

Estimating saturated hydraulic conductivity using different well-known pedotransfer functions

A.Haghverdi H. S. Öztürk

S. Ghodsi T. Tunçay

1-4 May, 2012

Wageningen

Introduction

Saturated hydraulic conductivity;

- irrigation and drainage models,
- for studying water movement in the unsaturated zone
- solute and contaminant transport

Saturated hydraulic conductivity, K_s

- Laboratory methods
 - Constant head soil core
 - Falling head soil core
 - Steady flow soil column
- Field methods
 - Ring or cylinder infiltrometres
 - Constant head well permeameter
 - Auger hole (saturated zone)
 - Piezometer method (saturated zone)

Pedo Transfer Function

Material and Methods

91 undisturbed soil samples (replicated)

K_s

Material and Methods

Table 1: Physical characteristics of the soil samples

	Max	Min	Average	SD
Sand (%)	83.6	5.9	31.9	15.1
Silt (%)	41.4	5.2	28.6	6.5
Clay (%)	62.2	8.0	39.5	11.1
OM (%)	3.85	0.01	1.16	0.66
BD (g cm ⁻³)	1.63	0.93	1.19	0.15

Models

Characteristics of the PTFs used in this study

PTF	Input variables	Software	Source
Jabro	sand, silt, clay, BD	SOILPAR2	Jabro (1992)
Puckett	sand, silt, clay	SOILPAR2	Puckett et al. (1985)
Rosetta	sand, silt, clay, BD	Rosetta	Schaap et al. (2001)
NeuroTheta	sand, silt, clay	NeuroTheta	Minasny and McBratney (2003)
Turkey-PTFs	sand, silt, clay, BD, OM	_	_

Turkey-PTF

- a local regression based PTF
- derived using
 - 70% of samples as <u>development subset</u> and
 - 30% as test subset

 Soil organic matter, an extra predictor in Turkey-PTF

SOILPAR2

Containing several regression based PTFs Predicts both \underline{K}_s and water content Developed by: Marco Acutis & Marcello Donatelli, 2003

Rosetta

- implements PTFs based on artificial neural networks
- predicts van Genuchten parameters, Ks, K
- UNSODA
- developed by: Marcel G. Schaap

NeuroTheta

Uses Australian soil data

Works based on artificial neural networks

Predict van <u>Genuchten and Campbell parameters</u> and Ks

Developed by: Minasny and McBratney, 2003

IRENE

a data analysis tool Performance Criteria

- RMSE
- r
- MBE

Negative correlation

Underestimation Moderate correlation

Trend to underestimation Low positive correlation

Trend to underestimation Poor positive correlation

Well scattered data Good positive correlation

	DMCE	MDE	
	RMSE	MBE	r
Jabro	1.29	-0.32	-0.31
Puckett	2.80	-2.63	0.50
Neurotheta	1.63	-1.39	0.48
Rosetta	1.61	-1.23	-0.13
Turkey	0.74	-0.11	0.69

Discussion

> trend to underestimate in all PTFs

may be related to the differences between derived samples with our samples

➤ lowest RMSE value belongs to Rosetta

better performance of ANN based PTF compared with regression based PTF

- Supremacy of local based PTF
- effectiveness of using OM content as an extra input predictor importance of using the local data for deriving Ks PTF if they

are available

Questions arised

- Are the input parameters sufficient for estimating of Ks?
- How the sampling procedure does affect the measurement of K_s?
- Should the local data be used for local studies?

 What are the impacts of craks, shringing/swelling, plant roots, clay type on K_s?

Thank you for your attention