QUANTIFYING ENERGY BALANCE COMPONENTS AND ESTIMATING MAIZE EVAPOTRANSPIRATION UNDER WIDE AND NARROW RUNOFF STRIPS

Weldemichael A. Tesfuhuney,
Sue Walker and Leon D. van Rensburg

Department of Soil, Crop & Climate Sciences

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za May 10, 2012

1-4May 2012

The 8th International Symposium Agro Environ 2012 Wageningen

ECOTOPE

♦ Climate

♦ Soil

Semi-arid area Fine sandy loam

♦ Topography

1%

OVERALL PROJECT OF WATER & ENERGY BALANCE UNDER IN-FIELD RAINWATER HARVESTING (IRWH)

Latent Heat ---- crucial component to balance both water and energy and controlled by the environmental and biological processes

MOTIVATION

- ☐ In dry land farming the soil evaporation accounts
 - for approximately 30% 50% of the total loss of precipitation (wallace, 1991)
 - a value can exceed 50% in sparsely cropped farming system, such as IRWH
 - in semi-arid of South Africa 60%-85% of the rainfall, (Bennie et al., 1994) and for maize crop 30% of the total evapotransiration
- Considerable proportion of the rainwater that would be used for growth and vegetation development is lost.
- Better understanding of evapotranspiration is crucial for
 - more efficient use of rainwater under limited precipitation
 - determining management strategies to conserve water

OBJECTIVE

☐ To quantify the components of the energy balance and to compare available energy so as to estimate ET for maize crop under IRWH.

a) Narrow Runoff Strip (RSL-1)

MEASURMENTS

b) Wide Runoff Strip (RSL-3)

□ Net radiation NR-LITE-L Net Radiometer

□ Soil heat flux Plates of CN3 type

☐ Wind speed Three-cup wheel Sentry

Anemometer

☐ Temp. & Humidity HMP50 Probes (PRT &

Vaisala) sensors

□ Soil temp. Thermocouples (0.51 mm)

□ Soil water content ECH2O Probe Sensors

Theoretical basis - - - -

$$Rn - G = Hs + LE$$

(Rosenberg et al., 198

Bowen ratio method

$$LE = (Rn - G)/(1 + \beta)$$

Aerodynamic method

$$Hs = \rho C_p k^2 \frac{(\theta_1 - \theta_2)(u_2 - u_1)}{\{ln[(z_2 - d)/(z_1 - d)]\}^2} (\Phi_m \Phi_h)^{-1}$$

(Monteith & Unsworth, 1990)

MO Similarity Parameter

 $\zeta_m = R_i/1 - 5R_i$ $\zeta_{m} = R_{i}$

(Malek, 1993 & Arya 2001)

$$0 \le R_i < 0.25$$

$$R_i < 0$$

Stability Factors

$$\Phi_m^2 = \Phi_h = \Phi_w = (1 - 5\zeta)^{-1}$$

$$F = (1 - 5\zeta)^2$$

Stable (
$$Ri > 1$$
)
Unstable ($Ri < 0$)

$$\Phi_m = \Phi_h = \Phi_w = (1 - 15\zeta)^{-1/2}$$

$$F = (1 - 15\zeta)^{-1}$$

Soil heat flux (G)

$$G_{sf} = G_{0.08} + C_s \frac{dT_s}{dt} dz$$

 $V_{skv} = \left[\left\{ (L_R - L_c)^2 + h_c^2 \right\}^{1/2} - h_c \right] / L_R$

Modelling of net radiation (Rn)

$$\begin{split} Rn &= \left[(1-\alpha)Rs \times FC_{eff} \right] - \left[(1-V_{sky})\epsilon_s \sigma T^4 / BLAR \right] \\ \alpha &= \alpha_c - (\alpha_c - \alpha_s) exp(0.75BLAR) \qquad \text{(Oguntunde \& van de Giesen, 2004)} \\ \alpha_s &= \alpha_{sw} + \alpha_{s\theta} \\ \alpha_{s\theta} &= 0.01 [(exp0.00358\theta^{1.5}) - 1] \end{aligned} \tag{Song, 1998)} \\ \theta &= \arccos(sin\theta sin\delta) + (cos\theta cos\delta) \left[\frac{\pi}{12} - (t-t_o) \right] \end{split}$$

Ham et al., 1991

Weather variables during measurement periods

- ☐ During late growth stage (Autumn)
- Rs decrease slightly over the measuring period resulting higher daily mean T on 1st period
- ☐ Wind was weaker in 2nd period compared to 1st
- ☐ RH values indicating a typical semi-arid conditions with low during day & high during night
- *RH* slightly higher in the second period compare to 1st period (64% vs. 53%)
- Because of more rain & longer rain durations (21.9mm vs. 8.9mm)
- Resulted lower ETo in the 2nd period compared 1st

First period (Wide RSL)

Second period (Narrow RSL)

Atmospheric stability

♦ Within and above canopy behaviour of T and u is very complex and often characterize by atmospheric stability parameters

- ♦ According to Ri criterion, the 1st period had lower *Ri* compared 2nd period
- Despite these difference, it was argued there are days that met the stability requirement during dry and wet conditions for wide and narrow RSL treatments.

Profiles within & Above canopy

Dry Days Diurnal Pattern

- ♦ Rs are similar in both wide and narrow RSL
- Rn showed little variation during midday & afternoon

Soil heat flux (G)

Wide smooth with high at midday (52Wm⁻²)
Narrow variable with large peak values (76Wm⁻²)

Daytime Wide < Narrow

Nighttime Wide ≈ Narrow

- Low plant population (Lower BL-ratio) allowed more radiant energy to reach soil surface
- In narrow RSL more energy transmitted & less energy partitioned into LE &Hs

Sensible Heat (Hs)

- ♦ Around midday Narrow RSL > Wide RSL
- ♦ Nighttime the Narrow Hs more towards the soil showing direct exchange of heat from canopy to surface
- During morning sharp increase of Hs in wide indicating the open surface of the runoff releasing heat to the atmosphere
- ♦ After midday more heat left Narrow than Wide

Latent Heat (LE)

- ♦ Around midday β remained higher (β = ≈1) more than half (55%) of available energy used for evaporating water in wide
- ♦ Wide RSL most energy was partition to LE ($\beta \le 1$) include advection afternoon (high wind speed 4 6 ms⁻¹)
- \diamond Narrow RSL large portion of energy was partitioned to Hs ($\beta >>1$) & conditions are non advective

Wet Days Diurnal Pattern

 \square Rs and Rn had large values for wide with a dip at mid day due to cloud.

Soil heat flux (G)

- ☐ Wide slightly more than Narrow except under cloud conditions at midday & afternoon
- ☐ At night G was positive & Wide greater than Narrow by 25%, indicating more heat energy was going towards the wide runoff

Bowen ratio partitioning (Hs/LE)

- Unlike dry, the wet days Hs & LE not similarHs comprises small portion of the energy
- balance (β < 0.5) under moderately wind condition
- ☐ Wide RSL accounted for most energy consumption
- ☐ Narrow RSL LE reduced during afternoon (little evidence of sensible advection)

From the analysis of diurnal course - - -

lacktriangle Rn after rain days was more variable than on dry days due to canopy shading and albedo effect
$egin{array}{c} \Box \ G \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
☐ Wetting of the soil surface in the wide runoff soil surface alter surface energy balance and micro climate in the canopy because of reduced albedo and increased radiant energy
☐ Considering local advection of heat and water vapour within air space in the unever row widths inherent in the system of IRWH
☐ Favourable for horizontal advection from hot, dry bare runoff area to relatively cool wet plant canopy in the basin area, specially under windy conditions.

Midday basis Available Energy Partitioning

During dry days the Hs is the large portion of available energy ($\beta \ge \approx 1$) and reveres on wet days. The mean values of β was double on dry compared to wet (0.97 vs. 0.48)

Treatments	Rs (Wm ⁻²)	Rn-G (Wm ⁻²)	<i>Hs</i> (Wm ⁻²)	LE (Wm ⁻²)	EF (LE/(Rn - G))	β (Hs/LE)	ET (mmd ⁻¹)
Soil condition							
Dry (DOY 111 & 122)	536.3	338.8	152.2	157.9b	0.46b	0.97	1.20b
Wet (DOY 116 &129)	484.9	362.1	106.7	253.2a	0.69a	0.48	2.51a
LSD	ns	ns	ns	47.1	0.07	ns	0.41
Runoff strip							
Wide (DOY 111 &116)	521.4	373.7a	132.8	240.9a	0.64a	0.63	2.16a
Narrow (DOY 122 &129)	499.6	327.1b	126.1	170.2b	0.52b	0.83	1.55b
LSD	ns	41.7	ns	40.7	0.08	ns	0.37
CV%	13.8	12.2	38.8	23.5	13.9	58.7	24.2

Fraction of available energy , EF (LE/(Rn-G):

- ☐ Wet conditions are more efficient than dry (69% vs 49%
- ☐ Wide RSL is also being effective than Narrow RSL (64% vs 52%)

Therefore;

- ☐ Higher ET occurred from wide RSL (2.16 mmd⁻¹) relative to narrow RSL (1.55 mmd⁻¹)
- ☐ ET was lower under dry conditions for both wide and narrow (1.57 vs. 2.74 mmd⁻¹ & 0.82 vs. 2.28 mmd⁻¹)
- ☐ Regardless of weather conditions (dry/wet), the available evaporative surfaces (soil and leaf) much higher under wide RSL

Partitioning of available energy (Rn-G)

☐ The paired relationships were highly significant differences for wide/narrow and dry and wet

☐ During dry period the narrow RSL used more available energy (64% vs. 59%)

☐ During wet period, Wide RSL had much higher available energy partitioned to LE than narrow (72% vs. 63%)

Results from both wide and narrow RSL showed a dependence of ET on the amount of available energy during both dry and wet conditions.

CONCLUSION

\square <i>Rn</i> simulation was satisfactory with inclusion of albedo and canopy factors and measure variation during dry/wet conditions on both wide/narrow RSL						
Thus con	tribution of Rn & G under IRWH had an influence in partitioning Hs and LE					
	-wet was able to convert 75% of the available energy into evaporative power. The wide the sher BL-ratio contribute to greater transpiration and cause loss of more energy by .					
☐ The local area.	advection from the wide runoff area enhanced more ET from the crop rows of the basin					

Hence LE consumed more energy and as a result wide RSL was more efficient converter of available energy to on that also promotes more biomass production.

In many cases the biophysical properties are well understood & the ability of increase yield proven, but still lack of the wide spread energy balance studies & remains mystery that needs more research

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

