Shuqing ; Yan, Ningning ; Bouwmeester, Klaas ; Na, Ren ; Zhang, Zhiwei ; Zhao, Jun - \ 2020
    Gene 753 (2020). - ISSN 0378-1119
    Genome-wide screening - Phylogenetic analysis - Plant growth and development - Plant immunity - Small GTPase ROPs - Solanaceous family

    Small GTPases function as molecular switches to active or inactive signaling cascades via binding or hydrolyzing GTP. A type of plant specific small GTPases, the ROPs are known to be involved in plant growth, development and immunity. We determined whether ROPs are conserved in Solanaceous species and whether they are involved in plant growth, development and resistance against Phytophthora capsisi. In genome-wide screening, a total of 66 ROPs in six Solanaceous species (SolROPs) were identified, including 16 ROPs in Solanum tuberosum L. (potato), 9 in Solanum lycopersicum L. (tomato), 5 in Solanum melongena L. (eggplant), 9 in Capsicum annuum L. (pepper), 13 in Nicotiana benthamiana Domin and 14 in Nicotiana tabacum L. (tobacco). Phylogenetic analysis revealed that 11 AtROPs and 66 SolROPs fall into five distinct clades (I-V) and hence a novel and systematic gene nomenclature was proposed. In addition, a comprehensive expression analysis was performed by making use of an online database. This revealed that ROP genes are differentially expressed during plant growth and development. Moreover, gene expression of SlROP-II.1 in S. lycopersicum could be significantly induced by P. capsici. Subsequently, SlROP-II.1 and its homologues in N. benthamiana and C. annuum (NbROP-II.1 and CaROP-II.1) were selected for functional analysis using virus-induced gene silencing. Infection assays with P. capsici on silenced plants revealed that SlROP-II.1, NbROP-II.1 and CaROP-II.1 play a role in P. capsici resistance, suggesting conserved function of ROP-II clade across different Solanaceous species. In addition, NbROP-II.1 is also involved in regulating plant growth and development. This study signified the diversity of Solanaceous ROPs and their potential roles in plant growth, development and immunity.

    Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions
    Tong, Yindong ; Wang, Mengzhu ; Peñuelas, Josep ; Liu, Xueyan ; Paerl, Hans W. ; Elser, James J. ; Sardans, Jordi ; Couture, Raoul Marie ; Larssen, Thorjørn ; Hu, Hongying ; Dong, Xin ; He, Wei ; Zhang, Wei ; Wang, Xuejun ; Zhang, Yang ; Liu, Yi ; Zeng, Siyu ; Kong, Xiangzhen ; Janssen, Annette B.G. ; Lin, Yan - \ 2020
    Proceedings of the National Academy of Sciences of the United States of America 117 (2020)21. - ISSN 0027-8424
    Anthropogenic source - Aquatic ecosystem - Nutrient balance - Wastewater treatment - Water quality change

    Large-scale and rapid improvement in wastewater treatment is common practice in developing countries, yet this influence on nutrient regimes in receiving waterbodies is rarely examined at broad spatial and temporal scales. Here, we present a study linking decadal nutrient monitoring data in lakes with the corresponding estimates of five major anthropogenic nutrient discharges in their surrounding watersheds over time. Within a continuous monitoring dataset covering the period 2008 to 2017, we find that due to different rates of change in TN and TP concentrations, 24 of 46 lakes, mostly located in China's populated regions, showed increasing TN/TP mass ratios; only 3 lakes showed a decrease. Quantitative relationships between in-lake nutrient concentrations (and their ratios) and anthropogenic nutrient discharges in the surrounding watersheds indicate that increase of lake TN/TP ratios is associated with the rapid improvement in municipal wastewater treatment. Due to the higher removal efficiency of TP compared with TN, TN/TP mass ratios in total municipal wastewater discharge have continued to increase from a median of 10.7 (95% confidence interval, 7.6 to 15.1) in 2008 to 17.7 (95% confidence interval, 13.2 to 27.2) in 2017. Improving municipal wastewater collection and treatment worldwide is an important target within the 17 sustainable development goals set by the United Nations. Given potential ecological impacts on biodiversity and ecosystem function of altered nutrient ratios in wastewater discharge, our results suggest that long-term strategies for domestic wastewater management should not merely focus on total reductions of nutrient discharges but also consider their stoichiometric balance.

    Prevalence of milk fraud in the Chinese market and its relationship with fraud vulnerabilities in the chain
    Yang, Yuzheng ; Zhang, Liebing ; Hettinga, Kasper A. ; Erasmus, Sara W. ; Ruth, Saskia M. Van - \ 2020
    Foods 9 (2020)6. - ISSN 2304-8158
    China - Fourier transform-infrared spectroscopy - Fraud vulnerability - Milk adulteration - Milk composition - One-class classifications

    This study aimed to assess the prevalence of ultra-high-temperature (UHT) processed milk samples suspected of being adulterated on the Chinese market and, subsequently, relate their geographical origin to the earlier determined fraud vulnerability. A total of 52 UHT milk samples purchased from the Chinese market were measured to detect possible anomalies. The milk compositional features were determined by standardized Fourier transform-infrared spectroscopy, and the detection limits for common milk adulterations were investigated. The results showed that twelve of the analysed milk samples (23%) were suspected of having quality or fraud-related issues, while one sample of these was highly suspected of being adulterated (diluted with water). Proportionally, more suspected samples were determined among milks produced in the Central- Northern and Eastern areas of China than in those from the North-Western and North-Eastern areas, while those from the South were in between. Combining the earlier collected results on fraud vulnerability in the Chinese milk chains, it appears that increased fraud prevalence relates to poorer business relationships and lack of adequate managerial controls. Since very few opportunities and motivations differ consistently across high and low-prevalence areas, primarily the improvement of control measures can help to mitigate food fraud in the Chinese milk supply chains.

    Cellular levels and molecular dynamics simulations of estragole DNA adducts point at inefficient repair resulting from limited distortion of the double-stranded DNA helix
    Yang, Shuo ; Diem, Matthias ; Liu, Jakob D.H. ; Wesseling, Sebastiaan ; Vervoort, Jacques ; Oostenbrink, Chris ; Rietjens, Ivonne M.C.M. - \ 2020
    Archives of Toxicology 94 (2020)4. - ISSN 0340-5761 - p. 1349 - 1365.
    DNA adduct - DNA repair efficiency - Estragole - Molecular modeling and simulation

    Estragole, naturally occurring in a variety of herbs and spices, can form DNA adducts after bioactivation. Estragole DNA adduct formation and repair was studied in in vitro liver cell models, and a molecular dynamics simulation was used to investigate the conformation dependent (in)efficiency of N2-(trans-isoestragol-3′-yl)-2′-deoxyguanosine (E-3′-N2-dG) DNA adduct repair. HepG2, HepaRG cells, primary rat hepatocytes and CHO cells (including CHO wild-type and three NER-deficient mutants) were exposed to 50 μM estragole or 1′-hydroxyestragole and DNA adduct formation was quantified by LC–MS immediately following exposure and after a period of repair. Results obtained from CHO cell lines indicated that NER plays a role in repair of E-3′-N2-dG adducts, however, with limited efficiency since in the CHO wt cells 80% DNA adducts remained upon 24 h repair. Inefficiency of DNA repair was also found in HepaRG cells and primary rat hepatocytes. Changes in DNA structure resulting from E-3′-N2-dG adduct formation were investigated by molecular dynamics simulations. Results from molecular dynamics simulations revealed that conformational changes in double-stranded DNA by E-3′-N2-dG adduct formation are small, providing a possible explanation for the restrained repair, which may require larger distortions in the DNA structure. NER-mediated enzymatic repair of E-3′-N2-dG DNA adducts upon exposure to estragole will be limited, providing opportunities for accumulation of damage upon repeated daily exposure. The inability of this enzymatic repair is likely due to a limited distortion of the DNA double-stranded helix resulting in inefficient activation of nucleotide excision repair.

    Syndromes of production in intercropping impact yield gains
    Li, Chunjie ; Hoffland, Ellis ; Kuyper, Thomas W. ; Yu, Yang ; Zhang, Chaochun ; Li, Haigang ; Zhang, Fusuo ; Werf, Wopke van der - \ 2020
    Nature Plants 6 (2020)6. - ISSN 2055-026X
    Intercropping, the simultaneous production of multiple crops on the same field, provides opportunities for the sustainable intensification of agriculture if it can provide a greater yield per unit land and fertilizer than sole crops. The worldwide absolute yield gain of intercropping as compared with sole crops has not been analysed. We therefore performed a global meta-analysis to quantify the effect of intercropping on the yield gain, exploring the effects of crop species combinations, temporal and spatial arrangements, and fertilizer input. We found that the absolute yield gains, compared with monocultures, were the greatest for mixtures of maize with short-grain cereals or legumes that had substantial temporal niche differentiation from maize, when grown with high nutrient inputs, and using multirow strips of each species. This approach, commonly practised in China, provided yield gains that were (in an absolute sense) about four times as large as those in another, low-input intercropping strategy, commonly practised outside China. The alternative intercropping strategy consisted of growing mixtures of short-stature crop species, often as full mixtures, with the same growing period and with low to moderate nutrient inputs. Both the low- and high-yield intercropping strategies saved 16–29% of the land and 19–36% of the fertilizer compared with monocultures grown under the same management as the intercrop. The two syndromes of production in intercropping uncovered by this meta-analysis show that intercropping offers opportunities for the sustainable intensification of both high- and low-input agriculture.
    Computer-assisted terrain sketch mapping that considers the geomorphological features in a loess landform
    Cheng, Yihan ; Yang, Xin ; Liu, Hailong ; Li, Min ; Rossiter, David G. ; Xiong, Liyang ; Tang, Guoan - \ 2020
    Geomorphology 364 (2020). - ISSN 0169-555X
    DEM - Loess landform - Terrain sketch map - Visual hierarchy division - Visual outline generalisation

    In geography, a terrain sketch map is necessary to understand the features and internal structures of a landscape due to its ability to depict key information in a geographical scene using as few lines as possible. Previous computer-drawn sketch maps have focused on the artistic effect rather than on depicting terrain features and landform structures, and thus, they differ considerably from hand-drawn sketch maps by geographers or geologists. This study develops a DEM-based method for terrain sketch mapping that considers the typical feature descriptions of a loess landform and the visual hierarchy expression in line with the law of visual perspective. The method was tested with experiments on two landforms of Chinese Loess Plateau, based on digital elevation models (DEM) with a horizontal resolution of 5 m. In the developed method, first, typical terrain features, including the visual outline, shoulder line, gully and flow lines, are extracted from the DEM. Second, the map is divided into three visual levels in accordance with the data extension and viewing point. Then, terrain feature lines are assigned to different visual levels. Finally, the visual outlines in the distant view are generalized following the law of visual perspective. Results are assessed through a questionnaire with specialists (experts) and students (non-experts). The sketch map was able to characterise loess landforms, and is somewhat similar to traditional hand-drawn maps. The generalisation method realises the near and distant view characteristics of a sketch map, which are detailed and simplified, respectively. The results of the questionnaire also showed that our method presents terrain morphology and geographical scene more accurately and reliably than a hand-drawn sketch map.

    Belowground soil water response in the afforestation-cropland interface under semi-arid conditions
    Huang, Ze ; Yang, Wen Jin ; Liu, Yu ; Shen, Weibo ; López-Vicente, Manuel ; Wu, Gao Lin - \ 2020
    Catena 193 (2020). - ISSN 0341-8162
    Agroforestry system interface - Semi-arid area - Soil water deficit degree - Soil water storage

    Agroforestry is an effective measure to control soil erosion and maintain or increase productivity in semi-arid areas. However, the belowground soil water responses in the afforestation-cropland interface (ACI) is not well known. This study analyzed the variability of soil water storage (SWS) and deficit in three ACIs taking into account the distance between the forest and cropland. The variations of soil water content up to 4 m depth and at five distances from the interface (−5 m (in forest), 0 m (interface), 1 m, 3 m and 5 m (in cropland)) were estimated in three artificial forests (Salix matsudana, Sophora japonica, and Populus cathayana) and their adjacent croplands (maize). The results showed that soil water at the interfaces was significantly affected by forest. This effect was effective up to 160–170 cm of soil depth, and the ACI of S. matsudana had the greatest impact on the farmland soil water. There was no significant relative soil water deficit between 1 and 3 m length, and the ACI of P. cathayana showed the lowest changes in the lateral direction. The SWS of S. japonica in the ACI was clearly higher than the other two artificial forests (P < 0.05). Our findings indicated that S. japonica was the most suitable forest species for agriculture sustainability in the study area. The tree species and the distance between cropland and forest should be considered during the establishment of agroforestry systems. This study provided insights for water conservation and effective management of ACIs in semi-arid areas.

    Methodology matters for comparing coarse wood and bark decay rates across tree species
    Chang, Chenhui ; Logtestijn, Richard S.P. van; Goudzwaard, Leo ; Hal, Jurgen van; Zuo, Juan ; Hefting, Mariet ; Sass-Klaassen, Ute ; Yang, Shanshan ; Sterck, Frank J. ; Poorter, Lourens ; Cornelissen, Johannes H.C. - \ 2020
    Methods in Ecology and Evolution 11 (2020)7. - ISSN 2041-210X - p. 828 - 838.
    asynchronous - dead wood - decomposition - ecological methodology - fragment loss - inner bark thickness - interspecific variation - volume loss

    The importance of wood decay for global carbon and nutrient cycles is widely recognized. However, relatively little is known about bark decay dynamics, even though bark represents up to 25% of stem dry mass. Moreover, bark presence versus absence can significantly alter wood decay rates. Therefore, it really matters for the fate of carbon whether variation in bark and wood decay rates is coordinated across tree species. Answering this question requires advances in methodology to measure both bark and wood mass loss accurately. Decay rates of large logs in the field are often quantified as loss in tissue density, in which case volume depletions of bark and wood can yield large underestimations. To quantify the real decay rates, we assessed bark mass loss per stem surface area and wood mass loss based on volume-corrected density loss. We further defined the range of actual bark mass loss by considering bark cover loss. Then, we tested the correlation between bark and wood mass loss across 20 temperate tree species during 4 years of decomposition. The area-based method generally showed more than 3-fold higher bark mass loss than the density-based method (even higher if considering bark cover loss), and volume-corrected wood mass losses were 1.08–1.12 times higher than density-based mass loss. The deviation of bark mass loss between the two methods was higher for tree species with thicker inner bark. Bark generally decomposed twice as fast as wood across species, and faster decaying bark came with faster decaying wood (R2 = 0.26, p = 0.006). We strongly suggest using corrected volume when assessing wood mass loss especially for the species with faster decomposable sapwood and all the wood at advanced decay stages. Further studies of coarse stem decomposition should consider trait ‘afterlife’ effects of inner bark and estimate fraction of stem bark cover to obtain more accurate decay rates. Our new method should benefit our understanding of the in situ dynamics of woody debris decay and monitoring research in different forest ecosystems world-wide, and should aid meta-analyses across diverse studies.

    Compound in basil, fennel and aniseed harms DNA
    Yang, Shuo - \ 2020
    UVA radiation promotes tomato growth through morphological adaptation leading to increased light interception
    Zhang, Yating ; Kaiser, Elias ; Zhang, Yuqi ; Zou, Jie ; Bian, Zhonghua ; Yang, Qichang ; Li, Tao - \ 2020
    Environmental and Experimental Botany 176 (2020). - ISSN 0098-8472
    Blue light - Leaf photosynthesis - Phenolics - Photomorphogenesis - Red light syndrome - UVA radiation

    UVA radiation (315−400 nm) is the main component of solar UV radiation. Although it shares photoreceptors (i.e. cryptochromes and phototropins) with blue light (400−500 nm), its function in plant biology is unclear to a large extent. This study aimed at exploring how UVA radiation affects plant morphology and physiology, and at distinguishing to what extent these effects differ from those of blue light. Tomato plants were grown under monochromatic red (R), dichromatic red and blue (R/B = 7:1), as well as red and two different levels of UVA radiation (R/UVA = 7:1 and 15:1, respectively), with identical photon flux density (250 μmol⋅m−2⋅s−1). Peak intensities of UVA, B and R were 370, 450 and 660 nm, respectively. We showed that replacing blue by UVA (in a background of red light) induced plant morphological modifications, as reflected by larger leaf area, steeper leaf angles, flatter leaves and longer stems. UVA had reduced effects on leaf secondary metabolism compared to blue light, resulting in significantly lower total phenolics and flavonoid contents, as well as concentrations of UV-absorbing compounds. In addition, UVA had a similar function as blue light in shaping the development of the photosynthetic apparatus, as both wavebands alleviated the ‘red light syndrome’ (i.e. low photosynthetic capacity, reduced photosynthetic electron transport, and unresponsive stomata). We conclude that: 1) UVA promotes tomato growth through morphological adaptation leading to increased light interception; 2) UVA affects leaf secondary metabolite accumulation less strongly than blue light; 3) UVA functions similarly to blue light in maintaining leaf photosynthetic functioning. Thus, unlike previously suggested, UVA cannot be unequivocally considered as an abiotic stress factor. This research adds to the understanding of plant processes in response to UVA radiation and provides a basis for future recipes for growing plants with artificial light.

    Effects of nitrogen addition on soil methane uptake in global forest biomes
    Xia, Nan ; Du, Enzai ; Wu, Xinhui ; Tang, Yang ; Wang, Yang ; Vries, Wim de - \ 2020
    Environmental Pollution 264 (2020). - ISSN 0269-7491
    Forest - Nitrogen addition - Nitrogen deposition - Soil methane uptake

    Nitrogen (N) deposition has been conventionally thought to decrease forest soil methane (CH4) uptake, while the biome specific and dose dependent effect is poorly understood. Based on a meta-analysis of 63 N addition trials from 7 boreal forests, 8 temperate forests, 13 subtropical and 4 tropical forests, we evaluated the effects of N addition on soil CH4 uptake fluxes across global forest biomes. When combining all N addition levels, soil CH4 uptake was insignificantly decreased by 7% in boreal forests, while N addition significantly decreased soil CH4 uptake by 39% in temperate forests and by 21% in subtropical and tropical forests, respectively. Meta-regression analyses, however, indicated a shift from a positive to a negative effect on soil CH4 uptake with increasing N additions both in boreal forests (threshold = 48 kg N ha−1 yr−1) and temperate forests (threshold = 27 kg N ha−1 yr−1), while no such shift was found in subtropical and tropical forests. Considering that current N deposition to most boreal and temperate forests is below the abovementioned thresholds, N deposition likely exerts a positive to neutral effect on soil CH4 uptake in both forest biomes. Our results provide new insights on the biome specific and dose dependent effect of N addition on soil CH4 sink in global forests and suggest that the current understanding that N deposition decreases forest soil CH4 uptake is flawed by high levels of experimental N addition.

    Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system
    Raza, Muhammad Ali ; Feng, Ling Yang ; Werf, Wopke van der; Iqbal, Nasir ; Khan, Imran ; Khan, Ahsin ; Din, Atta Mohi Ud ; Naeem, Muhammd ; Meraj, Tehseen Ahmad ; Hassan, Muhammad Jawad ; Khan, Aaqil ; Lu, Feng Zhi ; Liu, Xin ; Ahmed, Mukhtar ; Yang, Feng ; Yang, Wenyu - \ 2020
    Food and Energy Security 9 (2020)2. - ISSN 2048-3694
    competition ratio - growing space - maize - relay intercropping - soybean

    Strip width management is a critical factor for producing higher crop yields in relay intercropping systems. A 2-year field experiment was carried out during 2012 and 2013 to evaluate the effects of different strip width treatments on dry-matter production, major-nutrient (nitrogen, phosphorus, and potassium) uptake, and competition parameters of soybean and maize in relay intercropping system. The strip width (SW) treatments were 0.40, 0.40, and 0.40 m (SW1); 0.40, 0.40, and 0.50 m (SW2); 0.40, 0.40, and 0.60 m (SW3); and 0.40, 0.40, and 0.70 m (SW4) for soybean row spacing, maize row spacing, and spacing between soybean and maize rows, respectively. As compared to sole maize (SM) and sole soybean (SS), relay-intercropped maize and soybean accumulated lower quantities of nitrogen, phosphorus, and potassium in all treatments. However, maize in SW1 accumulated higher nitrogen, phosphorus, and potassium than SW4 (9%, 9%, and 8% for nitrogen, phosphorus, and potassium, respectively). Soybean in SW3 accumulated 25% higher nitrogen, 33% higher phosphorus, and 24% higher potassium than in SW1. The improved nutrient accumulation in SW3 significantly increased the soybean dry matter by 19%, but slightly decreased the maize dry matter by 6% compared to SW1. Similarly, SW3 increased the competition ratio value of soybean (by 151%), but it reduced the competition ratio value of maize (by 171%) compared to SW1. On average, in SW3, relay-cropped soybean produced 84% of SS seed yield and maize produced 98% of SM seed yield and achieved the land equivalent ratio of 1.8, demonstrating the highest level in the world. Overall, these results suggested that by selecting the appropriate strip width (SW3; 0.40 m for soybean row spacing, 0.40 m maize row spacing, and 0.60 m spacing between soybean and maize rows), we can increase the nutrient uptake (especially nitrogen, phosphorus, and potassium), dry-matter accumulation, and seed yields of relay-intercrop species under relay intercropping systems.

    Effect of CMC degree of substitution and gliadin/CMC ratio on surface rheology and foaming behavior of gliadin/CMC nanoparticles
    Peng, Dengfeng ; Jin, Weiping ; Arts, Miriam ; Yang, Jack ; Li, Bin ; Sagis, Leonard M.C. - \ 2020
    Food Hydrocolloids 107 (2020). - ISSN 0268-005X
    Degree of substitution - Foam - Nanoparticle - Ratio - Structure - Surface behavior

    To understand the influence of the degree of substitution (DS) of sodium carboxymethyl cellulose (CMC) and gliadin:CMC ratio on the surface and foaming behaviors of gliadin-CMC nanoparticles (G-CMC NPs) at pH 3, three DS (0.7–1.2) and four ratios (G:CMC~1:0.5–1:2) were investigated. Gliadin NPs with a pH of 3 were utilized as a control. Results showed that G-CMC NPs at all investigated DS and ratios possessed higher foamability and foam stability when compared to the control. This indicated that adding CMC to gliadin NP suspensions could greatly improve their foaming properties. G-CMC NPs with a DS of 0.7 and 0.9, had lower surface charge than G-CMC1.2 NPs, resulting in a weaker electrostatic repulsion, thus leading to faster adsorption kinetics and higher foamability. By increasing the G:CMC ratio from 1:0.5 to 1:2, the particle size gradually rose, and the zeta potential remained unchanged. At a ratio of 1:2, the highest foam stability was observed. This might be ascribed to the high continuous phase viscosity at this ratio, which could slow down the drainage rate and protect the bubbles against coalescence and disproportionation. It was worth mentioning that G-CMC NPs at all ratios exhibited impressive foamability (~220%) even at a very low concentration of G-CMC NPs (gliadin was fixed at 1 mg/mL). This implies that G-CMC NPs could act as a new efficient foaming agent, and based on its simple preparation, have the potential to be widely applied in foamed food.

    Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal
    Yang, Chenyao ; Fraga, Helder ; Ieperen, Wim van; Santos, João A. - \ 2020
    Agricultural Systems 182 (2020). - ISSN 0308-521X
    Adaptation strategy - Regional crop modelling - STICS - Terminal abiotic stress - Winter wheat - Yield gap

    Wheat yield potentials under rainfed Mediterranean conditions have been long limited by late-in-season occurrence of enhanced water deficits and high temperatures, coinciding with sensitive reproductive stages. Present study aims to quantify and separate the impacts of two main abiotic stresses (drought & heat) on potentially attainable wheat yields, in a typical Mediterranean environment of southern Portugal (Alentejo) over 1986—2015. We also evaluate how possible adaptation options could mitigate potential yield losses (reduce the gap between actual and potential yield). Previously calibrated STICS soil-crop model is used for these purposes, which has been satisfactorily evaluated herein for yield simulations using additional field data before running at regional level. By coupling with high-resolution gridded soil and climate datasets, STICS simulations reliably reproduce the inter-annual variability of 30-year regional yield statistics, together with reasonable estimations of experimental potential yields. Therefore, the model is useful to explore the source of yield gap in the region. The quantified impacts, though with some uncertainties, identify the prolonged terminal drought stress as the major cause of yield gap, causing 40–70% mean potential yield losses. In contrast, a short-duration of crop heat stress (≥38 °C) during late grain-filling phase only results in small-to-moderate reductions (up to 20%). Supplemental Irrigation (SI) during reproductive stages provides good adaptive gains to recover potential yield losses by 15–30%, while the proposed early-flowering cultivar is more useful in escaping the terminal heat stress (5–15% adaptive gains) than avoiding prolonged drought stress. In addition, advancing sowing date generally favours wheat production with a robust spatial-temporal pattern. Therefore, combined options based on application of SI, using balanced early-flowering cultivar and early sowing date, may contribute to considerably reduce local yield gap, where current yields can account for 60% of potential yields (26–32% without adaptation). Regional impact assessment and adaptation modelling studies are essential to support agricultural policy development under climate change and variability. The recommended combined adaptation may also represent a promising adaptation strategy for rainfed wheat cropping system in other regions with similar Mediterranean conditions. However, the existing spatial-temporal variability of adaptation response highlights the need to address adaptation strategies at a more detailed local scale with better flexible design.

    Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping
    Wang, Ruonan ; Sun, Zhanxiang ; Zhang, Lizhen ; Yang, Ning ; Feng, Liangshan ; Bai, Wei ; Zhang, Dongsheng ; Wang, Qi ; Evers, Jochem B. ; Liu, Yang ; Ren, Jianhong ; Zhang, Yue ; Werf, Wopke van der - \ 2020
    Field Crops Research 253 (2020). - ISSN 0378-4290
    border-row effect - relative yield total - row configuration - strip cropping - yield components

    Strip intercropping enables increases in yields and ecological services in agriculture. Crop yields of species grown in strip intercropping are often related to the yield responses (increases or decreases) in the outer rows of the strips: the border rows. This suggests that the yield response can be modulated by changing the proportion of border rows in the field. Here we studied the relationship between component species yields and proportion of border rows in strip intercrops of maize (Zea mays L.) and peanut (Arachis hypogaea Linn.). We tested four different intercrops with equal proportions of maize and peanut but a different number of rows per strip: M2P2 (2 rows maize intercropped with 2 rows peanut), M4P4, M6P6, M8P8, and sole maize (SM) and sole peanut (SP). The border-row proportions were 1, 0.5, 0.33 and 0.25 for the intercropping M2P2 to M8P8, respectively, and 0 for the pure stands. Yield responded positively to the proportion of border rows for maize, but negatively for peanut, confirming the dominance of maize in this system. Kernel number per ear of maize and pod number per plant of peanut were the main yield components that responded to the border-row proportion. Across three years, relative maize yield (yield in intercropping divided by yield in monoculture), varied from 0.76 in M2P2 to 0.56 in M8P8, while relative peanut yield varied from 0.19 in M2P2 to 0.39 in M8P8. Relative yield total was not significantly different from one in any of the mixtures. Yield of intercropped maize in border rows was 48% higher than in inner rows and the sole crop, in part due to a significantly higher kernel number per ear (13%). Yield of intercropped peanut in border rows was on average 29% lower than in inner rows and 48% lower than in sole peanut. Yield responses in border rows were independent from the border-row proportion. The results show that relative crop yields responded strongly to variation in border-row proportion resulting from variation in strip width from 1 to 4 m. Strip width thus provides a mechanism to control the strength of interspecific plant interactions and relative yields in strip intercropping.

    Dynamic balancing of intestinal short-chain fatty acids: the crucial role of bacterial metabolism
    Xu, Youqiang ; Zhu, Yang ; Li, Xiuting ; Sun, Baoguo - \ 2020
    Trends in Food Science and Technology 100 (2020). - ISSN 0924-2244 - p. 118 - 130.
    Background: Short-chain fatty acids (SCFAs) play important physiological roles in human health. Adverse effects on health are known with a low or excessive concentration of SCFAs although the optimal level of SCFAs in the body is unknown yet. The level of endogenous SCFAs is affected by many factors of which gut bacteria are the most important one. However, how gut bacteria and a dietary intervention affect SCFA balance in the gut still needs to be clarified.
    Scope and approach: In addition to addressing the importance of a dynamic balance of SCFAs for health, we discuss the factors affecting the dynamic balance of SCFAs, especially the gut SCFA-producing bacteria, including the classification of the bacteria, their response to diet, the SCFAs metabolic pathways and the catalytic mechanisms of the main rate-limiting enzymes.
    Key findings and conclusions: SCFAs levels can be regulated endogenously and exogenously. Exogenous regulation delivers SCFAs to gut by esterification with dietary fibres. Endogenous regulation like diet, directly or indirectly affect gut microbiota, including their abundance, fitness and SCFAs production. Until now, 74 bacterial species are reported to produce SCFAs, the metabolic pathways are classified into 4 categories, and the 4 rate-limiting enzymes in the metabolic pathways are summarized. We also propose methods for long-lasting endogenous SCFAs balancing, including identifying the minimum sets of SCFA-producing bacterial group, and possible dietary intervention to form a minimum group of gut microbiota for SCFAs synthesis. An integrated approach will help realize the rational regulation of balanced SCFAs levels to benefit human health.
    Valuation of Wetland Ecosystem Services in National Nature Reserves in China’s Coastal Zones
    Li, Xiaowei ; Yu, Xiubo ; Hou, Xiyong ; Liu, Yubin ; Li, Hui ; Zhou, Yangming ; Xia, Shaoxia ; Liu, Yu ; Duan, Houlang ; Wang, Yuyu ; Dou, Yuehan ; Yang, Meng ; Zhang, Li - \ 2020
    Sustainability 12 (2020)8. - ISSN 2071-1050
    Wetlands provide ecosystem services for regional development, and, thus, have considerable economic value. In this study, a combination of evaluation methods was carried out to evaluate the wetland ecosystem services provided by national nature reserves in 11 coastal provinces/municipalities in China. We constructed a literature database containing 808observations (over 170 papers) on field-scale research for wetlands in China’s coastal zones. Using this literature database, as well as land use (LU) data, net primary productivity (NPP), and statistical data, and digital elevation model (DEM) data, we established a valuation framework and database for nine important ecosystem services of the 13 wetland types in the study area. After the large-scale academic literature review, the ordinary kriging offered by Geostatistical Analyst tools was used to interpolate the physical dimensions of the unmeasured locations. The results showed that: 1) the wetland ecosystem services in 35 national nature reserves have a total value of 33.168billion USD/year; 2) the values of wetland ecosystem services revealed considerable spatial variability along China’s coastal zones; and 3) assessments provide additional insights into the trade-offs between different ecosystem services and wetland types. The valuation framework and database established in this study can contribute to the mapping of wetland ecosystem services in coastal zones.
    Modeling of industrial-scale anaerobic solid-state fermentation for Chinese liquor production
    Jin, Guangyuan ; Uhl, Philipp ; Zhu, Yang ; Wijffels, René H. ; Xu, Yan ; Rinzema, Arjen - \ 2020
    Chemical Engineering Journal 394 (2020). - ISSN 1385-8947
    Chinese liquor - Heat transfer - Mathematical modeling - Product inhibition - Solid-state fermentation - Temperature modeling

    Traditional solid-state fermentation processes can give fluctuating product quality and quantity due to difficulties in control and scale up. This paper describes an engineering study of an industrial-scale anaerobic solid-state fermentation process for Chinese liquor (Baijiu) production, aimed at better understanding of the traditional process, as an initial step for future optimization. This mixed-culture fermentation is done in 0.44-m3 vessels embedded in the soil. At this scale, the fermentation is limited by product inhibition. We developed mathematical models based on the Han-Levenspiel equation for product inhibition, with parameters derived from measured data. The models accurately predicted the concentrations of starch and dry matter. A model with radial conduction into a small soil volume around the fermenter and consecutive vertical conduction into the underlying soil accurately predicted the pit temperature in the heating and cooling phases. This model is very sensitive to the values used for the enthalpies of combustion, meaning that direct measurement of the heat production rate would be preferable. In the industry practice, the fermenter volume can be from around 0.20 to 15.00 m3. The model predicts that overheating will occur not only in larger fermenters, but also in the 0.44-m3 fermenters when the soil temperature is high in summer. Our model predictions are consistent with observed behavior in the industry. Our findings can be used to improve this traditional process, as well as similar systems.

    A global database of soil nematode abundance and functional group composition
    Hoogen, Johan van den; Geisen, Stefan ; Wall, Diana H. ; Wardle, David A. ; Traunspurger, Walter ; Goede, Ron G.M. de; Adams, Byron J. ; Ahmad, Wasim ; Ferris, Howard ; Bardgett, Richard D. ; Bonkowski, Michael ; Campos-Herrera, Raquel ; Cares, Juvenil E. ; Caruso, Tancredi ; Brito Caixeta, Larissa de; Chen, Xiaoyun ; Costa, Sofia R. ; Creamer, Rachel ; Cunha e Castro, José Mauro da; Dam, Marie ; Djigal, Djibril ; Escuer, Miguel ; Griffiths, Bryan S. ; Gutiérrez, Carmen ; Hohberg, Karin ; Kalinkina, Daria ; Kardol, Paul ; Kergunteuil, Alan ; Korthals, Gerard ; Krashevska, Valentyna ; Kudrin, Alexey A. ; Li, Qi ; Liang, Wenju ; Magilton, Matthew ; Marais, Mariette ; Martín, José Antonio Rodríguez ; Matveeva, Elizaveta ; Mayad, El Hassan ; Mzough, E. ; Mulder, Christian ; Mullin, Peter ; Neilson, Roy ; Nguyen, Duong T.A. ; Nielsen, Uffe N. ; Okada, Hiroaki ; Rius, Juan Emilio Palomares ; Pan, Kaiwen ; Peneva, Vlada ; Pellissier, Loïc ; Silva, Julio Carlos Pereira da; Pitteloud, Camille ; Powers, Thomas O. ; Powers, Kirsten ; Quist, Casper W. ; Rasmann, Sergio ; Moreno, Sara Sánchez ; Scheu, Stefan ; Setälä, Heikki ; Sushchuk, Anna ; Tiunov, Alexei V. ; Trap, Jean ; Vestergård, Mette ; Villenave, Cecile ; Waeyenberge, Lieven ; Wilschut, Rutger A. ; Wright, Daniel G. ; Keith, Aidan M. ; Yang, Jiuein ; Schmidt, Olaf ; Bouharroud, R. ; Ferji, Z. ; Putten, Wim H. van der; Routh, Devin ; Crowther, Thomas W. - \ 2020
    Scientific Data 7 (2020)1. - ISSN 2052-4463

    As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional group composition. This dataset includes 6,825 georeferenced soil samples from all continents and biomes. For geospatial mapping purposes these samples are aggregated into 1,933 unique 1-km pixels, each of which is linked to 73 global environmental covariate data layers. Altogether, this dataset can help to gain insight into the spatial distribution patterns of soil nematode abundance and community composition, and the environmental drivers shaping these patterns.

    Partial purification and characterization of a broad-spectrum bacteriocin produced by a Lactobacillus plantarum zrx03 isolated from infant's feces
    Lei, Shuang ; Zhao, Ruixiang ; Sun, Junliang ; Ran, Junjian ; Ruan, Xiaoli ; Zhu, Yang - \ 2020
    Food Science and Nutrition 8 (2020)5. - ISSN 2048-7177 - p. 2214 - 2222.
    antimicrobial stability - bacteriocin - Lactobacillus plantarum zrx03 - purification

    Lactobacillus plantarum zrx03 was a bacteriocin-producing strain isolated from infant's feces. The fermentation supernatant produced by this strain could strongly inhibit Escherichia coli JM109 ATCC 67387, Staphylococcus aureus ATCC 25923, and Listeria monocytogenes CICC 21633, in which the diameter of inhibition zone was 12.83 ± 0.62 mm, 15.08 ± 0.31 mm, 6.75 ± 0.20 mm, respectively, compared with lactic acid bacteria N1, N2, M13, M21, M31, and M37. According to amplification of 16S rRNA gene and identification of phylogenetic tree, this strain had a 1,450 bp sequence and 100% identity to the L. plantarum strain. Based on the influence of different protease treatments, such as pepsin, trypsin, papain, and proteinase K on the antimicrobial activity, this antimicrobial substance was considered to be a natural protein. Using bacteriocin produced by this strain as study object of this experiment, it had been extracted from ammonium sulfate precipitation and different organic solvents. The results showed that ethyl acetate was selected as the optimal solution to crude extraction of bacteriocin after comparing ammonium sulfate precipitation method and organic solvent extraction method, such as n-butanol, n-hexane, dichloromethane, trichloromethane, in which the diameter of the inhibition zones was above 28 mm. Results also showed the inhibition spectrum of the obtained bacteriocin had a broad spectrum of inhibition which could inhibit Gram-positive, Gram-negative, yeast. Especially, it could effectively inhibit S. aureus ATCC 25923, Bacillus subtilis CICC 10002, Bacillus anthracis CICC 20443, E. coli JM109 ATCC 67387, and Salmonella CMCC 541, and the zone diameter of inhibition has reached more than 28 mm. Moreover, it had a good thermal stability which antibacterial activity was retained 70.58% after treatment at 121°C for 30 min, and pH-stability was between pH 2.0–9.0. These results suggested bacteriocin produced by L. plantarum zrx03 had potential application prospects in food preservation.

    Rhizosphere protists are key determinants of plant health
    Xiong, Wu ; Song, Yuqi ; Yang, Keming ; Gu, Yian ; Wei, Zhong ; Kowalchuk, George A. ; Xu, Yangchun ; Jousset, Alexandre ; Shen, Qirong ; Geisen, Stefan - \ 2020
    Microbiome 8 (2020)1. - ISSN 2049-2618
    Pathogen of Ralstonia solanacearum - Plant health - Predator-prey interactions - Protists - Rhizosphere - Secondary metabolite genes

    Background: Plant health is intimately influenced by the rhizosphere microbiome, a complex assembly of organisms that changes markedly across plant growth. However, most rhizosphere microbiome research has focused on fractions of this microbiome, particularly bacteria and fungi. It remains unknown how other microbial components, especially key microbiome predators - protists - are linked to plant health. Here, we investigated the holistic rhizosphere microbiome including bacteria, microbial eukaryotes (fungi and protists), as well as functional microbial metabolism genes. We investigated these communities and functional genes throughout the growth of tomato plants that either developed disease symptoms or remained healthy under field conditions. Results: We found that pathogen dynamics across plant growth is best predicted by protists. More specifically, communities of microbial-feeding phagotrophic protists differed between later healthy and diseased plants at plant establishment. The relative abundance of these phagotrophs negatively correlated with pathogen abundance across plant growth, suggesting that predator-prey interactions influence pathogen performance. Furthermore, phagotrophic protists likely shifted bacterial functioning by enhancing pathogen-suppressing secondary metabolite genes involved in mitigating pathogen success. Conclusions: We illustrate the importance of protists as top-down controllers of microbiome functioning linked to plant health. We propose that a holistic microbiome perspective, including bacteria and protists, provides the optimal next step in predicting plant performance. [MediaObject not available: see fulltext.]

    The Chinese milk supply chain: A fraud perspective
    Yang, Yuzheng ; Huisman, Wim ; Hettinga, Kasper A. ; Zhang, Liebing ; Ruth, Saskia M. van - \ 2020
    Food Control 113 (2020). - ISSN 0956-7135
    China - Dairy farmer - Economically motivated adulteration - Fraud vulnerability assessment - Milk processor - Milk supply chain

    Food fraud has become a serious concern all over the world and especially in China. The melamine contaminated infant formula in 2008 has brought food fraud in the spotlights. This incident had grave consequences for the Chinese citizens as well as the Chinese milk industry. Fraud vulnerability assessments are the first step towards food fraud prevention and mitigation. To combat food fraud, one has to think like a criminal. In the current study, we determined the most vulnerable points in the Chinese milk supply chain, and examined the underlying causes. The fraud vulnerability perceived by 90 Chinese dairy farmers and 14 milk processors was evaluated with the SSAFE food fraud vulnerability assessment tool. Overall, actors perceived the milk supply chain as low to medium vulnerable to food fraud. Farmers appeared significantly more vulnerable than processors due to enhanced opportunities and motivations, and less adequate controls. Both geographical location of the farms and their size affected their perceived fraud vulnerability significantly.

    Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite
    Qi, Wanhe ; Taherzadeh, Mohammad J. ; Ruan, Yunjie ; Deng, Yale ; Chen, Ji Shuang ; Lu, Hui Feng ; Xu, Xiang Yang - \ 2020
    Bioresource Technology 305 (2020). - ISSN 0960-8524
    Bacterial community - Fungal community - PBS/Bamboo composite - RAS effluent treatment - Solid-phase denitrification

    This study explored the denitrification performance of solid-phase denitrification (SPD) systems packed with poly (butylene succinate)/bamboo powder composite to treat synthetic aquaculture wastewater under different salinity conditions (0‰ Vs. 25‰). The results showed composite could achieve the maximum denitrification rates of 0.22 kg (salinity, 0‰) and 0.34 kg NO3 -N m−3 d−1 (salinity, 25‰) over 200-day operation. No significant nitrite accumulation and less dissolved organic carbon (DOC) release (<15 mg/L) were found. The morphological and spectroscopic analyses demonstrated the mixture composites degradation. Microbial community analysis showed that Acidovorax, Simplicispira, Denitromonas, SM1A02, Marinicella and Formosa were the dominant genera for denitrifying bacteria, while Aspergillus was the major genus for denitrifying fungus. The co-network analysis also indicated the interactions between bacterial and fungal community played an important role in composite degradation and denitrification. The outcomes provided a potential strategy of DOC control and cost reduction for aquaculture nitrate removal by SPD.

    Synthesis and evaluation of historical meridional heat transport from midlatitudes towards the Arctic
    Liu, Yang ; Attema, Jisk ; Moat, Ben ; Hazeleger, Wilco - \ 2020
    Earth System dynamics 11 (2020)1. - ISSN 2190-4979 - p. 77 - 96.

    Meridional energy transport (MET), both in the atmosphere (AMET) and ocean (OMET), has significant impact on the climate in the Arctic. In this study, we quantify AMET and OMET at subpolar latitudes from six reanalysis data sets. We investigate the differences between the data sets and we check the coherence between MET and the Arctic climate variability at interannual timescales. The results indicate that, although the mean transport in all data sets agrees well, the spatial distributions and temporal variations of AMET and OMET differ substantially among the reanalysis data sets. For the ocean, only after 2007, the low-frequency signals in all reanalysis products agree well. A further comparison with observed heat transport at 26.5° N and the subpolar Atlantic, and a high-resolution ocean model hindcast confirms that the OMET estimated from the reanalysis data sets are consistent with the observations. For the atmosphere, the differences between ERA-Interim and the Japanese 55-year Reanalysis (JRA-55) are small, while the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) differs from them. An extended analysis of linkages between Arctic climate variability and AMET shows that atmospheric reanalyses differ substantially from each other. Among the chosen atmospheric products, ERA-Interim and JRA-55 results are most consistent with those from coupled climate models. For the ocean, the Ocean Reanalysis System 4 (ORAS4) and Simple Ocean Data Assimilation version 3 (SODA3) agree well on the relation between OMET and sea ice concentration (SIC), while the GLobal Ocean reanalyses and Simulations version 3 (GLORYS2V3) deviates from those data sets. The regressions of multiple fields in the Arctic on both AMET and OMET suggest that the Arctic climate is sensitive to changes of meridional energy transport at subpolar latitudes in winter. Given the good agreement on the diagnostics among assessed reanalysis products, our study suggests that the reanalysis products are useful for the evaluation of energy transport. However, assessments of products with the AMET and OMET estimated from reanalysis data sets beyond interannual timescales should be conducted with great care and the robustness of results should be evaluated through intercomparison, especially when studying variability and interactions between the Arctic and midlatitudes.

    Eleven grand challenges in single-cell data science
    Lähnemann, David ; Köster, Johannes ; Szczurek, Ewa ; McCarthy, Davis J. ; Hicks, Stephanie C. ; Robinson, Mark D. ; Vallejos, Catalina A. ; Campbell, Kieran R. ; Beerenwinkel, Niko ; Mahfouz, Ahmed ; Pinello, Luca ; Skums, Pavel ; Stamatakis, Alexandros ; Attolini, Camille Stephan Otto ; Aparicio, Samuel ; Baaijens, Jasmijn ; Balvert, Marleen ; Barbanson, Buys de; Cappuccio, Antonio ; Corleone, Giacomo ; Dutilh, Bas E. ; Florescu, Maria ; Guryev, Victor ; Holmer, Rens ; Jahn, Katharina ; Lobo, Thamar Jessurun ; Keizer, Emma M. ; Khatri, Indu ; Kielbasa, Szymon M. ; Korbel, Jan O. ; Kozlov, Alexey M. ; Kuo, Tzu Hao ; Lelieveldt, Boudewijn P.F. ; Mandoiu, Ion I. ; Marioni, John C. ; Marschall, Tobias ; Mölder, Felix ; Niknejad, Amir ; Raczkowski, Lukasz ; Reinders, Marcel ; Ridder, Jeroen de; Saliba, Antoine Emmanuel ; Somarakis, Antonios ; Stegle, Oliver ; Theis, Fabian J. ; Yang, Huan ; Zelikovsky, Alex ; McHardy, Alice C. ; Raphael, Benjamin J. ; Shah, Sohrab P. ; Schönhuth, Alexander - \ 2020
    Genome Biology 21 (2020)1. - ISSN 1474-7596

    The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands - or even millions - of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.

    Mycotoxin exposure assessments in a multi-center European validation study by 24-hour dietary recall and biological fluid sampling
    Ruyck, Karl De; Huybrechts, Inge ; Yang, Shupeng ; Arcella, Davide ; Claeys, Liesel ; Abbeddou, Souheila ; Keyzer, Willem De; Vries, Jeanne De; Ocke, Marga ; Ruprich, Jiri ; Boevre, Marthe De; Saeger, Sarah De - \ 2020
    Environment International 137 (2020). - ISSN 0160-4120
    Aflatoxins - Deoxynivalenol - Europe - Exposure - Mycotoxins - Risk

    The European Food Consumption Validation (EFCOVAL) project includes 600 men and women from Belgium, the Czech Republic, France, the Netherlands, and Norway, who had given serum and 24-hour urine samples, and completed 24-hour dietary recall (24-HDR) interviews. Consumption, according to 24-HDR, was matched against the European Food Safety Authority (EFSA) databases of mycotoxin contaminations, via the FoodEx1 standard classifications, producing an indirect external estimate of dietary mycotoxin exposure. Direct, internal measurements of dietary mycotoxin exposure were made in serum and urine by ultra-performance liquid chromatography coupled to tandem mass spectrometry. For the first time, mycotoxin exposures were thoroughly compared between two 24-HDRs, and two 24-hour urine samples collected during the same days covered by the 24-HDRs. These measurements were compared to a single-time point serum measurement to investigate evidence of chronic mycotoxin exposure. According to 24-HDR data, all 600 individuals were exposed to between 4 and 34 mycotoxins, whereof 10 found to exceed the tolerable daily intake. Correlations were observed between two time points, and significant correlations were observed between concentrations in serum and urine. However, only acetyldeoxynivalenol, ochratoxin A, and sterigmatocystin were found to have significant positive correlations between 24-HDR exposures and serum, while aflatoxin G1 and G2, HT-2 toxin, and deoxynivalenol were associated between concurrent 24-HDR and 24-hour urine. Substantial agreements on quantitative levels between serum and urine were observed for the groups Type B Trichothecenes and Zearalenone. Further research is required to bridge the interpretation of external and internal exposure estimates of the individual on a time scale of hours. Additionally, metabolomic profiling of dietary mycotoxin exposures could help with a comprehensive assessment of single time-point exposures, but also with the identification of chronic exposure biomarkers. Such detailed characterization informs population exposure assessments, and aids in the interpretation of epidemiological health outcomes related to multi-mycotoxin exposure.

    DIX Domain Polymerization Drives Assembly of Plant Cell Polarity Complexes
    Dop, Maritza van; Fiedler, Marc ; Mutte, Sumanth ; Keijzer, Jeroen de; Olijslager, Lisa ; Albrecht, Catherine ; Liao, Che Yang ; Janson, Marcel E. ; Bienz, Mariann ; Weijers, Dolf - \ 2020
    Cell 180 (2020)3. - ISSN 0092-8674 - p. 427 - 439.e12.
    cell polarity - dishevelled - DIX domain - plant development - protein oligomerization - signalosome - SOSEKI

    The identities of cell polarity determinants are not conserved between animals and plants; however, characterization of a DIX-domain containing protein in land plants reveals that the physical principles of polar complex assembly are preserved across eukaryotes.

    Dairy farming system markers: The correlation of forage and milk fatty acid profiles from organic, pasture and conventional systems in the Netherlands
    Liu, Ningjing ; Pustjens, Annemieke M. ; Erasmus, Sara W. ; Yang, Yuzheng ; Hettinga, Kasper ; Ruth, Saskia M. van - \ 2020
    Food Chemistry 314 (2020). - ISSN 0308-8146
    Classification - Correlation analysis - Fatty acids - Forage - Milk - Organic

    The relationships between the fatty acid (FA) composition in forage and milk (F&M) from different dairy systems were investigated. Eighty milk samples and 91 forage samples were collected from 40 farms (19 organic, 11 pasture and 10 conventional) in the Netherlands, during winter and summer. The FA profiles of F&M samples were measured with gas chromatography. The results showed that the F&M of organic farms were significantly differentiated from the F&M of other farms, both in summer and winter. The differences are likely due to the different grazing strategies in summer and different forage composition in winter. The Pearson's correlation results showed the specific relationship between individual FAs in forages and related milk. A PLS-DA model was applied to classify all milks samples, resulting in 87.5% and 83.3% correct classifications of training set and validation set.

    Analyzing subcellular reorganization during early Arabidopsis embryogenesis using fluorescent markers
    Liao, Che Yang ; Weijers, Dolf - \ 2020
    In: Plant Embryogenesis / Bayer, M., New York : Humana Press Inc. (Methods in Molecular Biology ) - ISBN 9781071603413 - p. 49 - 61.
    Arabidopsis thaliana - Confocal microscopy - Embryogenesis - Fluorescent protein - Subcellular structure

    Virtually all growth, developmental, physiological, and defense responses in plants are accompanied by reorganization of subcellular structures to enable altered cellular growth, differentiation or function. Visualizing cellular reorganization is therefore critical to understand plant biology at the cellular scale. Fluorescently labeled markers for organelles, or for cellular components are widely used in combination with confocal microscopy to visualize cellular reorganization. Early during plant embryogenesis, the precursors for all major tissues of the seedling are established, and in Arabidopsis, this entails a set of nearly invariant switches in cell division orientation and directional cell expansion. Given that these cellular reorganization events are genetically regulated and coupled to formative events in plant development, they offer a good model to understand the genetic control of cellular reorganization in plant development. Until recently, it has been challenging to visualize subcellular structures in the early Arabidopsis embryo for two reasons: embryos are deeply embedded in seed coat and fruit, and in addition, no dedicated fluorescent markers, expressed in the embryo, were available. We recently established both an imaging approach and a set of markers for the early Arabidopsis embryo. Here, we describe a detailed protocol to use these new tools in imaging cellular reorganization.

    Tiara[5]arenes: Synthesis, solid-state conformational studies, host-guest properties and application as nonporous adaptive crystals
    Yang, Weiwei ; Samanta, Kushal ; Wan, Xintong ; Thikekar, Tushar Ulhas ; Chao, Yang ; Li, Shunshun ; Du, Ke ; Xu, Yun ; Gao, Yan ; Zuilhof, H. ; Sue, Andrew C.H. - \ 2020
    Angewandte Chemie 59 (2020)10. - ISSN 0044-8249 - p. 3994 - 3999.
    Tiara[5]arenes (T[5]s), a new class of five‐fold symmetric oligophenolic macrocycles, which are not accessible from the addition of formaldehyde to phenol, were synthesized for the first time. These pillar[5]arene‐derived structures display both unique conformational freedom, differing from that of pillararenes, with a rich blend of solid‐state conformations, and excellent host‐guest interactions in solution. Finally we show how this novel macrocyclic scaffold can be functionalized in a variety of ways and used as functional crystalline materials to distinguish uniquely between benzene and cyclohexane.
    Exploring solution spaces for nutrition-sensitive agriculture in Kenya and Vietnam
    Timler, Carl ; Alvarez, Stéphanie ; DeClerck, Fabrice ; Remans, Roseline ; Raneri, Jessica ; Estrada Carmona, Natalia ; Mashingaidze, Nester ; Abe Chatterjee, Shantonu ; Chiang, Tsai Wei ; Termote, Celine ; Yang, Ray Yu ; Descheemaeker, Katrien ; Brouwer, Inge D. ; Kennedy, Gina ; Tittonell, Pablo A. ; Groot, Jeroen C.J. - \ 2020
    Agricultural Systems 180 (2020). - ISSN 0308-521X
    Agrobiodiversity - Dietary diversity - FarmDESIGN - Nutrition - Synergies - Trade-offs

    Smallholder agriculture is an important source of livelihoods in South Asia and sub-Saharan Africa. In these regions the highest concentrations of nutritionally vulnerable populations are found. Agricultural development needs to be nutrition-sensitive, and contribute simultaneously to improving household nutrition, farm productivity and environmental performance. We explored the windows of opportunities for farm development and the potential of crop diversification options for meeting household dietary requirements, whilst concurrently improving household economic performance in contrasting smallholder farm systems in Kenya and Vietnam. Farm and household features and farmer perspectives and priorities were integrated into a farm-household model that allowed quantification of a diverse set of nutritional, labour and productive indicators. Using a multi-objective optimization algorithm, we generated ‘solution spaces’ comprising crop compositions and management configurations that would satisfy household dietary needs and allowed income gains. Results indicated site-specific synergies between income and nutritional system yield for vitamin A. Diversification with novel vegetables could cover vitamin A requirements of 10 to 31 extra people per hectare and lead to greater income (25 to 185% increase) for some households, but reduced leisure time. Although the Vietnamese sites exhibited greater nutrient system yields than those in Kenya, the household diets in Kenya had greater nutrient adequacy due to the fact that the Vietnamese farmers sold greater proportions of their on-farm produced foods. We conclude that nutrition-sensitive, multi-method approaches have potential to identify solutions to simultaneously improve household income, nutrition and resource management in vulnerable smallholder farming systems.

    Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis
    Xu, Zhan ; Li, Chunjie ; Zhang, Chaochun ; Yu, Yang ; Werf, Wopke van der; Zhang, Fusuo - \ 2020
    Field Crops Research 246 (2020). - ISSN 0378-4290
    Fertilizer N equivalent ratio (FNER) - Intercropping - Land equivalent ratio (LER) - Maize - Soybean

    Intercropping exploits species complementarities to achieve sustainable intensification by increasing crop outputs per unit land with reduced anthropogenic inputs. Cereal/legume intercropping is a classical case. We carried out a global meta-analysis to assess land and fertilizer N use efficiency in intercropping of maize and soybean as compared to sole crops, based on 47 studies reported in English and 43 studies reported in Chinese. The data were extracted and analyzed with mixed effects models to assess land equivalent ratio (LER) of intercropping and factors affecting LER. The worldwide average LER of maize/soybean intercropping was 1.32 ± 0.02, indicating a substantial land sparing potential of intercropping over sole crops. This advantage increased as the temporal niche differentiation between the two species was increased by sowing or harvesting one crop earlier than the other as in relay intercropping, i.e. with only partial overlap of the growing periods of the two species The mean fertilizer N equivalent ratio (FNER) was 1.44 ± 0.03, indicating that intercrops received substantially less fertilizer N than sole crops for the same product output. These fertilizer savings are mainly due to the high relative maize yield and the lower N input in the intercrop compared to the input in sole maize. This meta-analysis thus shows that exploiting species complementarities by intercropping maize and soybean enables major increases in land productivity with less fertilizer N use. Both LER and FNER increased as the difference in growth duration increased for maize and soybean, but were not affected by fertilizer N rate. LER increased when soil organic matter increased but FNER did not change with soil organic matter.

    A PXY-Mediated Transcriptional Network Integrates Signaling Mechanisms to Control Vascular Development in Arabidopsis
    Smit, Margot ; Mcgregor, Shauni ; Sun, Heng ; Gough, Catherine ; Bågman, Anne-Maarit ; Soyars, Cara L. ; Kroon, Johan T.M. ; Gaudinier, Allison ; Williams, Clara J. ; Yang, Xiyan ; Nimchuk, Zachary L. ; Weijers, Dolf ; Turner, Simon R. ; Brady, Siobhan M. ; Etchells, Peter - \ 2020
    The Plant Cell 32 (2020)2. - ISSN 1040-4651
    Vascular meristems generate the majority of biomass in higher plants. They constitute a bifacial stem cell population from which xylem and phloem are specified on opposing sides by positional signals. The PHLOEM INTERCALATED WITH XYLEM (PXY) receptor kinase promotes vascular cell division and organisation. However, how these functions are specified and integrated is unknown. Here, a putative PXY-mediated transcriptional regulatory network comprised of 690 transcription factor-promoter interactions was mapped. Among these interactions was a feed-forward loop containing transcription factors WUSCHEL HOMEOBOX RELATED 14 (WOX14) and TARGET OF MONOPTEROS 6 (TMO6), which each regulate the expression of a third transcription factor, LATERAL ORGAN BOUNDARIES DOMAIN 4 (LBD4). PXY signalling in turn regulates the WOX14, TMO6, LBD4 loop to control vascular proliferation. Genetic interaction between LBD4 and PXY suggests that LBD4 marks the phloem-procambium boundary, thus defining the shape of the vascular bundle. These data collectively support a novel mechanism that influences recruitment of cells into the phloem lineage, and defines the role of PXY signalling in this context to the arrangement of vascular tissue.
    Revealing the nutrient limitation and cycling for microbes under forest management practices in the Loess Plateau – Ecological stoichiometry
    Zhang, Jiaoyang ; Yang, Xiaomei ; Song, Yahui ; Liu, Hongfei ; Wang, Guoliang ; Xue, Sha ; Liu, Guobin ; Ritsema, Coen J. ; Geissen, Violette - \ 2020
    Geoderma 361 (2020). - ISSN 0016-7061
    Ecological environment - Ecological stoichiometry - Forest management practices - Stoichiometric homeostasis - Threshold elemental ratio

    Forest management practices are commonly used in plantation forestry to obtain renewable energy and harvest biomass, in addition to maintaining the ecological environment, by changing the flow of carbon (C) and nutrients in the food webs of terrestrial ecosystems. To identify which forest management practices, alleviate soil nutrient limitation and impact stoichiometric homeostasis in relation to microbes, we used a Pinus tabuliformis plantation in the Loess Plateau where forest management practices were conducted since 1999. Five forest management practices were implemented: two at the forest level (P. tabuliformis with and without ground litter, CK, LRL) and three of different vegetation restorations after clear-cutting (P. tabuliformis seedlings (SPL), grass land (GL), and shrub land (SL)). Generally, the threshold elemental ratios for carbon:nitrogen (TERC:N; 7.77) and carbon:phosphorus (TERC:P; 44.37) were lower than the ratios influenced by forest management practices. The forest management practices significantly influenced ecoenzymatic activity and the ratios of ecoenzymes; however, the scale of the ecoenzyme activities for acquiring both organic N and organic P to that for acquiring C still follow the global pattern. The regression coefficients of C:N and C:P between the soil and microbial community at 0–20 cm and 20–40 cm depths were also influenced by these practices. Thus, the influence of forest management practices on the soil microbial community was limited by N and P in the Loess Plateau. The soil microbial community changed ecoenzymatic activities and ratios of ecoenzymes and even changed microbial community in order to balance elemental limitations in the soil. Finally, forest management practices have a minimal impact on the stoichiometric homeostasis of the microbial community at our study site.

    Effects of plastic mulch film residues on wheat rhizosphere and soil properties
    Qi, Yueling ; Ossowicki, Adam ; Yang, Xiaomei ; Huerta Lwanga, Esperanza ; Dini-Andreote, Francisco ; Geissen, Violette ; Garbeva, Paolina - \ 2020
    Journal of Hazardous Materials 387 (2020). - ISSN 0304-3894
    Biodegradable plastics - Microplastics - Rhizosphere microbiome - Soil properties - Volatile organic compounds

    Plastic residues could accumulate in soils as a consequence of using plastic mulching, which results in a serious environmental concern for agroecosystems. As an alternative, biodegradable plastic films stand as promising products to minimize plastic debris accumulation and reduce soil pollution. However, the effects of residues from traditional and biodegradable plastic films on the soil-plant system are not well studied. In this study, we used a controlled pot experiment to investigate the effects of macro- and micro- sized residues of low-density polyethylene and biodegradable plastic mulch films on the rhizosphere bacterial communities, rhizosphere volatile profiles and soil chemical properties. Interestingly, we identified significant effects of biodegradable plastic residues on the rhizosphere bacterial communities and on the blend of volatiles emitted in the rhizosphere. For example, in treatments with biodegradable plastics, bacteria genera like Bacillus and Variovorax were present in higher relative abundances and volatile compounds like dodecanal were exclusively produced in treatment with biodegradable microplastics. Furthermore, significant differences in soil pH, electrical conductivity and C:N ratio were observed across treatments. Our study provides evidence for both biotic and abiotic impacts of plastic residues on the soil-plant system, suggesting the urgent need for more research examining their environmental impacts on agroecosystems.

    Rice microtubule-associated protein IQ67-DOMAIN14 regulates grain shape by modulating microtubule cytoskeleton dynamics
    Yang, Bao Jun ; Wendrich, Jos R. ; Rybel, Bert De; Weijers, Dolf ; Xue, Hong Wei - \ 2020
    Plant Biotechnology Journal 18 (2020)5. - ISSN 1467-7644 - p. 1141 - 1152.
    calmodulin (CaM) - cell shape - microtubule - OsIQD14 - rice

    Cortical microtubule (MT) arrays play a critical role in plant cell shape determination by defining the direction of cell expansion. As plants continuously adapt to ever-changing environmental conditions, multiple environmental and developmental inputs need to be translated into changes of the MT cytoskeleton. Here, we identify and functionally characterize an auxin-inducible and MT-localized protein OsIQ67-DOMAIN14 (OsIQD14), which is highly expressed in rice seed hull cells. We show that while deficiency of OsIQD14 results in short and wide seeds and increases overall yield, overexpression leads to narrow and long seeds, caused by changed MT alignment. We further show that OsIQD14-mediated MT reordering is regulated by specifically affecting MT dynamics, and ectopic expression of OsIQD14 in Arabidopsis could change the cell shape both in pavement cells and in hypocotyl cells. Additionally, OsIQD14 activity is tightly controlled by calmodulin proteins, providing an alternative way to modify the OsIQD14 activity. Our results indicate that OsIQD14 acts as a key factor in regulating MT rearrangements in rice hull cells and hence the grain shape, and allows effective local cell shape manipulation to improve the rice yield trait.

    Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents
    Yang, Jack ; Thielen, Ilonka ; Berton-Carabin, Claire C. ; Linden, Erik van der; Sagis, Leonard M.C. - \ 2020
    Food Hydrocolloids 101 (2020). - ISSN 0268-005X
    Air-water interface - Atomic force microscopy - Interfacial rheology - Lissajous plot - Microgel - Protein bead

    In recent years, food-grade Pickering particles have gained considerable interest, because of their ability to form stable emulsions and foams. Such Pickering stabilizers are often produced by aggregation of proteins, which typically results in a mixture of cross-linked particles and unbound proteins (smaller constituents). This study focuses on the possible contribution to the interfacial behaviour of these smaller constituents in whey protein isolate (WPI) bead suspensions, which are produced by cold-gelation of WPI aggregates. To understand the interfacial properties of the total mixture, we have studied the involved structures and interactions hierarchically, from native WPI, to aggregates, and finally gel beads. Air-water interfaces were subjected to large amplitude oscillatory dilatation (LAOD) and shear (LAOS) using a drop tensiometer and a double wall ring geometry. The non-linear responses were analysed using Lissajous plots. The plots of native WPI- and aggregates-stabilized interfaces showed a rheological behaviour of a viscoelastic solid, while bead-stabilized interfaces tended to have a weaker and more fluid-like behaviour. The interfacial microstructure was analysed by imaging Langmuir-Blodgett films of the protein systems using atomic force microscopy (AFM). The native WPI and aggregate films had a highly heterogeneous structure in which the proteins form a dense clustered network. The beads are randomly distributed throughout the film, separated by large areas, where smaller proteinaceous material is present. This smaller and surface-active material present in the bead suspensions plays an important role in interface stabilization, and could also largely influence the macroscopic properties of interface-dominated systems.

    Electrochemical removal of phosphate in the presence of calcium at low current density: Precipitation or adsorption?
    Lei, Yang ; Geraets, Emilio ; Saakes, Michel ; Weijden, Renata D. van der; Buisman, Cees J.N. - \ 2020
    Water Research 169 (2020). - ISSN 0043-1354
    Calcium phosphate - Electrochemical - Local pH - Low current - Phosphorus recovery

    Phosphorus removal and recovery from waste streams are crucial to prevent eutrophication and sustain fertilizer production. As has been shown in our previous papers, electrochemical treatment has the potential to achieve this goal. However, the adoption of electrochemical approach is limited by its high energy consumption. Here, we investigate the possibility of electrochemical phosphorus removal at extremely low current density using graphite felt as the cathode. We found a current density as low as 0.04 A/m2 can enhance the removal of phosphate in our electrochemical system. The removal of phosphate at extremely low current density resulted from electrochemical induced calcium phosphate precipitation and not by electrochemical adsorption. Electrochemical treatment of real domestic wastewater at 0.2 A/m2 almost eliminates the precipitation of Mg(OH)2 and limits the formation of CaCO3. The recovered precipitates are dominated by calcium phosphate (59%), followed by 35% CaCO3 and 6% Mg(OH)2. The specific energy consumption of this newly electrochemical system is between 4.4 and 26.4 kW h/kg P, which is 2 orders of magnitude lower than our previous system (110–2238 kW h/kg P). Key factors for this improvement prove to be enlarged precipitation area and hydroxide flux retardation by graphite felt. Practically, our study offers a potential way to reduce the energy consumption in electrochemical removal of phosphate by using a graphite felt cathode and at a current density below 0.2 A/m2. Fundamentally, our study contributes to the understanding of adsorption and precipitation in electrochemical removal of phosphate at an extremely low current density and with carbon-based electrodes.

    Negative effects of urbanization on agricultural soil easily oxidizable organic carbon down the profile of the Chengdu Plain, China
    Luo, Youlin ; Li, Qiquan ; Wang, Changquan ; Li, Bing ; Stomph, Tjeerd Jan ; Yang, Juan ; Tao, Qi ; Yuan, Shu ; Tang, Xiaoyan ; Ge, Jinru ; Yu, Xuelian ; Peng, Yueyue ; Xu, Qiang ; Zheng, Gangxun - \ 2020
    Land Degradation and Development 31 (2020)3. - ISSN 1085-3278 - p. 404 - 416.
    easily oxidized organic carbon - impact factors - negative effects - rapid urbanization - soil profile

    Soil easily oxidizable organic carbon (EOC) is directly related to CO2 density; dynamics in subsurface EOC have been observed globally in relation to rapid urbanization. However, in the context of rapid urbanization, the factors related to EOC and the response of the EOC pool to urbanization down the profile remain elusive. The aim of the current paper is to investigate possible changes in the distribution of EOC over the soil profile and the impact of land use, socioeconomic, and natural factors on these. The study used samples from 182 soil profiles (0–100 cm) taken in the peri-urban areas of the megacity Chengdu (a typical megacity with rapid urbanization). Main drivers of changes in soil EOC were analyzed by using spatial and regression analyses. Closer to the centre of the city, soil EOC levels were lower and land-use factors and socioeconomic factors contributed more to explaining variation in EOC levels in the 0–40-cm layer, whereas natural factors were most important at larger distance from the city. The effect of land-use factors and socioeconomic factors on EOC reached down to 60-cm depths. Moreover, an estimated 20% loss of EOC stock was observed close to the city in comparison with the surroundings, suggesting that the rapid process of urbanization was accompanied by a loss of EOC stock down the profile to depths of 60 cm, and the negative effects on EOC stock became more intensive as the distance to the city decreased.

    The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis
    Yang, Chao ; Sofroni, Kostika ; Wijnker, Erik ; Hamamura, Yuki ; Carstens, Lena ; Harashima, Hirofumi ; Stolze, Sara Christina ; Vezon, Daniel ; Chelysheva, Liudmila ; Orban-Nemeth, Zsuzsanna ; Pochon, Gaëtan ; Nakagami, Hirofumi ; Schlögelhofer, Peter ; Grelon, Mathilde ; Schnittger, Arp - \ 2020
    The EMBO Journal 39 (2020)3. - ISSN 0261-4189
    ASY1 - ASY3 - CDKA;1 - chromosome axis - PCH2

    Meiosis is key to sexual reproduction and genetic diversity. Here, we show that the Arabidopsis cyclin-dependent kinase Cdk1/Cdk2 homolog CDKA;1 is an important regulator of meiosis needed for several aspects of meiosis such as chromosome synapsis. We identify the chromosome axis protein ASYNAPTIC 1 (ASY1), the Arabidopsis homolog of Hop1 (homolog pairing 1), essential for synaptonemal complex formation, as a target of CDKA;1. The phosphorylation of ASY1 is required for its recruitment to the chromosome axis via ASYNAPTIC 3 (ASY3), the Arabidopsis reductional division 1 (Red1) homolog, counteracting the disassembly activity of the AAA+ ATPase PACHYTENE CHECKPOINT 2 (PCH2). Furthermore, we have identified the closure motif in ASY1, typical for HORMA domain proteins, and provide evidence that the phosphorylation of ASY1 regulates the putative self-polymerization of ASY1 along the chromosome axis. Hence, the phosphorylation of ASY1 by CDKA;1 appears to be a two-pronged mechanism to initiate chromosome axis formation in meiosis.

    Electrochemically mediated calcium phosphate precipitation from phosphonates: Implications on phosphorus recovery from non-orthophosphate
    Lei, Yang ; Saakes, Michel ; Weijden, Renata D. van der; Buisman, Cees J.N. - \ 2020
    Water Research 169 (2020). - ISSN 0043-1354
    Calcium phosphate - Local high pH - Organic phosphorus - Oxidation - Precipitation

    Phosphonates are an important type of phosphorus-containing compounds and have possible eutrophication potential. Therefore, the removal of phosphonates from waste streams is as important as orthophosphate. Herein, we achieved simultaneously removal and recovery of phosphorus from nitrilotris (methylene phosphonic acid) (NTMP) using an electrochemical cell. It was found that the C–N and C–P bonds of NTMP were cleaved at the anode, leading to the formation of orthophosphate and formic acid. Meanwhile, the converted orthophosphate reacted with coexisting calcium ions and precipitated on the cathode as recoverable calcium phosphate solids, due to an electrochemically induced high pH region near the cathode. Electrochemical removal of NTMP (30 mg/L) was more efficient when dosed to effluent of a wastewater treatment plant (89% in 24 h) than dosed to synthetic solutions of 1.0 mM Ca and 50 mM Na2SO4 (43% in 168 h) while applying a current density of 28 A/m2 and using a Pt anode and Ti cathode. The higher removal efficiency of NTMP in real waste water is due to the presence of chloride ions, which resulted in anodic formation of chlorine. This study establishes a one-step approach for simultaneously phosphorus removal and recovery of calcium phosphate from non-orthophosphates.

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search
    Brown, Peter ; Zhou, Yaoqi ; Tan, Aik Choon ; El-Esawi, Mohamed A. ; Liehr, Thomas ; Blanck, Oliver ; Gladue, Douglas P. ; Almeida, Gabriel M.F. ; Cernava, Tomislav ; Sorzano, Carlos O. ; Yeung, Andy W.K. ; Engel, Michael S. ; Chandrasekaran, Arun R. ; Muth, Thilo ; Staege, Martin S. ; Daulatabad, Swapna V. ; Widera, Darius ; Zhang, Junpeng ; Meule, Adrian ; Honjo, Ken ; Pourret, Olivier ; Yin, Cong Cong ; Zhang, Zhongheng ; Cascella, Marco ; Flegel, Willy A. ; Goodyear, Carl S. ; Raaij, Mark J. van; Bukowy-Bieryllo, Zuzanna ; Campana, Luca G. ; Kurniawan, Nicholas A. ; Lalaouna, David ; Hüttner, Felix J. ; Ammerman, Brooke A. ; Ehret, Felix ; Cobine, Paul A. ; Tan, Ene Choo ; Han, Hyemin ; Xia, Wenfeng ; McCrum, Christopher ; Dings, Ruud P.M. ; Marinello, Francesco ; Nilsson, Henrik ; Nixon, Brett ; Voskarides, Konstantinos ; Yang, Long ; Costa, Vincent D. ; Bengtsson-Palme, Johan ; Bradshaw, William ; Smeets, Paul A.M. ; Heijne, Marloes - \ 2019
    Database : the Journal of Biological Databases and Curation 2019 (2019). - ISSN 1758-0463 - p. 1 - 67.

    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science.

    Born migrators: Historical biogeography of the cosmopolitan family Cannabaceae
    Jin, Jian Jun ; Yang, Mei Qing ; Fritsch, Peter W. ; Velzen, Robin van; Li, De Zhu ; Yi, Ting Shuang - \ 2019
    Journal of Systematics and Evolution 58 (2019)4. - ISSN 1674-4918 - p. 461 - 473.
    ancestral geographical range analysis - Cannabaceae - dispersal - molecular dating - Northern Hemisphere - phylogeny

    Dispersal scenarios have been favored over tectonic vicariance as an explanation for disjunct distributions in many plant taxa during the last two decades. However, this argument has been insufficiently addressed in cosmopolitan groups showing disjunct patterns in both the temperate and tropical regions. In this study, we used the Cannabaceae, an angiosperm family distributed in tropical and temperate regions of both the New World and the Old World, to explore the role of dispersal in shaping disjunct patterns and species diversification of cosmopolitan plants. We reconstructed the phylogenetic relationships of all 10 genera and 75 species of Cannabaceae (ca. 64.1% of recognized species) based on eight DNA regions. Based on fossil calibrations, we estimated the divergence times and net diversification rates. We further inferred the ancestral geographical ranges with several models and compared the fitness of different models. The Cannabaceae and most genera were strongly supported as monophyletic except for the Parasponia being embedded within the Trema. The Celtis were resolved into two strongly supported clades primarily corresponding to temperate and tropical regions. We inferred that the Cannabaceae originated at ca. 93 Ma, and that subsequent rampant and widespread dispersals shaped the intercontinentally disjunct distribution of the Cannabaceae. Dispersal coincides with adaptation to drier and colder climate in the Northern Hemisphere, or humid and warm climate in the tropical regions, followed by rapid species diversification. This study advances our understanding as to the formation of distribution patterns and species diversification of a plant family with tropical to temperate disjunct distributions.

    Geography and ethnicity related variation in the Chinese human milk serum proteome
    Zhang, Lina ; Ma, Ying ; Yang, Zhenyu ; Jiang, Shan ; Liu, Jun ; Hettinga, Kasper A. ; Lai, Jianqiang ; Zhou, Peng - \ 2019
    Food & Function 10 (2019)12. - ISSN 2042-6496 - p. 7818 - 7827.

    Human milk provides a range of nutrients and bioactive components, which can support the growth and development of infants. However, human milk composition may change due to geographic and ethnic variation. This study investigated the variation of the Chinese human milk serum proteome based on mothers with different ethnicities living in different parts of China, using TMT labeling combined with Nano-LC Q Exactive HF MS/MS proteomics. In total, 693 proteins were identified and quantified in human milk serum from Yunnan (Han and Bai ethnicity), Gansu (Han and Tibetan ethnicity), Xinjiang (Uygur ethnicity), and Inner Mongolia (Mongolian ethnicity). The biological function distribution of identified proteins and the summed intensity of proteins belonging to each biological function were similar among groups. The five relatively highly abundant milk serum proteins, lactoferrin, serum albumin, polymeric immunoglobulin receptor, macrophage mannose receptor 1, and bile salt-activated lipase were not significantly different among different geographies and ethnicities. On the other hand, we found 34 proteins that did significantly differ with geography and ethnicity. Those significantly different proteins have known strong interaction in inflammation response and regulation of multi-organism processes. Taken together, biological function distribution was similar on both the qualitative and quantitative levels, and proteins with similar abundance are important in providing basic nutrition and protection for infants, whereas the significantly different proteins may be important for the healthy development of infants from different locations and ethnicities.

    Genetic Variants in Group-Specific Component (GC) Gene Are Associated with Breast Cancer Risk among Chinese Women
    Chen, Fuxing ; Zhu, Zheng ; Duijnhoven, Fränzel J.B. Van; Dong, Meihua ; Qian, Yun ; Yu, Hao ; Yang, Jie ; Cui, Lan ; Han, Renqiang ; Su, Jian ; Du, Wencong ; Zhou, Jinyi ; Wu, Ming - \ 2019
    BioMed Research International 2019 (2019). - ISSN 2314-6133

    The group-specific component (GC) gene, one of the vitamin D pathway genes, seems to play an important role in cancer development. A population-based breast cancer study including 818 cases and 935 controls in a Chinese population was carried out to evaluate the potential associations of four polymorphisms (rs16847024, rs17467825, rs2298850, and rs3755967) in the GC gene with risk of breast cancer. We detected three SNPs with statistically significant effects on breast cancer development after adjusting for age, menopausal status, body mass index (BMI), family history of breast cancer, income, waist circumference, and education (rs17467825: adjusted OR = 0.80, 95% CI = 0.65-0.99; rs2298850: adjusted OR = 0.80, 95% CI = 0.65-0.98; rs3755967: adjusted OR = 0.80, 95% CI = 0.65-0.98). Stratified analysis found that when an individual had a waist circumference <80 cm, rs17467825, rs2298850, and rs3755967 could markedly reduce the risk of breast cancer. Significant interactions between polymorphisms of rs2298850 and rs3755967 and waist circumference were also observed for breast cancer risk. Combined analysis revealed a significant association among the allele numbers of protective effects with decreased breast cancer risk (Ptrend=0.043). These results indicated that, in the GC gene, genetic mutations might be related to breast cancer susceptibility in Chinese women.

    Gibberellin Promotes Sweetpotato Root Vascular Lignification and Reduces Storage-Root Formation
    Singh, Vikram ; Sergeeva, L. ; Ligterink, W. ; Aloni, Roni ; Zemach, Hanita ; Doron-Faigenboim, Adi ; Yang, Jun ; Zhang, Peng ; Shabtai, Sara ; Firon, Nurit - \ 2019
    Frontiers in Plant Science 10 (2019). - ISSN 1664-462X
    gene expression, gibberellin, lignin, root anatomy, storage-root, sweetpotato, xylem, yield
    Sweet potato yield depends on a change in the developmental fate of adventitious roots into storage-roots. The mechanisms underlying this developmental switch are still unclear. We examined the hypothesis claiming that regulation of root lignification determines storage root formation. We show that application of the plant hormone gibberellin increased stem elongation and root gibberellin levels, while having inhibitory effects on root system parameters, decreasing lateral root number and length, and significantly reducing storage root number and diameter. Furthermore, gibberellin enhanced root xylem development,caused increased lignin deposition, and, at the same time, decreased root starch accumulation. In accordance with these developmental effects, gibberellin application upregulated expression levels of sweet potato orthologues of Arabidopsis vascular development regulators (IbNA075, IbVND7, and IbSND2) and of lignin biosynthesis genes(IbPAL, IbC4H, Ib4CL, IbCCoAOMT, and IbCAD), while down regulating starch biosynthesis genes (IbAGPase and IbGBSS) in the roots. Interestingly, gibberellin down regulated root expression levels of orthologues of the Arabidopsis BREVIPEDICELLUS transcription factor (IbKN2 and IbKN3), regulator of meristem maintenance. The results substantiate our hypothesis and mark gibberellin as an important player in regulation of sweet potato root development, suggesting that increased fiber formation and lignification inhibit storage root formation and yield. Taken together, our findings provide insight into the mechanisms underlying sweet potato storage-root formation and provide a valuable database of genes for further research.
    Electrochemical phosphorus removal and recovery
    Lei, Yang - \ 2019
    Wageningen University. Promotor(en): C.J.N. Buisman, co-promotor(en): R.D. van der Weijden; M. Saakes. - Wageningen : Wageningen University - ISBN 9789463950473 - 247

    Phosphorus removal and recovery from waste streams is essential for closing the loop of phosphorus. In this thesis, we propose an innovative membrane-free electrochemical system, which can potentially achieve the removal and recovery of phosphorus from wastewaters in the form of recoverable calcium phosphate. We studied the fundamentals, efficiency, and energy consumption of electrochemical phosphorus removal and recovery in both synthetic solutions and real wastewaters. We showed electrochemically induced calcium phosphate precipitation depends on the local pH. We demonstrated the feasibility of electrochemical phosphorus recovery for both orthophosphate and no-orthophosphates. We concluded that a low current density and high phosphorus concentration enables energy-efficient phosphorus recovery. To our knowledge, this is the first systematic study focusing on electrochemical phosphorus removal and recovery. The insights we have gained from this thesis present therefore a significant step towards the potential application of this new technique.

    HealthyLivestock: a Chinese - European project to reduce the need for antimicrobials.
    Spoolder, H.A.M. ; Yang, S.M. ; Ayongxi, A. ; Vaarten, J. ; Kemp, B. - \ 2019
    In: ISAE 2019 Proceedings of the annual meeting of the International Society for Applied Ethology. - Wageningen : Wageningen Academic Publishers - ISBN 9789086863389 - p. 384 - 384.
    Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality: An Individual-Level Pooled Analysis of 30 Cohort Studies
    Marklund, Matti ; Wu, Jason H.Y. ; Imamura, Fumiaki ; Gobbo, Liana C. Del; Fretts, Amanda ; Goede, Janette De; Shi, Peilin ; Tintle, Nathan ; Wennberg, Maria ; Aslibekyan, Stella ; Chen, Tzu An ; Oliveira Otto, Marcia C. De; Hirakawa, Yoichiro ; Eriksen, Helle Højmark ; Kröger, Janine ; Laguzzi, Federica ; Lankinen, Maria ; Murphy, Rachel A. ; Prem, Kiesha ; Samieri, Cécilia ; Virtanen, Jyrki ; Wood, Alexis C. ; Wong, Kerry ; Yang, Wei Sin ; Zhou, Xia ; Baylin, Ana ; Boer, Jolanda M.A. ; Brouwer, Ingeborg A. ; Campos, Hannia ; Chaves, Paulo H.M. ; Chien, Kuo Liong ; Faire, Ulf De; Djoussé, Luc ; Eiriksdottir, Gudny ; El-Abbadi, Naglaa ; Forouhi, Nita G. ; Michael Gaziano, J. ; Geleijnse, Johanna M. ; Gigante, Bruna ; Giles, Graham ; Guallar, Eliseo ; Gudnason, Vilmundur ; Harris, Tamara ; Harris, William S. ; Helmer, Catherine ; Hellenius, Mai Lis ; Hodge, Allison ; Hu, Frank B. ; Jacques, Paul F. ; Jansson, Jan Håkan ; Kalsbeek, Anya ; Khaw, Kay Tee ; Koh, Woon Puay ; Laakso, Markku ; Leander, Karin ; Lin, Hung Ju ; Lind, Lars ; Luben, Robert ; Luo, Juhua ; Mcknight, Barbara ; Mursu, Jaakko ; Ninomiya, Toshiharu ; Overvad, Kim ; Psaty, Bruce M. ; Rimm, Eric ; Schulze, Matthias B. ; Siscovick, David ; Skjelbo Nielsen, Michael ; Smith, Albert V. ; Steffen, Brian T. ; Steffen, Lyn ; Sun, Qi ; Sundström, Johan ; Tsai, Michael Y. ; Tunstall-Pedoe, Hugh ; Uusitupa, Matti I.J. ; Dam, Rob M. van; Veenstra, Jenna ; Verschuren, Monique ; Wareham, Nick ; Willett, Walter ; Woodward, Mark ; Yuan, Jian Min ; Micha, Renata ; Lemaitre, Rozenn N. ; Mozaffarian, Dariush ; Risérus, Ulf - \ 2019
    Circulation 139 (2019)21. - ISSN 0009-7322 - p. 2422 - 2436.
    arachidonic acid - biomarkers - cardiovascular diseases - diet - epidemiology - linoleic acid - primary prevention

    Background: Global dietary recommendations for and cardiovascular effects of linoleic acid, the major dietary omega-6 fatty acid, and its major metabolite, arachidonic acid, remain controversial. To address this uncertainty and inform international recommendations, we evaluated how in vivo circulating and tissue levels of linoleic acid (LA) and arachidonic acid (AA) relate to incident cardiovascular disease (CVD) across multiple international studies. Methods: We performed harmonized, de novo, individual-level analyses in a global consortium of 30 prospective observational studies from 13 countries. Multivariable-adjusted associations of circulating and adipose tissue LA and AA biomarkers with incident total CVD and subtypes (coronary heart disease, ischemic stroke, cardiovascular mortality) were investigated according to a prespecified analytic plan. Levels of LA and AA, measured as the percentage of total fatty acids, were evaluated linearly according to their interquintile range (ie, the range between the midpoint of the first and fifth quintiles), and categorically by quintiles. Study-specific results were pooled using inverse-variance-weighted meta-analysis. Heterogeneity was explored by age, sex, race, diabetes mellitus, statin use, aspirin use, omega-3 levels, and fatty acid desaturase 1 genotype (when available). Results: In 30 prospective studies with medians of follow-up ranging 2.5 to 31.9 years, 15 198 incident cardiovascular events occurred among 68 659 participants. Higher levels of LA were significantly associated with lower risks of total CVD, cardiovascular mortality, and ischemic stroke, with hazard ratios per interquintile range of 0.93 (95% CI, 0.88-0.99), 0.78 (0.70-0.85), and 0.88 (0.79-0.98), respectively, and nonsignificantly with lower coronary heart disease risk (0.94; 0.88-1.00). Relationships were similar for LA evaluated across quintiles. AA levels were not associated with higher risk of cardiovascular outcomes; in a comparison of extreme quintiles, higher levels were associated with lower risk of total CVD (0.92; 0.86-0.99). No consistent heterogeneity by population subgroups was identified in the observed relationships. Conclusions: In pooled global analyses, higher in vivo circulating and tissue levels of LA and possibly AA were associated with lower risk of major cardiovascular events. These results support a favorable role for LA in CVD prevention.

    CCDC 1896022: Experimental Crystal Structure Determination
    Demay-Drouhard, Paul ; Du, Ke ; Samanta, Kushal ; Wan, Xintong ; Yang, Weiwei ; Srinivasan, Rajavel ; Sue, Andrew C.H. ; Zuilhof, Han - \ 2019
    Tianjin University
    BODCEF : 26,28,30,32,34-pentamethoxyhexacyclo[21.2.2.23,6.28,11.213,16.218,21]pentatriaconta-1(25),3,5,8,10,13,15,18,20,23,26,28,30,32,34-pentadecaene-4,9,14,19,24-pentayl pentaphenyl pentakis(sulfate) unknown solvate Space Group: P b c a (61), Cell: a 21.8726(7)Å b 21.2333(5)Å c 36.9318(7)Å, α 90° β 90° γ 90°
    CCDC 1896023: Experimental Crystal Structure Determination
    Demay-Drouhard, Paul ; Du, Ke ; Samanta, Kushal ; Wan, Xintong ; Yang, Weiwei ; Srinivasan, Rajavel ; Sue, Andrew C.H. ; Zuilhof, Han - \ 2019
    Tianjin University
    BODCIJ : 4,9,14,19,24-pentamethoxy-26,28,30,32,34-pentaphenylhexacyclo[21.2.2.23,6.28,11.213,16.218,21]pentatriaconta-1(25),3,5,8,10,13,15,18,20,23,26,28,30,32,34-pentadecaene unknown solvate Space Group: P c a 21 (29), Cell: a 25.0851(7)Å b 20.5287(6)Å c 22.3174(4)Å, α 90° β 90° γ 90°
    CCDC 1896026: Experimental Crystal Structure Determination
    Demay-Drouhard, Paul ; Du, Ke ; Samanta, Kushal ; Wan, Xintong ; Yang, Weiwei ; Srinivasan, Rajavel ; Sue, Andrew C.H. ; Zuilhof, Han - \ 2019
    Tianjin University
    SEFCUE01 : 26,28,30,32,34-pentamethoxyhexacyclo[21.2.2.23,6.28,11.213,16.218,21]pentatriaconta-1(25),3,5,8,10,13,15,18,20,23,26,28,30,32,34-pentadecaene-4,9,14,19,24-pentol ethyl acetate solvate Space Group: P 21/n (14), Cell: a 12.6861(3)Å b 20.9541(3)Å c 14.5929(3)Å, α 90° β 98.618(2)° γ 90°
    CCDC 1896021: Experimental Crystal Structure Determination
    Demay-Drouhard, Paul ; Du, Ke ; Samanta, Kushal ; Wan, Xintong ; Yang, Weiwei ; Srinivasan, Rajavel ; Sue, Andrew C.H. ; Zuilhof, Han - \ 2019
    Tianjin University
    BODHUA : 26,28,30,32,34-pentaphenylhexacyclo[21.2.2.23,6.28,11.213,16.218,21]pentatriaconta-1(25),3,5,8,10,13,15,18,20,23,26,28,30,32,34-pentadecaene-4,9,14,19,24-pentol unknown solvate Space Group: P 21/c (14), Cell: a 38.6190(3)Å b 14.06760(10)Å c 20.4413(2)Å, α 90° β 92.9010(10)° γ 90°
    CCDC 1896019: Experimental Crystal Structure Determination
    Demay-Drouhard, Paul ; Du, Ke ; Samanta, Kushal ; Wan, Xintong ; Yang, Weiwei ; Srinivasan, Rajavel ; Sue, Andrew C.H. ; Zuilhof, Han - \ 2019
    Tianjin University
    BODHOU : 4,9,14,19,24-pentakis([1,1'-biphenyl]-4-yl)-26,28,30,32,34-pentamethoxyhexacyclo[21.2.2.23,6.28,11.213,16.218,21]pentatriaconta-1(25),3,5,8,10,13,15,18,20,23,26,28,30,32,34-pentadecaene unknown solvate Space Group: P 1 (2), Cell: a 12.0675(3)Å b 16.8057(8)Å c 23.3087(6)Å, α 86.033(3)° β 82.617(2)° γ 75.893(3)°
    Food allergy : From molecular mechanisms to control strategies
    Fu, Linglin ; Cherayil, Bobby J. ; Shi, Haining ; Wang, Yanbo ; Zhu, Yang - \ 2019
    Springer Nature Singapore - ISBN 9789811369278 - 214 p.

    This book addresses the molecular mechanisms of food allergies and related control strategies. To do so, it covers a broad range of topics, including: the basic immunology of food allergies, including crosstalk between gut mucosal immunity and allergens; types of food allergens, structure of food allergen epitopes and cross-reactivity; detection and quantification methods for food allergens; in vitro and in vivo models for evaluating allergenicity; novel food processing methods for the development of hypoallergenic foods; bioactive natural compounds and functional foods for alleviating allergic reactions; modulation of the microbiota in food allergies and use of probiotics in allergic response regulation; and risk assessment and control strategies for food allergens. The information provided will enable food scientists/specialists to design safer and more functional food products, and will help regulatory agencies identify and label food allergens (and thus help consumers avoid allergic reactions). It will help clinicians and public health investigators prevent or treat outbreaks of food allergies, and will provide food producers and processors, as well as government inspectors, with valuable insights into evaluation, risk assessment and control strategies for allergens. Lastly, it will benefit upper-level undergraduate and graduate students in food science and safety, public health, medicine, nutrition and related fields.

    CCDC 1904736: Experimental Crystal Structure Determination
    Demay-Drouhard, Paul ; Du, Ke ; Samanta, Kushal ; Wan, Xintong ; Yang, Weiwei ; Srinivasan, Rajavel ; Sue, Andrew C.H. ; Zuilhof, Han - \ 2019
    Tianjin University
    BODJAI : 2,2',2'',2''',2''''-{[26,28,30,32,34-pentamethoxyhexacyclo[21.2.2.23,6.28,11.213,16.218,21]pentatriaconta-1(25),3,5,8,10,13,15,18,20,23,26,28,30,32,34-pentadecaene-4,9,14,19,24-pentayl]pentakis(oxy)}penta-acetonitrile unknown solvate Space Group: P 1 (2), Cell: a 12.1203(2)Å b 13.2138(2)Å c 17.0854(3)Å, α 89.7350(10)° β 81.9010(10)° γ 75.3150(10)°
    CCDC 1904933: Experimental Crystal Structure Determination
    Demay-Drouhard, Paul ; Du, Ke ; Samanta, Kushal ; Wan, Xintong ; Yang, Weiwei ; Srinivasan, Rajavel ; Sue, Andrew C.H. ; Zuilhof, Han - \ 2019
    Tianjin University
    BODJEM : 26,28,30,32,34-pentakis([1,1'-biphenyl]-4-yl)hexacyclo[21.2.2.23,6.28,11.213,16.218,21]pentatriaconta-1(25),3,5,8,10,13,15,18,20,23,26,28,30,32,34-pentadecaene-4,9,14,19,24-pentol acetone unknown solvate Space Group: P 1 (2), Cell: a 16.63130(10)Å b 19.13610(10)Å c 25.19360(10)Å, α 94.5000(10)° β 96.8560(10)° γ 98.2260(10)° BODJEM : 26,28,30,32,34-pentakis([1,1'-biphenyl]-4-yl)hexacyclo[21.2.2.23,6.28,11.213,16.218,21]pentatriaconta-1(25),3,5,8,10,13,15,18,20,23,26,28,30,32,34-pentadecaene-4,9,14,19,24-pentol acetone unknown solvate Space Group: P 1 (2), Cell: a 16.63130(10)Å b 19.13610(10)Å c 25.19360(10)Å, α 94.5000(10)° β 96.8560(10)° γ 98.2260(10)°
    Self-assembled egg yolk peptide micellar nanoparticles as a versatile emulsifier for food-grade oil-in-water pickering nanoemulsions
    Du, Zhenya ; Li, Qing ; Li, Junguang ; Su, Enyi ; Liu, Xiao ; Wan, Zhili ; Yang, Xiaoquan - \ 2019
    Journal of Agricultural and Food Chemistry 67 (2019)42. - ISSN 0021-8561 - p. 11728 - 11740.
    Egg yolk peptides - Food-grade pickering nanoemulsions - Nanomicelles - Particulate emulsifiers - Self-assembly

    Pickering emulsions stabilized by food-grade particles have garnered increasing interest in recent years due to their promising applications in bio-related fields such as foods, cosmetics, and drug delivery. However, it remains a big challenge to formulate nanoscale Pickering emulsions from these edible particles. Herein, we show that a new Pickering nanoemulsion that is stable, monodisperse and controllable can be produced by employing the spherical micellar nanoparticles (EYPN), self- A ssembled from the food-derived, amphiphilic egg yolk peptides, as an edible particulate emulsifier. As natural peptide-based nanoparticles, the EYPN have small particle size, intermediate wettability, high surface activity, and deformability at the interface, which enable the formation of stable Pickering nanodroplets with a mean DLS diameter below 200 nm and a PDI below 0.2. This nanoparticle system is versatile for different oil phases with various polarities and demonstrates easy control of nanodroplet size through tuning the microfluidization conditions and/or the ratio of EYPN to oil phase. These food-grade Pickering nanoemulsions, obtained when the internal phase is an edible vegetable oil, have superior stability during long-term storage and spray-drying, based on the irreversible and compact adsorption of intact EYPN at the nanodroplet surface. This is the first finding of a natural edible nano-Pickering emulsifier that can be used solely to make stable food Pickering nanoemulsions with the qualities of simplicity, versatility, low cost, and the possibility of controllable and mass production, which make them viable for many sustainable applications.

    Optimum leaf defoliation: A new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system
    Raza, Muhammad Ali ; Feng, Ling Yang ; Werf, Wopke van der; Iqbal, Nasir ; Khan, Imran ; Hassan, Muhammad Jawad ; Ansar, Muhammad ; Chen, Yuan Kai ; Xi, Zeng Jin ; Shi, Jian Yi ; Ahmed, Mukhtar ; Yang, Feng ; Yang, Wenyu - \ 2019
    Field Crops Research 244 (2019). - ISSN 0378-4290
    Defoliation - Economics - LER - Nutrient - Relay-intercropping

    Upper canopy leaves of maize decrease the light-transmittance at middle-strata-leaves of maize and soybean canopy in maize-soybean relay-intercropping systems (MS). This affects the uptake of nutrients and distribution patterns in various plant organs of intercrop species in MS. Judicious defoliation of maize plants in MS could help to alleviate this problem and improve nutrient uptake and intercrop yields. In a two-year field experiment with MS, including the measurements of biomass production, nutrients uptake, and distribution at the organ level, and grain yields of intercrop species, maize plants were subjected to four-leaf defoliation treatments to improve the light-transmittance of maize and soybean plants. Defoliation of the topmost two-leaves (T2), four-leaves (T4), six-leaves (T6) was compared to no defoliation (T0). Compared to T0, treatment T2 improved the uptake of nitrogen (N), phosphorus (P), and potassium (K) in each plant part of maize by 23, 12, and 11% (grain), 22, 19, and 13% (straw), and 28, 14, and 18% (root), respectively. Defoliation also enhanced the uptake of N, P, and K in each plant part of soybean by 5, 5, and 10% (grain), 10, 17, and 13% (straw), and 14, 11, and 11% (root), respectively. The improved nutrient uptake in T2 increased the total biomass and its distribution in the root, straw, and grain of soybean and maize by 15 and 13%, and 21 and 15%, 20 and 14%, 7 and 10%, respectively compared to T0. On average, over two years, under T2, relay-cropped maize obtained 107% of the sole-yield, and relay-cropped soybean obtained 65% of the sole-yield. The T2 defoliation treatment also achieved the highest land equivalent ratio of 1.69 and 1.77, with a net profit of 1301.6 $ ha−1 and 1293.4 $ ha−1 in 2017 and 2018, respectively. Following the optimum defoliation treatment of maize in maize-soybean intercrops, i.e., defoliation of the topmost two-leaves, the nutrient uptake can be increased, and the nutrient partitioning over plant organs be better balanced. Optimum defoliation, therefore, enhances the productivity of maize-soybean intercropping systems.

    Cruise report of multidisciplinary ecosystem survey in the eastern Indian sector of the Antarctic (CCAMLR Division 58.4.1) with a focus on Antarctic krill during 2018/19 season by the Japanese survey vessel, Kaiyo-maru.
    Murase, H. ; Abe, K. ; Matsukura, R. ; Sasaki, H. ; Driscoll, R. ; Driscoll, S. ; Schaafsma, F.L. ; Regteren, M. van; Yang, Q. ; Ohshima, H. ; Ohshima, K. ; Sugioka, R. ; Tong, J. ; Yamamoto, N. ; Doiguchi, H. ; Briggs, E. ; Doi, K. ; Hirano, D. ; Katsumata, K. ; Kiuchi, M. ; Ko, Y. ; Nomura, D. ; Orui, M. ; Sato, H. ; Toyoda, S. ; Yamazaki, K. ; Ishihara, T. ; Hamabe, K. ; Kumagai, S. ; Miyashita, T. ; Yamada, N. ; Koyama, Y. ; Sasaki, H. - \ 2019
    Convention for the Conservation of Antarctic Marine Living Resources CCAMLR
    Detecting Building Changes between Airborne Laser Scanning and Photogrammetric Data
    Zhang, Zhenchao ; Vosselman, George ; Gerke, Markus ; Persello, Claudio ; Tuia, Devis ; Yang, Michael Ying - \ 2019
    Remote Sensing 11 (2019)20. - ISSN 2072-4292 - 17 p.
    Detecting topographic changes in an urban environment and keeping city-level point clouds up-to-date are important tasks for urban planning and monitoring. In practice, remote sensing data are often available only in different modalities for two epochs. Change detection between airborne laser scanning data and photogrammetric data is challenging due to the multi-modality of the input data and dense matching errors. This paper proposes a method to detect building changes between multimodal acquisitions. The multimodal inputs are converted and fed into a light-weighted pseudo-Siamese convolutional neural network (PSI-CNN) for change detection. Different network configurations and fusion strategies are compared. Our experiments on a large urban data set demonstrate the effectiveness of the proposed method. Our change map achieves a recall rate of 86.17%, a precision rate of 68.16%, and an F1-score of 76.13%. The comparison between Siamese architecture and feed-forward architecture brings many interesting findings and suggestions to the design of networks for multimodal data processing.
    Joint toxicity of binary complexes of cartap, spirotetramat, copper, and cadmium to Vibrio fischeri
    Yin, Hong Yang ; Zhao, Yuan ; Zheng, Yi ; Bao, Cong ; Huang, Xin Xin ; Ding, Ying Jie ; Cai, Qiang - \ 2019
    Journal of Agro-Environment Science 38 (2019)9. - ISSN 1672-2043 - p. 2080 - 2085.
    Acute toxicity - Heavy metals - Joint toxicity evaluation - Pesticide - Vibrio fischeri

    In view of the widespread use of cartap, spirotetramat, and common heavy metal pollutants, such as copper and cadmium in agri? cultural activities, the joint toxicity of their complexes on Vibrio fischeri was studied. The EC50(median effective concentration)was calcu? lated with the acute toxic effects of binary complex contamination on Vibrio fischeri employing different exposure times. The Mixtures Toxic? ity Index method was employed to evaluate the joint toxicity. The acute toxicity experiments showed that the EC50 of copper, cadmium, car? tap, and spirotetramat on Vibrio fischeri at 15 mins was 0.53, 0.74, 79.06 mg·L-1, and 116.67 mg·L-1, respectively. The joint toxicity of car? tap and heavy metals on Vibrio fischeri was mainly additive. When the spirotetramat accounted for a low proportion in the binary mixtures, the joint toxicity was partially additive. The presence of cartap and spirotetramat may slow down the rate of metal ions entering the cell. Therefore, the study of exposure time for joint toxicity on Vibrio fischeri should be extended to 45 mins.

    De novo transcriptome analysis of Viola × wittrockiana exposed to high temperature stress
    Du, Xiaohua ; Zhu, Xiaopei ; Yang, Yaping ; Wang, Yanli ; Arens, Paul ; Liu, Huichao - \ 2019
    PLoS ONE 14 (2019)9. - ISSN 1932-6203

    Around the world, pansies are one of the most popular garden flowers, but they are generally sensitive to high temperatures, and this limits the practicality of planting them during the warmest days of the year. However, a few pansy germplasms with improved heat tolerance have been discovered or bred, but the mechanisms of their heat resistance are not understood. In this study, we investigated the transcript profiles of a heat-tolerant pansy inbred line, DFM16, in response to high temperatures using RNAseq. Approximately 55.48 Gb of nucleotide data were obtained and assembled into 167,576 unigenes with an average length of 959 bp, of which, 5,708 genes were found to be differentially expressed after heat treatments. Real-time qPCR was performed to validate the expression profiles of the selected genes. Nine metabolic pathways were found to be significantly enriched, in the analysis of the differentially expressed genes. Several potentially interesting genes that encoded putative transcription regulators or key components involving heat shock protein (HSP), heat shock transcription factors (HSF), and antioxidants biosynthesis, were identified. These genes were highlighted to indicate their significance in response to heat stress and will be used as candidate genes to improve pansy heat-tolerance in the future.

    Calcium Carbonate Packed Electrochemical Precipitation Column: New Concept of Phosphate Removal and Recovery
    Lei, Yang ; Narsing, Santosh ; Saakes, Michel ; Weijden, Renata D. Van Der; Buisman, Cees J.N. - \ 2019
    Environmental Science and Technology 53 (2019)18. - ISSN 0013-936X

    Phosphorus (P) is a vital micronutrient element for all life forms. Typically, P can be extracted from phosphate rock. Unfortunately, the phosphate rock is a nonrenewable resource with a limited reserve on the earth. High levels of P discharged to water bodies lead to eutrophication. Therefore, P needs to be removed and is preferably recovered as an additional P source. A possible way to achieve this goal is by electrochemically induced phosphate precipitation with coexisting calcium ions. Here, we report a new concept of phosphate removal and recovery, namely a CaCO3 packed electrochemical precipitation column, which achieved improved removal efficiency, shortened hydraulic retention time, and substantially enhanced stability, compared with our previous electrochemical system. The concept is based on the introduction of CaCO3 particles, which facilitates calcium phosphate precipitation by buffering the formed H+ at the anode, releases Ca2+, acts as seeds, and establishes a high pH environment in the bulk solution in addition to that in the vicinity of the cathode. It was found that the applied current, the CaCO3 particle size, and the feed rate affect the removal of phosphate. Under optimized conditions (particle size, <0.5 mm; feed rate, 0.4 L/d; current, 5 mA), in a continuous flow system, the CaCO3 packed electrochemical precipitation column achieved 90 ± 5% removal of phosphate in 40 days and >50% removal over 125 days with little maintenance. The specific energy consumptions of this system lie between 29 and 61 kWh/kg P. The experimental results demonstrate the promising potential of the CaCO3 packed electrochemical precipitation column for P removal and recovery from P-containing streams.

    Maize leaf-removal: A new agronomic approach to increase dry matter, flower number and seed-yield of soybean in maize soybean relay intercropping system
    Raza, Muhammad Ali ; Feng, Ling Yang ; Werf, Wopke van der; Iqbal, Nasir ; Khalid, Muhammad Hayder Bin ; Chen, Yuan Kai ; Wasaya, Allah ; Ahmed, Shoaib ; Ud Din, Atta Mohi ; Khan, Ahsin ; Ahmed, Saeed ; Yang, Feng ; Yang, Wenyu - \ 2019
    Scientific Reports 9 (2019)1. - ISSN 2045-2322 - 1 p.

    Shading conditions adversely affect flower-number and pod-number of soybeans under maize-soybean relay-intercropping (MSR). Here we reveal that leaf-removal from maize-canopy improves the photosynthetically active radiation (PAR) transmittance and dry-matter production (DMP) of soybean (especially during the co-growth phase), and compensates the maize seed-yield loss by considerably increasing soybean seed-yield. In a two-year experiment with MSR, maize-plants were subjected to different leaf-removal treatments to increase the PAR-transmittance of soybean; removal of the topmost two-leaves (R2), four-leaves (R4), six-leaves (R6), with no-removal of leaves (R0). Leaf-removal treatments improved the PAR-transmittance, photosynthetic-rate, and morphological-characteristics of soybean under MSR. At 90 days after sowing, the dry-matter of pods, and seeds was increased by 25%, and 32%, respectively under R6 than R0. Importantly, enhanced PAR-transmittance and DMP under R6 enabled soybean to initiate a greater number of flowers 182.2 plant-1 compared to 142.7 plant-1 under R0, and it also decreased the flower-abscission (by 13%, from 54.9% under R0 to 47.6% under R6). These positive responses increased the pod-number by 49% and seed-number by 28% under R6 than R0. Overall, under R6, relay-intercropped soybean produced 78% of sole-soybean seed-yield, and relay-intercropped maize produced 81% of sole-maize seed-yield and achieved the land equivalent ratio of 1.59.

    Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima)
    Xing, Yu ; Liu, Yang ; Zhang, Qing ; Nie, Xinghua ; Sun, Yamin ; Zhang, Zhiyong ; Li, Huchen ; Fang, Kefeng ; Wang, Guangpeng ; Huang, Hongwen ; Bisseling, Ton ; Cao, Qingqin ; Qin, Ling - \ 2019
    GigaScience 8 (2019)9. - ISSN 2047-217X
    Castanea mollissima - annotation - evolution - genome assembly

    BACKGROUND: The Chinese chestnut (Castanea mollissima) is widely cultivated in China for nut production. This plant also plays an important ecological role in afforestation and ecosystem services. To facilitate and expand the use of C. mollissima for breeding and its genetic improvement, we report here the whole-genome sequence of C. mollissima. FINDINGS: We produced a high-quality assembly of the C. mollissima genome using Pacific Biosciences single-molecule sequencing. The final draft genome is ∼785.53 Mb long, with a contig N50 size of 944 kb, and we further annotated 36,479 protein-coding genes in the genome. Phylogenetic analysis showed that C. mollissima diverged from Quercus robur, a member of the Fagaceae family, ∼13.62 million years ago. CONCLUSIONS: The high-quality whole-genome assembly of C. mollissima will be a valuable resource for further genetic improvement and breeding for disease resistance and nut quality.

    Water for maize for pigs for pork: An analysis of inter-provincial trade in China
    Zhuo, La ; Liu, Yilin ; Yang, Hong ; Hoekstra, Arjen Y. ; Liu, Wenfeng ; Cao, Xinchun ; Wang, Mengru ; Wu, Pute - \ 2019
    Water Research 166 (2019). - ISSN 0043-1354
    Maize - Pork - Supply chain - Virtual water trade - Water footprint

    Trade in commodities implies trade in virtual water (VW), which refers to the water that was used to produce the traded goods. Various studies have quantified international or inter-provincial virtual water (VW) flows related to the trade in crops and animal products. Until date, however, no effort has been undertaken to understand how the water embodied in traded feed crops (trade stage TS1) will be transferred further because of trade in animal products (trade stage TS2). This is the first study showing this mechanism, in a case study in China for maize (the major pig feed) and pork (the dominant meat), considering the period 2000–2013. We estimate the annual green and blue water footprints in maize production and then quantify the inter-provincial VW flows related to trade in maize (TS1) and trade in maize embodied in pork (TS2). Results show that in TS1, maize-related VW flowed from the water-scarce North to the water-rich South, with an increase of 40% over the study period (from 43 to 61 billion m3 y−1). In TS2, about 10% of the water embodied in maize exports from North to South China returns in the form of pork, with an increase in the absolute amount of 25% (from 4.8 to 6.1 billion m3 y−1). Considering blue VW flows specifically, we find that North-to-South blue VW flows decreased by 5% in TS1, while South-to-North blue VW flows increased by 23% in TS2.

    A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition
    Zhang, Yue ; Duan, Yu ; Nie, Jiayi ; Yang, Jie ; Ren, Jianhong ; Werf, Wopke van der; Evers, Jochem B. ; Zhang, Jun ; Su, Zhicheng ; Zhang, Lizhen - \ 2019
    Agricultural Water Management 225 (2019). - ISSN 0378-3774
    Daily water use - Land equivalent ratio - Productivity - Water equivalent ratio - Water use efficiency

    Oats (Avena sativa L.) and hairy vetch (Vicia villosa) are well adapted crop species for production in semi-arid environments, such as in Inner Mongolia, China, where due to variable rainfall, farmers do not apply fertilizer. We hypothesized that the use of a mixture of a cereal and a legume could enhance yields under these low input conditions, because integrating an N-fixing legume in the system could mitigate N limitation for the cereal and enhance its growth. A nine-year (2008–2016) field experiment was set up with three treatments: sole oats, sole vetch and oats/vetch strip intercropping. These cropping systems were grown continuously in the same plots, to allow accrual of long-term effects. Yields and water use were quantified in years 7–9 of the experiment (2014 to 2016). With a 50/50 ratio of the area sown to the two species, the intercropped oats had a relative yield of 0.59 and intercropped vetch had a relative yield of 0.45. Oats was the dominant crop characterized by a relative yield per plant of 1.18, compared to a relative yield per plant of vetch of 0.89. However, the land equivalent ratio (LER), expressing the comparative efficiency of land use in intercropping, and the water equivalent ratio (WER), the comparative system level water use efficiency of the intercrop relative to sole crops, were both not significantly different from one. Thus we reject the hypothesis that oat/vetch intercropping increases land productivity and water use efficiency. From differences in results in years with more rainfall and years with less rainfall, we infer that yields of both species are mostly limited by water availability. On average over the three years, the yield disadvantage of vetch was fully compensated by the yield advantage of oats, due to a lack of complementarity for water acquisition. This conclusion can be generalized to the testable prediction that species selection for productive intercropping should focus on achieving complementarity for traits that interact with the factor most constraining productivity, which was rainfall in this particular crop system under the conditions of the study.

    Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system
    Raza, Muhammad Ali ; Feng, Ling Yang ; Werf, Wopke van der; Cai, Gao Ren ; Khalid, Muhammad Hayder Bin ; Iqbal, Nasir ; Hassan, Muhammad Jawad ; Meraj, Tehseen Ahmad ; Naeem, Muhammd ; Khan, Imran ; Ur Rehman, Sana ; Ansar, Muhammad ; Ahmed, Mukhtar ; Yang, Feng ; Yang, Wenyu - \ 2019
    Food and Energy Security 8 (2019)3. - ISSN 2048-3694
    competition - intercropping - land equivalent ratio - radiation use efficiency

    Planting arrangements affect radiation use efficiency (RUE) and competitiveness of intercrop species in intercropping systems. Here, we reveal that narrow-wide-row planting arrangement in maize-soybean relay-intercropping system increases the dry matter and competitiveness of soybean, increased the RUE of maize and soybean, and compensates the yield loss of maize by substantially increasing the yield of soybean. In this field study, maize was planted with soybean in different planting arrangements (P1, 20:180, P2, 40:160; P3, 60:140, and P4, 80:120) of relay intercropping, all the relay-intercropping treatments were compared with sole crops of maize (SM) and soybean (SS). Results showed that P1 improved the total RUE 3.26 g/MJ (maize RUE + soybean RUE) of maize and soybean in relay-intercropping system. Compared to P4, treatment P1 increased the soybean competition ratio (CR) values (by 55%) but reduced the maize CR values (by 29%), which in turn significantly improved the yield of soybean by maintaining the maize yield. Generally, in P1, soybean produced 82% of SS yield, and maize produced 88% of SM yield, and it achieved the land equivalent ratio of 1.7. These results suggest that by maintaining the appropriate planting distances between maize and soybean we can improve the competitiveness and yield of intercrop species in relay-intercropping system.

    Colletotrichum species associated with anthracnose of Pyrus spp. in China
    Fu, M. ; Crous, P.W. ; Bai, Q. ; Zhang, P.F. ; Xiang, J. ; Guo, Y.S. ; Zhao, F.F. ; Yang, M.M. ; Hong, N. ; Xu, W.X. ; Wang, G.P. - \ 2019
    Persoonia 42 (2019). - ISSN 0031-5850 - p. 1 - 35.
    Colletotrichum - Multi-gene phylogeny - Pathogenicity - Pyrus

    Colletotrichum species are plant pathogens, saprobes, and endophytes on a range of economically important hosts. However, the species occurring on pear remain largely unresolved. To determine the morphology, phylogeny and biology of Colletotrichum species associated with Pyrus plants, a total of 295 samples were collected from cultivated pear species (including P. pyrifolia, P. bretschneideri, and P. communis) from seven major pear-cultivation provinces in China. The pear leaves and fruits affected by anthracnose were sampled and subjected to fungus isolation, resulting in a total of 488 Colletotrichum isolates. Phylogenetic analyses based on six loci (ACT, TUB2, CAL, CHS-1, GAPDH, and ITS) coupled with morphology of 90 representative isolates revealed that they belong to 10 known Colletotrichum species, including C. aenigma, C. citricola, C. conoides, C. fioriniae, C. fructicola, C. gloeosporioides, C. karstii, C. plurivorum, C. siamense, C. wuxiense, and two novel species, described here as C. jinshuiense and C. pyrifoliae. Of these, C. fructicola was the most dominant, occurring on P. pyrifolia and P. bretschneideri in all surveyed provinces except in Shandong, where C. siamense was dominant. In contrast, only C. siamense and C. fioriniae were isolated from P. communis, with the former being dominant. In order to prove Koch’s postulates, pathogenicity tests on pear leaves and fruits revealed a broad diversity in pathogenicity and aggressiveness among the species and isolates, of which C. citricola, C. jinshuiense, C. pyrifoliae, and C. conoides appeared to be organ-specific on either leaves or fruits. This study also represents the first reports of C. citricola, C. conoides, C. karstii, C. plurivorum, C. siamense, and C. wuxiense causing anthracnose on pear.

    Interactive effects of microplastics and glyphosate on the dynamics of soil dissolved organic matter in a Chinese loess soil
    Liu, Hongfei ; Yang, Xiaomei ; Liang, Chutao ; Li, Yuanze ; Qiao, Leilei ; Ai, Z. ; Xue, Sha ; Liu, Guobin - \ 2019
    Catena 182 (2019). - ISSN 0341-8162
    Dissolved organic carbon (DOC) - Dissolved organic nitrogen (DON) - Dissolved organic phosphorus (DOP) - Excitation-emission matrix (EEM) - Glyphosate

    The increased use of plastic films and pesticides on agricultural soil leads to the accumulation of plastic debris and pesticide residues in soil. This accumulation has become a serious environmental issue, as it threatens life of earthworms, inhibits the enzyme activities and microbial diversity, and contributes to the loss of soil microbial carbon and nitrogen. However, little information is available regarding the effects of pesticides on soil dissolved organic matter (DOM). It is also unknown how plastic debris, especially small-sized particles called microplastics, influences the effects of pesticides on soil DOM. In this study, we performed a 30-day soil incubation experiment. Three levels of the common herbicide glyphosate were applied to soil: 0 (control, CK), 3.6 kg ha 1 (G1) and 7.2 kg ha 1 (G2). We also tested four levels of glyphosate and microplastics (homopolymer polypropylene powder) co-addition: 3.6 kg ha 1 + 7% (w/w) (M1G1), 3.6 kg ha 1 + 28% (w/w) (M2G1), 7.2 kg ha 1 + 7% (w/w) (M1G2), and 7.2 kg ha 1 + 28% (w/w) (M2G2). Glyphosate addition slightly increased soil fluorescein diacetate hydrolase (FDAse) and phenol oxidase (PO) activities. Although the glyphosate addition significantly promoted the accumulation of dissolved organic phosphorus (DOP) within the first 14 days, the M2 treatment decreased DOP at day 30. M2G1 and M2G2 increased soil FDAse activity and promoted the accumulation of DOC and DOP relative to G1 and G2 respectively while M1G1 and M1G2 benefited DON accumulation. Our results highlighted that the interaction between glyphosate and low microplastics content negatively affected DOC and DOP dynamics, leading to the loss of bioavailable C and P loss. The interaction between glyphosate and high content microplastics negatively affected DON compared with glyphosate addition, possibly decreasing DON.

    Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
    Bolyen, Evan ; Rideout, Jai Ram ; Dillon, Matthew R. ; Bokulich, Nicholas A. ; Abnet, Christian C. ; Al-Ghalith, Gabriel A. ; Alexander, Harriet ; Alm, Eric J. ; Arumugam, Manimozhiyan ; Asnicar, Francesco ; Bai, Yang ; Bisanz, Jordan E. ; Bittinger, Kyle ; Brejnrod, Asker ; Brislawn, Colin J. ; Brown, C.T. ; Callahan, Benjamin J. ; Caraballo-Rodríguez, Andrés Mauricio ; Chase, John ; Cope, Emily K. ; Silva, Ricardo Da; Diener, Christian ; Dorrestein, Pieter C. ; Douglas, Gavin M. ; Durall, Daniel M. ; Duvallet, Claire ; Edwardson, Christian F. ; Ernst, Madeleine ; Estaki, Mehrbod ; Fouquier, Jennifer ; Gauglitz, Julia M. ; Gibbons, Sean M. ; Gibson, Deanna L. ; Gonzalez, Antonio ; Gorlick, Kestrel ; Guo, Jiarong ; Hillmann, Benjamin ; Holmes, Susan ; Holste, Hannes ; Huttenhower, Curtis ; Huttley, Gavin A. ; Janssen, Stefan ; Jarmusch, Alan K. ; Jiang, Lingjing ; Kaehler, Benjamin D. ; Kang, Kyo Bin ; Keefe, Christopher R. ; Keim, Paul ; Kelley, Scott T. ; Knights, Dan ; Koester, Irina ; Kosciolek, Tomasz ; Kreps, Jorden ; Langille, Morgan G.I. ; Lee, Joslynn ; Ley, Ruth ; Liu, Yong Xin ; Loftfield, Erikka ; Lozupone, Catherine ; Maher, Massoud ; Marotz, Clarisse ; Martin, Bryan D. ; McDonald, Daniel ; McIver, Lauren J. ; Melnik, Alexey V. ; Metcalf, Jessica L. ; Morgan, Sydney C. ; Morton, Jamie T. ; Naimey, Ahmad Turan ; Navas-Molina, Jose A. ; Nothias, Louis Felix ; Orchanian, Stephanie B. ; Pearson, Talima ; Peoples, Samuel L. ; Petras, Daniel ; Preuss, Mary Lai ; Pruesse, Elmar ; Rasmussen, Lasse Buur ; Rivers, Adam ; Robeson, Michael S. ; Rosenthal, Patrick ; Segata, Nicola ; Shaffer, Michael ; Shiffer, Arron ; Sinha, Rashmi ; Song, Se Jin ; Spear, John R. ; Swafford, Austin D. ; Thompson, Luke R. ; Torres, Pedro J. ; Trinh, Pauline ; Tripathi, Anupriya ; Turnbaugh, Peter J. ; Ul-Hasan, Sabah ; Hooft, Justin J.J. van der; Vargas, Fernando ; Vázquez-Baeza, Yoshiki ; Vogtmann, Emily ; Hippel, Max von; Walters, William ; Wan, Yunhu ; Wang, Mingxun ; Warren, Jonathan ; Weber, Kyle C. ; Williamson, Charles H.D. ; Willis, Amy D. ; Xu, Zhenjiang Zech ; Zaneveld, Jesse R. ; Zhang, Yilong ; Zhu, Qiyun ; Knight, Rob ; Caporaso, J.G. - \ 2019
    Nature Biotechnology (2019). - ISSN 1087-0156

    In the version of this article initially published, some reference citations were incorrect. The three references to Jupyter Notebooks should have cited Kluyver et al. instead of Gonzalez et al. The reference to Qiita should have cited Gonzalez et al. instead of Schloss et al. The reference to mothur should have cited Schloss et al. instead of McMurdie & Holmes. The reference to phyloseq should have cited McMurdie & Holmes instead of Huber et al. The reference to Bioconductor should have cited Huber et al. instead of Franzosa et al. And the reference to the biobakery suite should have cited Franzosa et al. instead of Kluyver et al. The errors have been corrected in the HTML and PDF versions of the article.

    Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition
    Fleischer, Katrin ; Rammig, Anja ; Kauwe, Martin G. De; Walker, Anthony P. ; Domingues, Tomas F. ; Fuchslueger, Lucia ; Garcia, Sabrina ; Goll, Daniel S. ; Grandis, Adriana ; Jiang, Mingkai ; Haverd, Vanessa ; Hofhansl, Florian ; Holm, Jennifer A. ; Kruijt, Bart ; Leung, Felix ; Medlyn, Belinda E. ; Mercado, Lina M. ; Norby, Richard J. ; Pak, Bernard ; Randow, Celso von; Quesada, Carlos A. ; Schaap, Karst J. ; Valverde-Barrantes, Oscar J. ; Wang, Ying Ping ; Yang, Xiaojuan ; Zaehle, Sönke ; Zhu, Qing ; Lapola, David M. - \ 2019
    Nature Geoscience 12 (2019). - ISSN 1752-0894 - p. 736 - 741.

    Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, primarily owing to the rising atmospheric carbon dioxide (CO2) concentration. Soil phosphorus impoverishment in parts of the Amazon basin largely controls its functioning, but the role of phosphorus availability has not been considered in global model ensembles—for example, during the Fifth Climate Model Intercomparison Project. Here we simulate the planned free-air CO2 enrichment experiment AmazonFACE with an ensemble of 14 terrestrial ecosystem models. We show that phosphorus availability reduces the projected CO2-induced biomass carbon growth by about 50% to 79 ± 63 g C m−2 yr−1 over 15 years compared to estimates from carbon and carbon–nitrogen models. Our results suggest that the resilience of the region to climate change may be much less than previously assumed. Variation in the biomass carbon response among the phosphorus-enabled models is considerable, ranging from 5 to 140 g C m−2 yr−1, owing to the contrasting plant phosphorus use and acquisition strategies considered among the models. The Amazon forest response thus depends on the interactions and relative contributions of the phosphorus acquisition and use strategies across individuals, and to what extent these processes can be upregulated under elevated CO2.

    Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
    Bolyen, Evan ; Rideout, Jai Ram ; Dillon, Matthew R. ; Bokulich, Nicholas A. ; Abnet, Christian C. ; Al-Ghalith, Gabriel A. ; Alexander, Harriet ; Alm, Eric J. ; Arumugam, Manimozhiyan ; Asnicar, Francesco ; Bai, Yang ; Bisanz, Jordan E. ; Bittinger, Kyle ; Brejnrod, Asker ; Brislawn, Colin J. ; Brown, Titus C. ; Callahan, Benjamin J. ; Caraballo-Rodríguez, Andrés Mauricio ; Chase, John ; Cope, Emily K. ; Silva, Ricardo da; Diener, Christian ; Dorrestein, Pieter C. ; Douglas, Gavin M. ; Durall, Daniel M. ; Duvallet, Claire ; Edwardson, Christian F. ; Ernst, Madeleine ; Estaki, Mehrbod ; Fouquier, Jennifer ; Gauglitz, Julia M. ; Gibbons, Sean M. ; Gibson, Deanna L. ; Gonzalez, Antonio ; Gorlick, Kestrel ; Guo, Jiarong ; Hillmann, Benjamin ; Holmes, Susan ; Holste, Hannes ; Huttenhower, Curtis ; Huttley, Gavin A. ; Janssen, Stefan ; Jarmusch, Alan K. ; Jiang, Lingjing ; Kaehler, Benjamin D. ; Kang, Kyo Bin ; Keefe, Christopher R. ; Keim, Paul ; Kelley, Scott T. ; Knights, Dan ; Koester, Irina ; Kosciolek, Tomasz ; Kreps, Jorden ; Langille, Morgan G.I. ; Lee, Joslynn ; Ley, Ruth ; Liu, Yong Xin ; Loftfield, Erikka ; Lozupone, Catherine ; Maher, Massoud ; Marotz, Clarisse ; Martin, Bryan D. ; McDonald, Daniel ; McIver, Lauren J. ; Melnik, Alexey V. ; Metcalf, Jessica L. ; Morgan, Sydney C. ; Morton, Jamie T. ; Naimey, Ahmad Turan ; Navas-Molina, Jose A. ; Nothias, Louis Felix ; Orchanian, Stephanie B. ; Pearson, Talima ; Peoples, Samuel L. ; Petras, Daniel ; Preuss, Mary Lai ; Pruesse, Elmar ; Rasmussen, Lasse Buur ; Rivers, Adam ; Robeson, Michael S. ; Rosenthal, Patrick ; Segata, Nicola ; Shaffer, Michael ; Shiffer, Arron ; Sinha, Rashmi ; Song, Se Jin ; Spear, John R. ; Swafford, Austin D. ; Thompson, Luke R. ; Torres, Pedro J. ; Trinh, Pauline ; Tripathi, Anupriya ; Turnbaugh, Peter J. ; Ul-Hasan, Sabah ; Hooft, Justin J.J. van der; Vargas, Fernando ; Vázquez-Baeza, Yoshiki ; Vogtmann, Emily ; Hippel, Max von; Walters, William ; Wan, Yunhu ; Wang, Mingxun ; Warren, Jonathan ; Weber, Kyle C. ; Williamson, Charles H.D. ; Willis, Amy D. ; Xu, Zhenjiang Zech ; Zaneveld, Jesse R. ; Zhang, Yilong ; Zhu, Qiyun ; Knight, Rob ; Caporaso, J.G. - \ 2019
    Nature Biotechnology 37 (2019)8. - ISSN 1087-0156 - p. 852 - 857.
    Predicting hydrological impacts of the Yangtze-to-Huaihe Water Diversion Project on habitat availability for wintering waterbirds at Caizi Lake
    Li, Chunlin ; Li, Haifeng ; Zhang, Yong ; Zha, D. ; Zhao, Binbin ; Yang, Sen ; Zhang, Baowei ; Boer, Willem F. de - \ 2019
    Journal of Environmental Management 249 (2019). - ISSN 0301-4797
    Hydrological regime - Water project - Waterbird conservation - Wetland management - Yangtze

    Quantifying the relationship between hydrological regime and habitat availability is the first step to predict potential impacts of water engineering projects on waterbirds, particularly in periodically flooded wetlands. The proposed Yangtze-to-Huaihe Water Diversion Project (YHWD) cuts through Caizi Lake, which is of international importance for wintering waterbirds. In order to explore the potential impacts of the project on habitat availability for the wintering waterbirds, we first built linear models to fit relationships between land cover patterns and water level dynamics in the lake, and then used generalized linear mixed models to test effects of habitat variables (water area, grassland area and mudflat area) on bird abundances of different functional groups. The avian habitat use differed among guilds, and was correlated with the land cover pattern, which was strongly dependent on seasonal water level fluctuations. Following water recession in autumn, the exposure of riparian habitats was more prominent in the eastern part of the lake, where the channel of the proposed YHWD project is located. This part of the lake is also where we located most of the important bird areas. Compared to the current situation, 54.3% of the grassland and 60.5% of the mudflats are predicted to be lost during winter due to the projected water level rise, resulting in reduced habitat availability for grass foragers, invertebrate eaters and tuber feeders. In order to mitigate potential impacts of the YHWD project, we suggest habitat compensations by construction of artificial habitats, and maintenance of water level regime at the whole lake by restoring similarity in water level fluctuations between Xizi Lake and Caizi Lake.

    Effect of cinnamaldehyde on interfacial rheological properties of proteins adsorbed at O/W interfaces
    Felix Angel, Manuel ; Yang, J. ; Guerrero, A. ; Sagis, L.M.C. - \ 2019
    Food Hydrocolloids 97 (2019). - ISSN 0268-005X
    Dilatational - Lissajous - LAOD - Interfacial shear
    The dynamics of heterogeneous food products such as emulsions can be affected significantly by the interfacial properties of their interfaces. Proteins are widely used to increase the stability of these food products. This work compares the interfacial properties of a model protein (whey protein isolate, WPI) and silkworm pupae (SLW) adsorbed at the O/W interface. A natural aldehyde (cinnamaldehyde, CNM) was used for both protein systems in order to promote protein-protein interactions. Interfacial properties were characterised during protein adsorption and after reaching a quasi-equilibrium state by means of oscillatory and step dilatational, and oscillatory interfacial shear measurements. The results obtained from dilatational and interfacial shear tests showed that the use of CNM resulted in the development of stronger interfaces, with higher values for the dilatational and surface shear storage moduli, and a lower loss tangent. Step-dilatation tests indicated that the addition of CNM also resulted in more homogeneous interfaces. Our results show that CNM addition can enhance the surface properties of SLW, to a level which is close to the properties of un-modified WPI stabilized interfaces.
    Change detection between digital surface models from airborne laser scanning and dense matching using convolutional neural networks
    Zhang, Z. ; Vosselman, G. ; Gerke, M. ; Persello, C. ; Tuia, D. ; Yang, M.Y. - \ 2019
    In: ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands. - ISPRS (ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ) - p. 453 - 460.
    Airborne Laser Scanning - Change Detection - Convolutional Neural Network (CNN) - Dense Image Matching - Digital Surface Model (DSM)

    Airborne photogrammetry and airborne laser scanning are two commonly used technologies used for topographical data acquisition at the city level. Change detection between airborne laser scanning data and photogrammetric data is challenging since the two point clouds show different characteristics. After comparing the two types of point clouds, this paper proposes a feed-forward Convolutional Neural Network (CNN) to detect building changes between them. The motivation from an application point of view is that the multimodal point clouds might be available for different epochs. Our method contains three steps: First, the point clouds and orthoimages are converted to raster images. Second, square patches are cropped from raster images and then fed into CNN for change detection. Finally, the original change map is post-processed with a simple connected component analysis. Experimental results show that the patch-based recall rate reaches 0.8146 and the precision rate reaches 0.7632. Object-based evaluation shows that 74 out of 86 building changes are correctly detected.

    A Natural Supramolecular Saponin Hydrogelator for Creation of Ultrastable and Thermostimulable Food-Grade Foams
    Ma, Lulu ; Li, Qing ; Du, Zhenya ; Su, Enyi ; Liu, Xiao ; Wan, Zhili ; Yang, Xiaoquan - \ 2019
    Advanced Material Interfaces 6 (2019)14. - ISSN 2196-7350
    glycyrrhizic acid - responsive foams - saponin nanofibrils - supramolecular self-assembly - ultrastability

    A new class of food-grade foams that are ultrastable, thermostimulable, and processable can be created simply by using the naturally occurring saponin glycyrrhizic acid (GA) as the sole stabilizer. The creation of this “superfoam” is based on the spatially controllable self-assembly of supramolecular GA nanofibril hydrogelators at the air–water interface and in the continuous phase. The rapid adsorption of GA nanofibrils at the bubble surface, forming a multilayer interfacial network, combined with the formation of viscoelastic fibrillar hydrogel networks in the continuous phase, enables the foams having ultrastability over months or years without the water drainage induced phase separation, which have been evidenced using small angle X-ray scattering and microscopy techniques. Such ultrastable foams can be rapidly destabilized on demand by heating, which induces the melting of the fibrillar networks. These thermoresponsive foams can be reversibly switched between stable and unstable by simply changing the temperature, based on the reversible gel–sol phase transition of the supramolecular hydrogel inside the foam. This is the first finding of a natural edible surfactant system that foams very well and can be used solely to make advanced foams with the qualities of simplicity, ultrastability, stimulability, and processability, which make them viable for many sustainable applications.

    Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes
    Wang, Xu ; Daigger, Glen ; Vries, Wim de; Kroeze, Carolien ; Yang, Min ; Ren, Nan Qi ; Liu, Junxin ; Butler, David - \ 2019
    Nature Communications 10 (2019)1. - ISSN 2041-1723

    Reducing nutrient discharge from wastewater is essential to mitigating aquatic eutrophication; however, energy- and chemicals-intensive nutrient removal processes, accompanied with the emissions of airborne contaminants, can create other, unexpected, environmental consequences. Implementing mitigation strategies requires a complete understanding of the effects of nutrient control practices, given spatial and temporal variations. Here we simulate the environmental impacts of reducing nutrient discharge from domestic wastewater in 173 countries during 1990–2050. We find that improvements in wastewater infrastructure achieve a large-scale decline in nutrient input to surface waters, but this is causing detrimental effects on the atmosphere and the broader environment. Population size and dietary protein intake have the most significant effects over all the impacts arising from reduction of wastewater nutrients. Wastewater-related impact hotspots are also shifting from Asia to Africa, suggesting a need for interventions in such countries, mostly with growing populations, rising dietary intake, rapid urbanisation, and inadequate sanitation.

    External shocks, agent interactions, and endogenous feedbacks — Investigating system resilience with a stylized land use model
    Chen, Yang ; Bakker, Martha M. ; Ligtenberg, Arend ; Bregt, Arnold K. - \ 2019
    Ecological Complexity 40 (2019)B. - ISSN 1476-945X
    Complex Adaptive Systems - Human-environment interactions - Nonlinearity - Path-dependency - Social-Ecological Systems - Tipping points

    Dynamics of coupled Social-Ecological Systems (SES) result from the interplay of society and ecology. To assess SES resilience, we constructed an Agent-Based Model (ABM) of a land use system as a stereotypical example of SES and investigated how resilience of the represented system is affected by both external disturbances and internal dynamics. The model explicitly considered different aspects of resilience in a framework derived from literature, which includes “resilience to”, “resilience of”, “resilience at”, “resilience due to”, and “indicators of resilience”. External disturbances were implemented as shocks in crop yields. Internal dynamics comprised of two types of social interaction between agents (learning and cooperation), an ecological feedback of soil depletion and an economic feedback of agglomeration benefits. We systematically varied these mechanisms and measured indicators that reflected spatial, social, and economic resilience. Results showed that (1) internal mechanisms increased the ability of the system to recover from external shocks, (2) feedbacks resulted in different regimes of crop cultivation, each with a distinctive set of functions, and (3) resilience is not a generic system property, but strongly depends on what system function is considered. We recommend future studies to include internal dynamics, especially feedbacks, and to systematically assess them across different aspects of resilience.

    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.