Towards more sustainable small holder farmer livelihoods by using infrared spectroscopy for soil analytical advisory services

Terhoeven-Urselmans T., Weber A., Jensema J., Vernooij M., Termorshuizen A.J. and van Erp P.J.

Blgg AgroXpertus

- Kenyan small holder farmers
- Project background
- How is the service organized?
- Research questions
 - Spectral calibrations
 - Fertilization advice
 - On-farm field trials

Kenyan small holder farmers

- Decrease in soil fertility and crop yields
- Acidification and low organic matter content
- Farmers lack knowledge on sustainable management practices
- Challenges farmers face:
 - Small fields
 - high fertilizer prices/distribution costs
 - scarce financial resources
 - lack of market access

Project background

- In 2011 BLGG Kenya won a competition
 - Innovation mid-infrared analysis of soils and compost
 - Research into business (RIB)
 - funded by the African Economic Challenge fund (AECF)
 - 50% own investments
 - about 25% subsidy and 25% loan
- Partners from research and business work together
- 6 years project (year 1-3 research)

How is the service organized?

Research question 1: spectral calibrations

Soil spectral database from ICRAF:

about 2000 samples per soil property (mid-infrared spectra+reference data)

Compost spectral data base:

• The first 800 samples used for spectral modeling

How is the data base used?

- Conversion of soil wet-chemical analytical data to BLGG wet-chemical analytical data
- Spectral outliers are analysed wet-chemically and added to the model
- An ongoing validation is done to monitor quality of predictions

Research question 2: Fertilization advice

Input into the advice module:

- Soil and compost mid-infrared (MIR) analysis
- GPS location field
- QUEFTS model (a system for <u>QU</u>antitative <u>E</u>valuation of the <u>Fertility of Tropical</u> <u>S</u>oils; Janssen et al. 1990)
- Crop nutrient equivalent (Janssen 2011)
- Types of fertilizers available, their prices and transport costs
- Packing of advised fertilizer in 5 kg steps
- Farmer's investment limit
- Farmer's historic yields
- Potential crop sales prices

Research question 2: Fertilization advice

General info	ormation					
Sample	Field name: sha01	Soil texture (FAO): Medium	Name compost heap: -		Date sample taking: 12-03-2012	Sample taken by: KE02
Field/Order	Field size: 0.5 acre	sample number: 955106	Date recommendation 27-04-2012	made:	BLGG Kenya client numl 8357544	ber:
Analytical re	esults					
Soil analytical results		Unit	Value	no in	fo very low low	good very high
	pH (acidity of the soil)		5.6			
	SOC (soil organic carbon) %	2.8			
	Nt (Total Nitrogen)	mg/kg	2199			
	Ca (exch. Calcium)	mmol+/kg	260			
	Mg (exch. Magnesium)	mmol+/kg	70.7			
	K (exch. Potassium)	mmol+/kg	6.1			
	P (total Phosphorus)	mmol P/kg	13.5			
	Clay	%	20			
	Sand	%	42			
Compost analytical results		Unit	Value	no in	fo very low low	good very high
	Ct (total carbon)	g/kg	-			
	Ash (soil in the compost)	g/kg	-			
	N (nitrogen)	g/kg	-			
	P (Phosphorous)	g/kg	-			
	K (Potassium)	g/kg	-			
	ADL (lignin)	g/kg	-			1 1
	ADF (lignocellulose)	g/kg	-			
	Volume compost heap	m,	-			
	Weight compost heap	t	-			

Research question 2: Fertilization advice

- choose resistant varieties of maize
- weed the Striga plant before it produces seed

BLGG AGROXPER

8 8 s

o increase nitrogen fertilization - this suppresses Striga

- Administrated web-based platform
- Aims:
 - Creating network of people working with the same tool
 - Gathering experiences of model robustness
 - Extending this tool to new regions/crops
 - Using joint forces to develop new research questions/write proposals as a group
- Contact:
 - <u>www.blgg-research.nl</u>, Wageningen, The Netherlands

Research question 3: On-farm field trials

- 10 on-farm field trials in 2012/13
- Maize/pototoes/sorghum
- Comparison of results of usual farmer's practice and results following the advice
- Full economic comparison
- Farmer's days to show and convince farmers to ask for the service
- <u>We invite researcher to</u>
 <u>participate in these field trials</u>

Looking forward to the discussions!

agriQQuest

