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Chapter 2.  Functional responses in the habitat selection of a 

generalist mega-herbivore, the African savannah elephant 
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Abstract 

Resource selection function (RSF) models are commonly used to quantify species/ habitat 

associations and predict species occurrence on the landscape.  However, these models are 

sensitive to changes in resource availability and can result in a functional response to resource 

abundance, where preferences change as a function of availability.  For generalist species, which 

utilize a wide range of habitats and resources, quantifying habitat selection is particularly 

challenging.  Spatial and temporal changes in resource abundance can result in changes in 

selection preference affecting the robustness of habitat selection models.  We examined selection 

preference across a wide range of ecological conditions for a generalist mega-herbivore, the 

savannah elephant (Loxodonta africana), to quantify general patterns in selection and to illustrate 

the importance of functional responses in elephant habitat selection.  We found a functional 

response in habitat selection across both space and time for tree cover, with tree cover being 

unimportant to habitat selection in the mesic, eastern populations during the wet season.  A 

temporal functional response for water was also evident, with greater variability in selection 
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during the wet season.  Selection for low slopes, high tree cover, and far distance from people was 

consistent across populations; however, variability in selection coefficients changed as a function 

of the abundance of a given resource within the home range.  This variability of selection 

coefficients could be used to improve confidence estimations for inferences drawn from habitat 

selection models.  Quantifying functional responses in habitat selection is one way to better 

predict how wildlife will respond to an ever-changing environment, and they provide promising 

insights into the habitat selection of generalist species.   

Introduction 

Understanding the complex, dynamic interaction between species occurrence and habitat is 

essential to predict and manage responses of species to natural or anthropogenic environmental 

changes.  Some ecologists therefore rely on resource selection function (RSF) models to quantify 

these species/habitat interactions.  RSF models compare samples of used and available resource 

units to estimate the relative probably of occurrence based on resource characteristics (Boyce et 

al. 2002; Manly et al. 2002).  This multivariate approach is becoming progressively more flexible 

and can incorporate cumulative effects for human development (Houle et al. 2010), intraspecific 

competition (McLoughlin et al. 2010), and predation (Hebblewhite et al. 2005).  RSF models can 

also be used to inform conservation management decisions because they offer spatially explicit 

and predictive models of species occurrence (e.g. Aldridge and Boyce 2007; Johnson et al. 2004).  

Knowledge of habitat selection is integral for habitat protection and augmentation (Aldridge and 

Boyce 2007; Johnson et al. 2004), the reestablishment of species to previously unoccupied habitat 

(Merrill et al. 1999), and the identification of dispersal corridors (Chetkiewicz and Boyce 2009) as 

well as attractive sinks (Nielsen et al. 2006).  Such knowledge may aid in conservation planning 

that aims to ensure the viability of a population, the connectivity among sub-populations in a 
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metapopulation, or restore the spatial structuring of populations (e.g. van Aarde and Jackson 

2007).   

One of the main limitations of RSF models, however, is that the estimate of selection is 

contingent upon the sample of availability (Beyer et al. 2010).  For example, if use of a resource 

remains constant but local availability decreases, then the parameter estimate will change from 

avoidance to selection.  In a habitat selection framework, this is known as a functional response 

(Mysterud and Ims 1998).  Functional responses in habitat selection can be an artifact of sampling 

intensity (see Beyer et al. 2010), however they can also be driven by behavioural changes is 

selection.  As a resource becomes more scares on the landscape, an animal needing to meet some 

daily requirement, be it nutritional, physiological, or social, must spend a disproportionate 

amount of time utilizing that resource.  Consequently, selection for a resource changes as a 

function of its availability.  The presence of a functional response severely limits the application of 

an RSF model created for one location to a different area where availability is not equivalent 

(Beyer et al. 2010; Boyce et al. 2002; Manly et al. 2002).  Under natural conditions resources are 

seldom equally available across the distributional range of a species.  RSF models therefore are 

typically not applied beyond the bounds of a study area unless independent validation data exists 

and, when they are, caveats are stipulated.  Models that are accurate outside of the study area 

are hailed as robust (Boyce et al. 2002; Wiens et al. 2008).  Spatially robust models most often 

occur for habitat specialists, where species/habitat associations are simple and resilient to 

changes in availability (Boyce et al. 2002).  

Temporal variation in resource availability can also limit the predictive ability of habitat 

selection models (Wiens et al. 2008).  Seasonality in resource abundance, even within the same 

region, can alter the selection patterns of a species as food preferences change (Boyce et al. 

2002).  Habitat specialists may be less sensitive to seasonal changes as they are often tied to a 
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single food source or habitat type.  For example, northern spotted owls in California are always 

closely associated with mature forest (Meyer et al. 1998), and wolverines are closely associated 

with high-elevation subalpine habitats (Copeland et al. 2007).  Conversely, a generalist species like 

grizzly bears have vast shifts in diet (Munro et al. 2006), and consequently habitat selection 

preferences change as seasons change (Nielsen et al. 2002). 

So what do ecologists do when confronted with a generalist species where habitat 

associations are more complex?  Boyce et al. (2002) suggest that selection by generalist species be 

analyzed across a range of environmental conditions, to quantify how selection changes as a 

function of availability.  Instead of being viewed as problems to be overcome, functional 

responses can instead be used to predict selection in different regions where resources 

abundance varies (Boyce et al. 2002; Matthiopoulos et al. 2011).  To incorporate a functional 

response into an RSF model, a random coefficient in a mixed-effects model can be used (Gillies et 

al. 2006; McLoughlin et al. 2010); however, a random coefficient can only be applied to one 

habitat covariate within a model.  For many generalist species, a functional response is present for 

more than one habitat covariate; therefore, separate models are required for each sub-population 

(Boyce et al. 2002; Nielsen et al. 2002).  The use of separate models also allows one to use the 

information theoretic approach to determine whether different habitat covariates are important 

in different regions or seasons (Burnham and Anderson 2002). 

Despite the call to study multiple populations of generalist species to better understand 

patterns in habitat selection, this advice is rarely followed, largely due to the data requirements 

for such an analysis.  In this paper, we examine habitat selection of a generalist herbivore species, 

the African savannah elephant (Loxodonta africana), among seven populations in eight countries 

across southern Africa.  Elephants are ideally suited for a study on functional responses in habitat 

selection because they are widely distributed across southern Africa where they occupy 
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landscapes ranging from the deserts of Namibia to the dense, wet forests of Mozambique.  Their 

diets also vary seasonally; individuals shift from mainly grazing on tender grasses in the wet 

season to mainly browsing on the leaves, twigs, branches, and bark of trees in the dry season 

(Codron et al. 2011). 

Here, we develop habitat selection models at the scale of the home range that includes 

factors elephants are known to respond to: water (de Beer et al. 2006; Harris et al. 2008), slope 

(Wall et al. 2006), vegetation structure (Harris et al. 2008; Loarie et al. 2009; Young et al. 2009), 

and human presence (Harris et al. 2008; Hoare and du Toit 1999; Jackson et al. 2008).  We test for 

differences in male and female selection in the wet and dry seasons using the information 

theoretic approach to first quantify support for competing models.  Then using the full model, we 

examine how the selection coefficients changed as a function of availability within an individual’s 

home range (Hebblewhite and Merrill 2008; Houle et al. 2010).  Our main objective was to 

quantify spatial functional responses, examining temporal functional responses only at a course, 

two-season scale.  Specifically, in the more arid, western portion of the study area, we expect 

water and tree cover to be important covariates in habitat use in response to the limited 

availability of water (Leggett 2006) and the shortage of trees that provide shade (Kinahan et al. 

2007) and offer some forage for elephants (Loarie et al. 2009).  In the more mesic, eastern portion 

of the study area, we expect elephant’s selection of tree cover to be unimportant for selection 

because trees are more plentiful and should, consequently, not limit elephant selection (Illius 

2006; Mysterud and Ims 1998).  We further expect a functional response to human presence, as 

elephants often come into conflict with people (Hoare 1999; Jackson et al. 2008).  Thus, elephants 

in more remote areas would show greater indifference to human presence.    
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Methods 

Study Area 

The study area comprised a large portion of the distributional range of elephants in southern 

Africa and included portions of Angola, Botswana, Malawi, Mozambique, Namibia, South Africa, 

Zambia, and Zimbabwe (Figure 2-1).  The region included a desert/grassland mosaic in the west, 

dry woodlands in the central region, and mesic forest in the east.  Seasonal rainfall patterns drive 

vegetation structure (Sankaran et al. 2005).  Mesic regions to the east had greater rainfall and 

hence greater tree cover compared to western portion of the study area (Table 2-1).  Topographic 

conditions also varied, with more dramatic changes in elevation near the western and eastern 

coasts and relatively flat, unvarying terrain in the central region.  Human density was low over 

much of the study area, with pockets of increased human densities near major waterways and 

roadways.   

Elephant Data 

Elephants (n=102) were captured and collared with Africa Wildlife Tracking GPS collars (model SM 

2000E; Africa Wildlife Tracking, Pretoria, South Africa) between December 2002 and September 

2010.  Collars were programmed to relocate individuals at varying intervals, ranging from 1 to 24 

hours, with most elephants having multiple interval settings during the collaring period.  

Telemetry locations were divided into two seasons and combined across years.  Core wet season 

was defined as December through March inclusive, and core dry season was defined as June 

through September (Young et al. 2009).  Locations in the transition months of April, May, October, 

and November were omitted from the analysis.  Only individuals with more than 100 locations per 

season were retained for the analysis, resulting in 35,167 locations among 86 individuals for the 

dry season and 43,141 locations among 88 individuals for the wet season analysis.   
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Home ranges were generated separately for the core wet and dry season for each 

individual using the local convex hull (LoCoH) nonparametric kernel method (Getz et al. 2007).  

The adaptive sphere of influence (a-LoCoH) algorithm was used to construct kernels, with a equal 

to the furthest distance between any two locations (Getz et al. 2007).  LoCoH home ranges, which 

ranged in area from 50 to 9,000 km2, fit tightly around telemetry locations often leaving holes, 

which we believed were unrealistic.  To reduce these holes, home ranges were further buffered by 

3 km, the mean distance elephants within our study traveled during a 12 hour period.  Home 

ranges were created using R software (R Development Core Team 2011), along with the packages 

“adehabitat” (Calenge 2006) and “NNCH” (Getz and Wilmers 2004). 

The majority of elephants within this study roamed freely and were not confined to parks, 

countries, or other intangible human boundaries (van Aarde and Ferreira 2009).   However, fences 

were present along the borders of Etosha National Park and along international boundaries in 

Khaudum Game Reserve and Kruger National Park.  For analytical purposes elephants were 

grouped by study site, hereby referred to as populations, resulting in seven populations: Etosha, 

Chobe, Kafue, Zambezi, Luangwa, Niassa, and Limpopo (ordered from west to northeast, with the 

most distant population, Limpopo, last; Figure 2-1).  Population names were often based on the 

nearest major protected area for convenience.  

Habitat Covariates 

Habitat covariates were chosen based on their known or suspected influence on elephant space 

use.  In order to ensure that direct comparisons could be made among models, habitat was 

described using covariates that could be applied to all populations, thereby avoiding site-specific 

variables such as categorical land cover descriptors.  The structure (Harris et al. 2008; Kinahan et 

al. 2007) and greenness (Loarie et al. 2009; Young et al. 2009) of vegetation is known to be an 

important predictor of elephant space use because it provides both food and shade.  Vegetation 
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structure was characterized using the Moderate Resolution Imaging Spectrometer (MODIS) 

Vegetation Continuous Fields product (Hansen et al. 2006), from which we estimate the 

proportions of  tree cover at a resolution of 0.25 km2, defined as woody vegetation greater than 5 

m in height (Hansen et al. 2002).  An enhanced vegetation index (EVI) was used to quantify 

greenness (Pettorelli 2006).  For the core wet and dry seasons, EVI layers for the 8 years of this 

study were obtained and used to calculate mean EVI within a season at a resolution of 0.64 km2. 

Water was located using geospatial data from Tracks4Africa (2010) and man-made 

watering point data supplied by conservation authorities.  Water body locations were then 

validated against Landsat imagery, and missing water bodies were hand-digitized.  Separate water 

layers were made for each season, with the core wet season including all water categories and the 

core dry season including only main rivers, river deltas, lakes, dams, and man-made watering 

holes.  Distance to water was then calculated for telemetry locations within each season. 

Elephants typically avoid humans and human disturbance (Harris et al. 2008; Hoare and 

du Toit 1999), particularly during daylight hours when humans are more active (Jackson et al. 

2008).  We included several covariates that reflect the land-use patterns of people.  Human 

density was estimated with LandScan (2008) human population data at a resolution of 1 km2.  

Hoare and du Toit (1999) found that elephants avoided areas with greater than 15.6 people/ km2; 

therefore, we identified areas with greater than 16 people/ km2 (rounding up) and calculated the 

distance from each elephant location to these pixels.  Road data were obtained from Tracks4Africa 

(2010).  Studies of other large mammals have shown an avoidance of high-traffic volume roads 

but neutral or positive selection for low-traffic volume roads which potentially facilitate 

movement (Chruszcz et al. 2003; Dickson et al. 2005); therefore, roads were categorized based on 

size.  We determined distances of locations to main roads (freeway, national, or main roads) and 

secondary roads (all other road categories).   

 
 
 



19 
 

Finally, elephants avoid steep slopes due to their large body size (Wall et al. 2006), so we 

included slope derived from a 90 x 90 m resolution digital elevation model (Jarvis et al. 2006) in 

our analyses.  All geospatial analysis was completed using the Spatial Analyst extension of ArcGIS 

9.3.1 (ESRI 2009) and Geospatial Modelling Environment (Beyer 2011).   

Habitat Selection Models 

Habitat selection was modelled separately for the seven elephant populations and for males and 

females, with one collared female actually representing a breeding herd with several adult 

females and their offspring.  Elephant locations (1) were compared to randomly generated 

locations (0) using a mixed effect logistic regression model for location i and individual j, taking the 

form:    

w(xij) = exp(β + β1x1ij+ …+ βnxnij + γj),     (1) 

where w(xij) is the resource selection function, βn is the coefficient for the n-th predictor variable 

xn , and γ is the random intercept for animal j (Gillies et al. 2006; Manly et al. 2002).  The random 

intercept was used to control for the lack of independence of points within individuals and 

differences in sample size among individuals (Gillies et al. 2006).  We implemented a design III 

approach (Manly et al. 2002; Thomas and Taylor 1990), whereby random locations were 

generated within the home range of each elephant at a density of 3 points/km2.  At this density, 

contamination (i.e. use and available locations occurring within the same raster pixel) was less 

than 15% for the habitat covariate mapped at the coarsest resolution (800 x 800 m), and was 

therefore negligible (Johnson et al. 2006).   

We used model selection (Burnham and Anderson 2002) to determine which habitat 

covariates had the greatest influence on resource selection for each of the seven populations.  

Seven a priori candidate models were ranked using Bayesian Information Criterion (BIC; Table 2-
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2).  BIC was used as it favours more parsimonious models compared to Akaike’s Information 

Criterion (AIC), which favours complex models when sample sizes are large (Burnham and 

Anderson 2002; Grueber et al. 2011).  Variables that were highly correlated (Pearson’s r > 0.6) 

were not included in the same model.  Correlations occurred between tree cover and mean EVI 

(Pearson’s r = 0.68).  Because tree cover is an indicator of both food resources and 

thermoregulatory needs (i.e. shade cover; Kinahan et al. 2007), tree cover was used in subsequent 

models.  All continuous variables were tested for the potential presence of a nonlinear 

relationship with the inclusion of a quadratic term in a univariate analysis and by examining 

histograms.  Model fit of the top-ranked model for each population was evaluated using k-fold 

cross validation (k = 5) and the Spearman rank correlation coefficient (Boyce et al. 2002).  Analyses 

were conducted in R software (R Development Core Team 2011) using the lme4 package (Bates 

and Maechler 2010). 

To test the presence of functional responses, we used a two-step approach (Hebblewhite 

and Merrill 2008; Houle et al. 2010).  First we model habitat selection for each individual, so that 

all covariates could vary in slope and intercept, using the full model (model 7, Table 2-2).  We then 

assessed how the selection coefficient of a given covariate changed as a function of the mean 

value of that covariate within the individual’s home range (log transformed).  Significance was 

evaluated using a linear regression.  Where models displayed heterogeneity of variance, 

generalized least squares were used instead of a simple linear regression (Zuur et al. 2010).  This 

procedure could only be applied to covariates with linear selection coefficients (i.e. slope, 

proportion tree, distance to people, and distance to main roads). 
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 Results 

Dry Season RSF Models 

The top-ranked model was the full model (model 7) for all female and most male (4 of 6) 

populations during the dry season (Table 2-3).  The top models provided good fit to the data using 

k-fold cross validation expect for Niassa females (Spearman rank rs = 0.48, and p > 0.05) and 

Chobe males (rs = 0.62, and p > 0.05; Table 2-3).  The inclusion of all variables in most top-ranked 

models was counter to our expectations that selection for some covariates would be less 

important as availability changed.  This indicated that all variables examined in this study were 

important to elephant habitat selection irrespective of availability during the dry season.  The 

strength and direction of covariates was consistent across most populations in the top-ranked 

models.  Elephants from most populations selected areas of low slope (female (f) = 5 of 7, male 

(m) = 4 of 6), high tree cover (f = 7 of 7, m = 3 of 6), far distances from people (f = 4 of 7, m = 4 of 

6), and close proximity to main road (f = 3 of 7, m = 5 of 6; Table 2-4).  Populations varied in the 

maximum distance elephants traveled from water, ranging from 6 km in the Zambezi to 79 km in 

the Chobe population.  Despite this, elephants in most populations (f = 4 of 7, m = 5 of 6) selected 

areas near and far from water at greater frequencies than random (Table 2-4; Figure 2-2).  This U-

shaped pattern is what I expected as animals select areas near water for drinking and temperature 

regulation and far from water in search of forage.  Only Niassa females selected areas of 

intermediate distances from water during the dry season (i.e. the selection coefficient had a 

hump-shaped curve).  Selection for secondary roads was less consistent across populations.  

Males and females in Niassa and Limpopo along with Etosha females and Chobe males selected 

areas of intermediate distance from secondary roads; whereas, the elephants from the remaining 

populations selected areas near to secondary roads or areas both near and far from these roads.  
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Wet Season RSF Models 

In the wet season, Etosha, Chobe, Kafue, and Zambezi populations continued to have the full 

model (model 7) as the top-ranked model for both sexes (Table 2-3).  However, among the more 

easterly populations, Luangwa, Niassa, and Limpopo, the top-ranked model was the limiting 

factors model (model 6) for those females and for Limpopo males.  Of these eastern populations, 

only Luangwa males had a top-ranked model that included tree cover, indicating that during the 

wet season tree cover was not an important predictor of elephant habitat selection in these 

populations.  This was concurrent with our expectations that tree cover would be less influential 

for elephants in more mesic environments.  The top models provided good fit for most 

populations during the wet season; however, model fit was poor for Niassa females and males (rs 

= 0.61 and 0.03, respectively, and p > 0.05; Table 2-3).  Selection for water during the wet season 

was more variable across populations than it was in the dry season.  Luangwa and Limpopo 

females selected areas both near and far from water, Zambezi and Chobe females selected 

intermediate distance from water, Kafue and Niassa females selected areas close to water, and 

Etosha females selected areas far from water.  Half of the male populations (3 of 6) selected areas 

both near and far from water, while the remaining three were variable in selection (Figure 2-2).  

This variability in selection indicated a functional response to water seasonally.  Selection for low 

slopes (f = 5 of 7, m = 3 of 6), high tree cover (f = 4 of 7, m = 3 of 6), and far from people (f = 4 of 7, 

m = 3 of 6) was similar to the dry season.  However, selection for main roads was counter to dry 

season selection, with nearly equal numbers avoiding (f = 3 of 7, m = 3 of 6) and selecting (f = 4 of 

7, m = 3 of 6) main roads.  In the wet season, selection for secondary roads continued to be as 

variable as it was in the dry season. 
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Functional Responses 

When comparing the selection coefficient for a given covariate to the mean value of that covariate 

within an individual’s home range, we found a significant functional response for proximity to 

humans during the dry season (R2 adjusted=0.04, P = 0.03; Figure 2-3).  As the mean distance from 

humans increased (i.e. as there were fewer people within the home range) selection for proximity 

to people decreased.  We expected selection for proximity to human to be less significant when 

elephants were far from human development; however, we did not find this pattern.  Instead, we 

found a general pattern of avoidance when they were far from people and high heterogeneity in 

the selection coefficient when elephants were close to people.    

While the functional responses tested were not significant within a linear regression 

model for all other covariates examined, the variability of selection coefficients at varying levels of 

resource abundance indicated similar patterns as observed with the proximity to humans 

covariate.  Because of heterogeneity of variance in the slope and tree cover models, generalized 

least squares techniques were used.  While most elephants selected areas of low slope, when the 

home range of an individual was located in a relatively flat area, the selection coefficient was 

more variable (Figure 3).  A similar pattern occurred with tree cover.  When the proportion of tree 

cover within an individual’s home range was low, the variability in the selection coefficient 

increased with some individuals having relatively strong selection for trees.  Functional responses 

for distance to main road were not significant during either season and displayed no variance in 

heterogeneity. 

Discussion 

Although elephants are generalist mega-herbivores with wide ecological tolerances, we found 

consistency in their habitat selection patterns, lending insight into the biology of the species.  
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Elephants in most populations and both seasons had the full model (model 7) as the top-ranked 

BIC model.  This is not unexpected given that for inclusion in BIC models, we considered covariates 

which relate to some biological process or limiting factor for elephants (e.g. food, water, terrain, 

and human presence).  We did, however, find that in the wetter, eastern populations (Luangwa, 

Niassa, and Limpopo) tree cover was not an important predictor of elephant use in the wet 

season, as expected.  The decline in the importance of the vegetation covariate suggested a 

functional response for vegetation, where its importance declines both temporally (within these 

populations as increased rainfall makes food more readily available) and spatially (across 

populations as vegetative cover increases).  This functional response was not supported when we 

examined the abundance of tree cover within each individual’s home range.  However, when we 

further excluded non-significant selection coefficients from the analysis to reflect their lack of 

importance in those models, the function response was significant in the dry season (P = 0.02).   

Our results also revealed evidence of a temporal functional response for water.  Water is a 

limiting factor for elephants, as demonstrated by their close association with watering holes in the 

dry season (de Beer et al. 2006; Harris et al. 2008; Shannon et al. 2009; Young et al. 2009) and 

their population increases when supplemental water is provided (Owen-Smith et al. 2006).  In the 

dry season, elephants in most populations (f = 4 of 7, m = 5 of 6) selected areas near and far 

water; whereas, in the wet season, selection for water was highly variable, with individuals 

selecting areas near, far, and at intermediate distance from water (Figure 2-2).  The change in 

selection for water as a function of season suggests a functional response, as higher rainfall during 

the wet season results in greater abundance and wider distribution of water throughout the study 

area.  However, we did not find a spatial functional response for water as expected.  The more 

mesic, eastern populations had similar selection patterns for water in the dry season, indicating 

that water was a limiting factor, even in these wetter regions.   
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Selection for low slopes, high tree cover, and far distance from people was consistent 

across populations and seasons and was similar to previous studies of elephant selection patterns 

(see Harris et al. 2008; Hoare and du Toit 1999; Kinahan et al. 2007; Loarie et al. 2009; Wall et al. 

2006).  The real ecological insight gained from studying elephant selection across a large spatial 

scale, however, comes from the heterogeneity of variance displayed in the functional responses.  

Previous research into function responses of habitat selection has not reported such 

heterogeneity in variance.  This could be an artifact of low sample size, as most studies have few 

individuals along the continuum of available abundance (see Hebblewhite and Merrill 2008; Houle 

et al. 2010).  However, heterogeneity of variance in habitat selection should be expected for some 

habitat covariates.  Slope, for example, does not limit elephant movement when the home range 

is situated in a relatively flat area.  As a result, we found high variability in the selection 

coefficients in these locations.  When elephant home ranges occur in regions of high topographic 

variation, slope became a limiting factor and, consequently, the selection coefficients were 

consistently negative (i.e. elephants selected flat areas; Figure 2-3).   

One of the main criticisms of RSF models is that they are limited in their ability to make 

predictions in different areas or at different times (Garshelis 2000; Manly et al. 2002).  Some 

authors contend that using information gained about functional responses in selection could help 

remedy this problem (Boyce et al. 2002; Matthiopoulos et al. 2011; McLoughlin et al. 2010).  For 

elephants, selection at the scale measured in this study was relatively consistent and the 

measured functional responses were not significant; consequently, we do not believe that the 

function responses discovered here could be used towards those ends.  However, researchers 

could use information about heterogeneity of variance to better estimate the confidence around 

habitat selection models applied to new regions, especially when no data on animal use is 

available.  If, for example, an area was relatively flat in slope or was in close proximity to human 
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development, one would expect much more variable selection patterns and less accurate 

estimates of habitat selection for elephants based on the functional responses observed in this 

study.   

Among the covariates examined, the human presence covariates were least consistence 

across populations.  While elephants generally avoided humans, variability in selection increased 

as individual home ranges were in closer proximity to people (Figure 2-3).  Selection for road 

covariates was also variable between populations (Table 2-4a,b).  This variability in elephant 

selection was counter to our expectations that humans would have little influence on selection 

when elephants were far from people.  However, the variability in selection for human-use 

features is not an uncommon pattern in selection by generalist species where humans are both a 

source of food and a potential threat, and likely indicates that individual elephants were using 

different strategies when near human development.  In grizzly bears, for instance, some 

individuals become habituated to human food sources or use human settlements as a refuge from 

more dominant individuals (Mattson et al. 1992; McLellan and Shackleton 1988), while others 

avoid humans due to the increased  mortality risk (Gibeau et al. 2002; Wielgus and Vernier 2003).  

Human-use features may also co-occur with areas preferred by wildlife, such as near rivers and 

the more fertile floodplains (Roever et al. 2008).  Roads within protected areas, for example, are 

often established along the best game viewing routes, such as near rivers and watering holes.  The 

threats posed to elephants by roads within protected areas should be minimal (see Blake et al. 

2008) and could confound inferences drawn about selection of roads located outside of protected 

areas.  Spatial scale is also likely influencing the patterns observed for human use features.  

Avoidance of humans is likely occurring at a broader spatial scale; whereby, the elephant home 

range was already situated in a low human-density area (Hoare and du Toit 1999), thus within-

home range selection patterns were more variable.   
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Other variables also display variability, even within the same population.  Selection for 

tree cover, for example, was positive for females in Etosha in both seasons, yet negative for males 

in both seasons.  This variability is selection patterns is likely an artifact of a collaring bias for the 

Etosha cluster.  In the bounds of Etosha NP only females were collared (n = 9 females), and 

outside of the park boundaries, mostly males (8 of 9) were collared.  This shows the sensitivity of 

RSF models to local resources availability, and that even within close, yet non-overlapping, 

proximity changes in availability can produce opposing habitat selection patterns.  It also further 

underscores the need to quantify how selection changes and a function of resource availability. 

This study represents an amalgamation of habitat selection theory for elephants across 

southern Africa; however, a study area of this magnitude, particularly in the developing world, 

creates unique challenges.  To make comparisons across regions, the habitat covariates chosen 

had to be consistent across the study area.  Unfortunately, GIS data quality often varies from one 

country to the next, so while detailed geospatial data were available for South Africa, Namibia, 

and Mozambique, information was often lacking for Malawi, Zambia, and Zimbabwe.  

Consequently, we used global datasets which, while excellent in quality, use larger spatial 

resolution (the smallest being 90 x 90 m for slope but increasing to 500 x 500 m for tree cover).  

This larger resolution could help explain the poor model fit for Niassa females and Chobe males in 

the dry season and Niassa females and males in the wet season.  Prediction of elephant habitat 

selection could be improved if fine scale information on vegetation characteristics and the 

presence of standing water across the seasons were available.  As some of the world’s most 

diverse and valuable wildlife resources are in the developing world, efforts should be made to 

increase the quality of geospatial data in these regions for the betterment of wildlife 

management. 
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Studying a generalist species over a wide spatial scale can lend insight into the biology of 

that species (Boyce et al. 2002), which could be particularly important in predicting changes in 

animal space-use in this ever-changing world.  Our analysis confirms expectations that a generalist 

mega-herbivore showed a functional response, particularly when the relevant resource was 

uncommon or limiting (Illius 2006; Mysterud and Ims 1998).  We also found that selection by this 

generalist species is more variable when at different levels of resource abundance, which can be 

used to better estimate confidence around model predictions.  In southern Africa, elephant 

management strategies are moving towards reinstating a more natural, self-sustaining spatial 

dynamic through the development of transfrontier conservation areas (see Hanks 2001; van Aarde 

and Jackson 2007; Western 2003).  Current initiatives strive to remove fences around parks, 

reduce artificial water sources, and promote cooperation between countries, allowing wildlife 

access to greater and more natural roaming areas.  However, information on how elephants will 

respond to these changes is lacking because experimentation on many large mammal species, 

particularly those of management concern, is not feasible.  Consequently, researchers must work 

within the context of present-day landscapes, and these conservation initiatives can benefit from 

relying on our illustrated functional responses to better predict elephant selection within these 

changing landscapes.   
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Table 2-1.  General description of some local conditions within each study site (population).  The 

presence of water was calculated independently for the dry and wet seasons.  High human use 

was defined as a human density of > 16 people/km2 using LandScan (2008) human population 

data.   

Population 

Mean 
slope 

(degrees) 

Mean proximity 
to water (km) 

Mean 
percent 

tree 
cover 

Percent 
area of 

high 
human 

use 

Density of 
roads 

(km/km2) 

Mean 
elephant 

home 
range (km2) 

Dry 
season 

Wet 
season 

Etosha 4.6 10.6 6.2 8.9 0.1 0.07 573 

Chobe 0.6 18.5 18.9 10.8 0.8 0.04 1,431 

Kafue 1.0 5.6 9.1 18.7 0.5 0.06 482 

Zambezi 3.8 2.0 2.3 17.9 21.9 0.20 143 

Luangwa 2.3 6.0 5.4 21.0 12.8 0.12 378 

Niassa 2.0 19.6 19.0 30.1 27.3 0.02 543 

Limpopo 1.9 4.6 4.5 17.5 1.0 0.16 845 
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Table 2-2.  Candidate models considered when assessing habitat selection by elephants 

across southern Africa.  The number of fixed and random parameters (K) is presented.   

  Model Model Structure K 

1. Null  2 

2. Landscape Slope + Distance to water + (Distance to water)2 5 

3. Water and 
Food 

Distance to water + (Distance to water)2 + Proportion tree 5 

4. Slope, Water, 
and Food 

Slope + Distance to water + (Distance to water)2 + Proportion tree 6 

5. Human Density Distance to humans +  Distance to main road +  
Distance to secondary road + (Distance to secondary road)2 

6 

6. Limiting 
Factors 

Slope + Distance to water + (Distance to water)2 + Distance to humans +  
Distance to main road + Distance to secondary road +  
(Distance to secondary road)2 

9 

7. Full Slope + Distance to water + (Distance to water)2 + Proportion tree +  
Distance to humans +  Distance to main road +  
Distance to secondary road + (Distance to secondary road)2 

10 
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Table 2-3.  The top ranking model using Bayesian information criterion (BIC) for female 

and male elephant habitat selection in the dry and wet season.  Top model weight (w) is 

presented along with Spearman rank correlation coefficient (rs) and significance for model 

fit (*).   

   Females 
 

Males 

 
 Top Model w rs 

 
 

Top Model w rs 
 

 

 

    
 

    Dry Season  

    
 

    Etosha  7. Full 1.00 0.96 *  7. Full 1.00 0.96 * 

Chobe  7. Full 1.00 0.96 *  7. Full 1.00 0.62 
 Kafue  7. Full 1.00 0.98 *  7. Full 1.00 0.96 * 

Zambezi  7. Full 1.00 0.96 *  
    Luangwa  7. Full 0.73 0.95 *  5. Human Density 0.95 0.79 * 

Niassa  7. Full 0.97 0.48 
 

 7. Full 1.00 1.00 * 

Limpopo  7. Full 0.82 0.95 *  6. Limiting Factors 0.88 1.00 * 

 

 

    
 

    Wet Season  

    
 

    Etosha  7. Full 0.62 0.98 *  7. Full 1.00 0.84 * 

Chobe  7. Full 1.00 0.89 *  7. Full 1.00 0.99 * 

Kafue  7. Full 1.00 1.00 *  7. Full 0.95 0.87 * 

Zambezi  7. Full 1.00 0.83 *  
    Luangwa  6. Limiting Factors 0.99 0.73 *  7. Full 1.00 0.95 * 

Niassa  6. Limiting Factors 0.88 0.61 
 

 5. Human Density 1.00 0.03 
 Limpopo   6. Limiting Factors 0.98 0.89 *   6. Limiting Factors 0.73 0.99 * 

 

  

 
 
 



40 
 

Table 2-4.  Parameter estimates of the top-ranked BIC model for each population in the 

dry (a) and wet (b) season.  Estimates for which confidence intervals do not cross zero are 

indicated by *.  Missing values (-) occur when a given parameter was not included in the 

top model. 

(a) 

          
Females 

         

 
Etosha 

 
Chobe 

 
Kafue 

 
Zambezi 

 
Luangwa 

 
Niassa 

 
Limpopo 

Slope -0.12 * 
 

0.39 * 
 

0.24 * 
 

-0.15 * 
 

-0.05 * 
 
-0.03 * 

 
-0.06 * 

Distance to water† -4.10 * 
 
-0.54 * 

 
-0.24 

  
-0.73 

  
-1.41 * 

 
3.18 * 

 
-4.64 * 

(Distance to water†)2 1.10 * 
 

0.12 * 
 
-1.64 * 

 
-4.71 * 

 
0.37 * 

 
-0.70 * 

 
3.58 * 

Proportion tree 27.67 * 
 

4.31 * 
 

3.72 * 
 

1.81 * 
 

0.77 * 
 

1.55 * 
 

1.07 * 
Distance to humans 0.24 * 

 
0.04  

 
-1.08 * 

 
1.37 * 

 
0.41 * 

 
-0.18 

  
-0.45 * 

Distance to main road† -0.16 * 
 

0.06 * 
 

0.76 * 
 

0.29 * 
 

-0.05 
  

1.27 * 
 

-0.54 * 
Distance to secondary road† 1.83 * 

 
-0.20 * 

 
-0.81 * 

 
-7.67 * 

 
-1.58 * 

 
3.88 * 

 
0.86 * 

(Distance to secondary road†) 2 -1.28 * 
 
-0.04 

  
0.33 * 

 
8.62 * 

 
0.80 * 

 
-0.73 * 

 
-0.55 

                      
          

Males 
         

 
Etosha 

 
Chobe 

 
Kafue 

    
Luangwa 

 
Niassa 

 
Limpopo 

Slope -0.12 * 
 

0.15 * 
 
-0.03 

     
- 

  
-0.21 * 

 
-0.20 * 

Distance to water† -0.56 * 
 
-1.08 * 

 
-1.09 * 

    
- 

  
-1.59 * 

 
-2.73 * 

(Distance to water†)2 0.09 * 
 

0.13 * 
 

0.20 
     

- 
  

0.36 * 
 

1.03 * 
Proportion tree -22.74 * 

 
3.72 * 

 
3.42 * 

    
- 

  
2.44 * 

 
- 

 Distance to humans 0.06 * 
 

0.05 
  

-0.34 * 
    

1.26 * 
 

1.23 * 
 

-0.61 * 

Distance to main road† -0.12 * 
 
-0.12 * 

 
0.04 

     
-0.10 

  
-0.41 * 

 
-0.66 * 

Distance to secondary road† -2.50 * 
 

0.71 * 
 
-2.25 * 

    
-0.16 

  
1.71 * 

 
0.47 * 

(Distance to secondary road†) 2 0.58 *   -0.05 *   0.62 *         -0.53     -0.96 *   -0.41 * 
† distance measures were in km and multiplied by 0.1 to facilitate model convergence.  
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(b)  

          
Females 

         

 
Etosha 

 
Chobe 

 
Kafue 

 
Zambezi 

 
Luangwa 

 
Niassa 

 
Limpopo 

Slope -0.15 * 
 

0.24 * 
 

0.03 
  

-0.17 * 
 

-0.10 * 
 
-0.07 * 

 
-0.10 * 

Distance to water† 0.64 * 
 

0.11 
  

-0.51 
  

0.93 
  

-0.39 * 
 
-0.22 * 

 
-0.55 

 (Distance to water†)2 0.15 * 
 
-0.04 * 

 
-1.48 * 

 
-1.17 

  
0.16 * 

 
0.01 

  
0.71 * 

Proportion tree 7.52 * 
 

2.44 * 
 

2.83 * 
 

1.66 * 
 

- 
  

- 
  

- 
 Distance to humans -0.09 * 

 
0.10 * 

 
-0.85 * 

 
1.18 * 

 
0.37 * 

 
-0.52 * 

 
0.15 

 Distance to main road† 0.03 
  

-0.04 * 
 

0.25 * 
 

-0.11 * 
 

0.07 * 
 

0.69 * 
 

-0.40 * 
Distance to secondary road† -1.00 * 

 
0.34 * 

 
-2.26 * 

 
-5.12 * 

 
-0.67 * 

 
1.08 * 

 
2.98 * 

(Distance to secondary road†) 2 0.23 * 
 
-0.04 * 

 
0.67 * 

 
6.04 * 

 
0.21 * 

 
-0.05 

  
-2.11 * 

                     
          

Males 
         

 
Etosha 

 
Chobe 

 
Kafue 

    
Luangwa 

 
Niassa 

 
Limpopo 

Slope -0.07 * 
 

0.08 
  

0.05 
     

-0.13 * 
 

- 
  

-0.35 * 

Distance to water† -0.29 * 
 
-0.21 * 

 
-0.63 * 

    
-2.77 * 

 
- 

  
0.56 

 (Distance to water†)2 0.15 * 
 

0.09 * 
 

0.01 
     

1.51 * 
 

- 
  

-0.34 
 Proportion tree -14.80 * 

 
3.39 * 

 
3.11 * 

    
2.25 * 

 
- 

  
- 

 Distance to humans 0.31 * 
 
-0.13 * 

 
0.15 

     
2.06 * 

 
-0.57 * 

 
-0.03 

 Distance to main road† -0.02 
  

0.13 * 
 
-0.32 * 

    
0.22 * 

 
0.01 

  
-0.21 * 

Distance to secondary road† -1.37 * 
 
-0.33 * 

 
-0.20 

     
-2.11 * 

 
1.05 * 

 
0.17 

 (Distance to secondary road†) 2 0.30 *   0.00     0.05           0.97 *   -0.60 *   -0.41 * 
† Distance measures were in km and multiplied by 0.1 to facilitate model convergence. 
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Figure 2-1.  Map of the study area located in eight countries in southern Africa.  Elephant 

local convex hull home ranges were grouped into seven populations (Etosha, Chobe, 

Kafue, Zambezi, Luangwa, Niassa, and Limpopo) based on study site.  Proportion of tree 

cover from no tree cover (0) to complete coverage (1) is presented. 
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Figure 2-2.  Relative probability of selection of water for females and males in the dry and 

wet seasons as a function of the distance to water.  Values for each population are 

displayed only across the range of distances observed within that population.  In the dry 

season, both male and female elephants had a U-shaped selection, where they selected 

areas both near and far from water.  In the wet season, selection for water showed 

greater variability across populations for both sexes.   
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Figure 2-3.  Functional responses in habitat selection for female (red) and male (blue) 

elephants.  Selection coefficients were estimated for each individual using a resource 

selection function model and were modelled as a function of the mean slope, tree cover, 

or proximity to humans within each home range.  Both significant (filled circle) and non-

significant (open circle) selection coefficients were modelled.  Only the regression for 

proximity to humans during the dry season was significant (P = 0.03). 
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