

11-13th April 2022 Venue: WICC Wageningen

WAGENINGEN UNIVERSITY & RESEARCH

www.wur.eu/circular-at-wur-conference

The Anaerobic Digestions as Key Factor in Proposing the Recovery of Renewable Fertilizers in a Circular Economy Frame

F. Adani

GRUPPO RICICLA

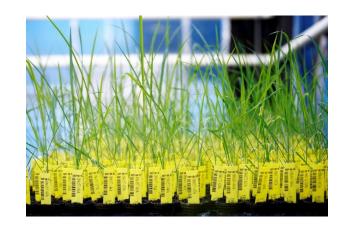
Università degli Studi di Milano - DiSAA

Agriculture and Environment Lab., Biomass and Agroenergy Lab., Bioeconomy and Green Chemistry Lab.

Via Celoria, 2 20133 Milano, Tel. 02-50316546, Fax. 02-50316521

Web site: http://users.unimi.it/ricicla/

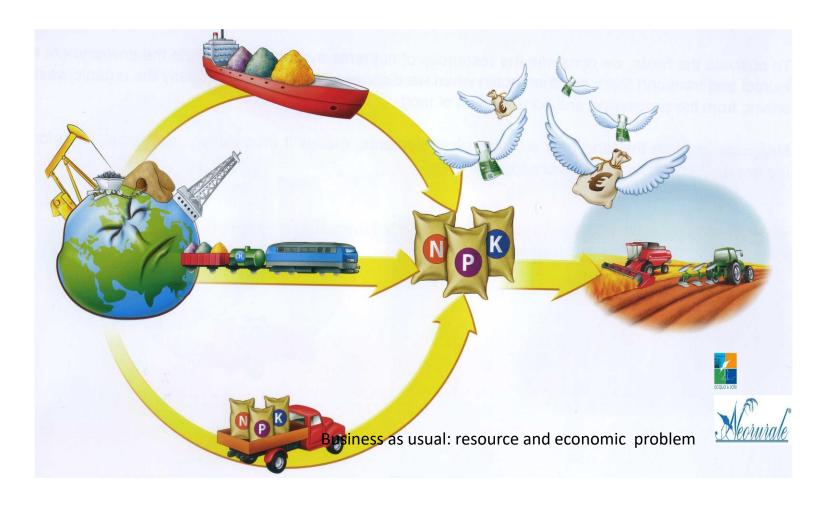
Adjunct Professor, National Center for International Research of BioEnergy, Science and Technology (iBEST), China Agricultural University (China).

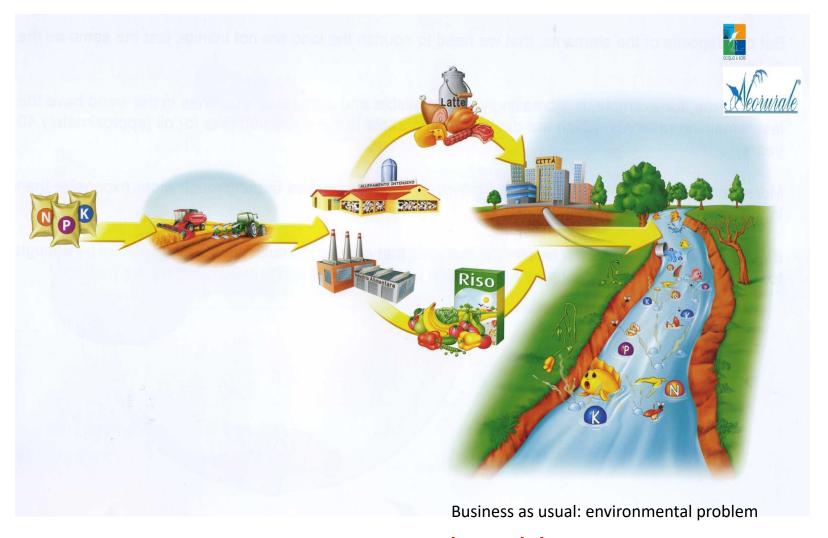


THE GREEN REVOLUTION

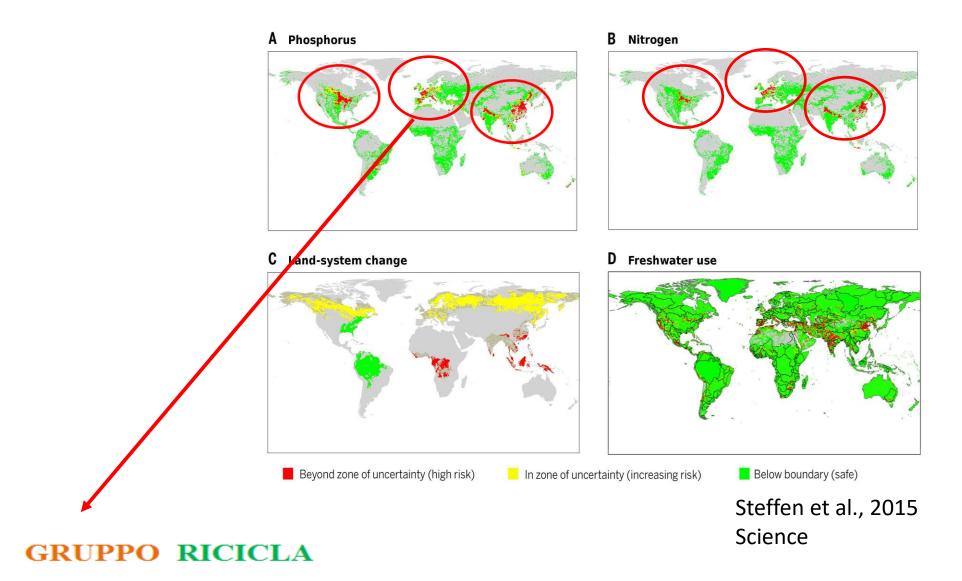
Started on 1944 in Mexico

GREEN REVOLUTION:


Genetic improvement


Massive use of fertilizers and pesticide

Agriculture mechanization



Fertilizers production and use in agriculture: linear economy

Environmental problems

N and P are over planet boundary

NITROGEN EXCESS IN EU

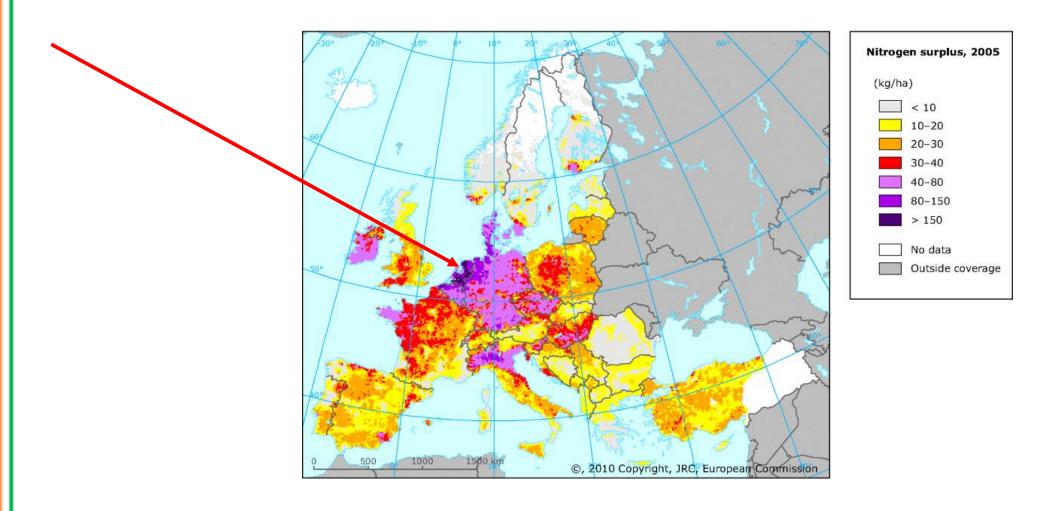
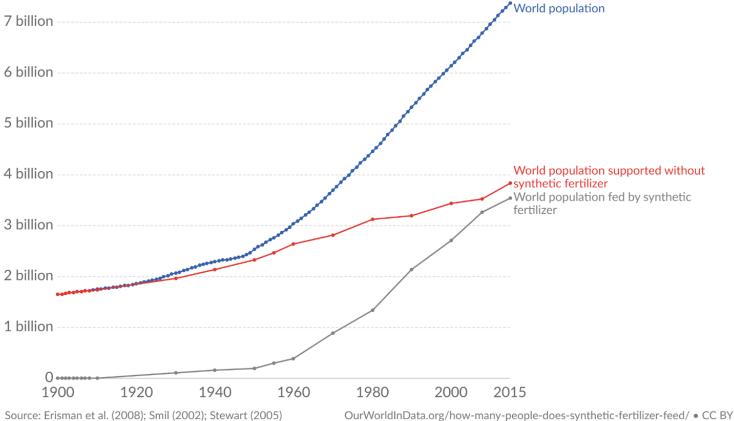


Table 1. The updated control variables and their current values, along with the proposed boundaries and zones of uncertainty, for all nine planetary boundaries. In the first column, the name for the Earth-system process used in the original PB publication (R2009, reference 1) is given for comparison.

Earth-system process	Control variable(s)	Planetary boundary (zone of uncertainty)		Current value of control variable
Biogeochemical flows: (P and N cycles) (R2009: Biogeochemical	P Global: P flow from freshwater systems into the ocean	11 Tg P yr ⁻¹ (11–100 Tg P yr ⁻¹)	<<	~22 Tg P yr ⁻¹
flows: (interference with P and N cycles))	P Regional: P flow from fertilizers to erodible soils	6.2 Tg yr ⁻¹ mined and applied to erodible (agricultural) soils (6.2-11.2 Tg yr ⁻¹). Boundary is a global average but regional distribution is critical for impacts.		~14 Tg P yr ⁻¹
	N Global: Industrial	62 Tg N yr ⁻¹ (62-82 Tg N yr ⁻¹).	<<	~150 Tg N yr ⁻¹
	and intentional biological fixation of N	Boundary acts as a global 'valve' limiting introduction of new reactive N to Earth System, but regional distribution of fertilizer N is critical for impacts.		


HOWEVER, FERTILIZERS USE WILL INCREASE WORLDWIDE

World population with and without synthetic nitrogen fertilizers

Estimates of the global population reliant on synthetic nitrogenous fertilizers, produced via the Haber-Bosch process for food production. Best estimates project that just over half of the global population could be sustained without reactive nitrogen fertilizer derived from the Haber-Bosch process.

Food Production issues

Fertilizers are finite source and require large amount of energy to be produced

N

Urea production requires fossil fuels.

equivalent of four barrels of oil to produce one ton of urea.

4-barrel energy equivalency

1-ton urea

Celebrating 35 Years

www.ifdc.org

Nitrogen fertilizers are produced starting from N₂

The fertilizers manufacturing industry consumes about 3-5 % of the world's energy supply

The total annual demand of fertilizers will increase of 25% by 2030 of which 62% of N

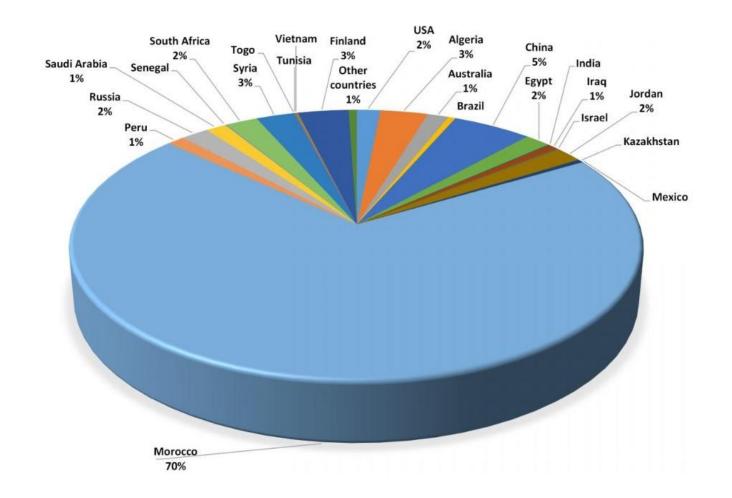
Phosphorus Containing Fertilizers Are Produced from Mined Phosphate Rock

A Non -Renewable Finite Resource

Celebrating 35 Years

www.ifdc.org

PHOSPHORUS IS A NO-RENEWABLE RESOURCES


A broken biogeochemical cycle

Excess phosphorus is polluting our environment while, ironically, mineable resources of this essential nutrient are limited. **James Elser** and **Elena Bennett** argue that recycling programmes are urgently needed.

Phosphate is mined to produce fertilizers for crops, but phosphorus leaching into water supplies is an environmental hazard.

P...CONCENTRATED IN FEW PLACES...

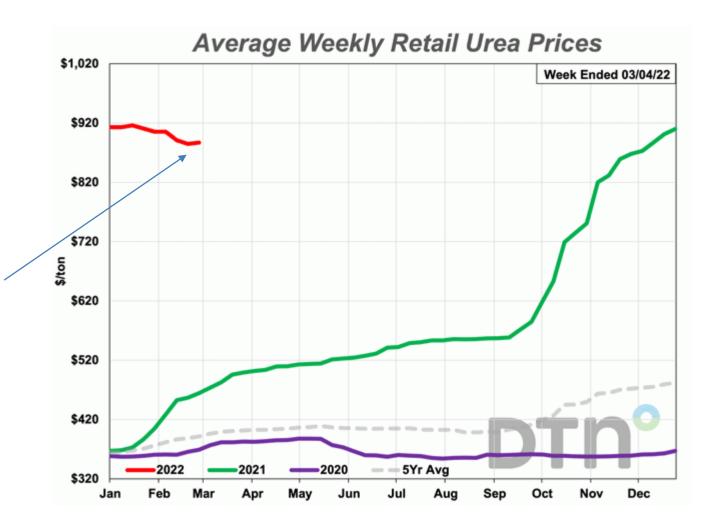
World reserve 71 Gton

Country	Gigatons of P-rock	% of global	
Global	71	100	
Morocco	50	70	
China	3.7	5	
Finland	2.4	3	
Algeria	2.2	3	
Syria	1.8	3	
South Africa	1.5	2	115
Jordan	1.3	2	K, 20
Russia	1.3	2	USGS 2016; GTK, 2015
JSA	1.1	2	2016
Australia	1	1	Ses
Saudi Arabia	0.96	1	ž

Political issues?

USGS Phosphate Rock Statistics and Information

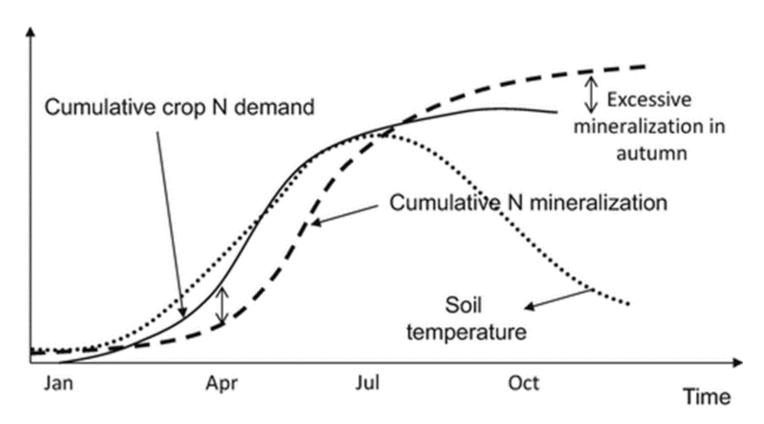
Potassium-Containing Fertilizers Are Produced from Mined Potassium Salts


A Non-Renewable, Finite Resource

Celebrating 35 Years

www.ifdc.org

DTN Retail Fertilizer Trends Most Retail Fertilizer Prices Resume Climb at Beginning of March


Russ Queen 3/09/2022

Organic waste is «gold»

The Peepoo biodegradable bag captures human excreta and can be used as fertilizer.

Bio-Fertilizers should be able replacing mineral fertilizers

Da Organic Matter Mineralization as a Source of Nitrogen, 2017

From biomasses to fertilizers:

What we need?

We need technologies able to produce renewable fertilizers able to substitute synthetic fertilizers.

.....circular economy

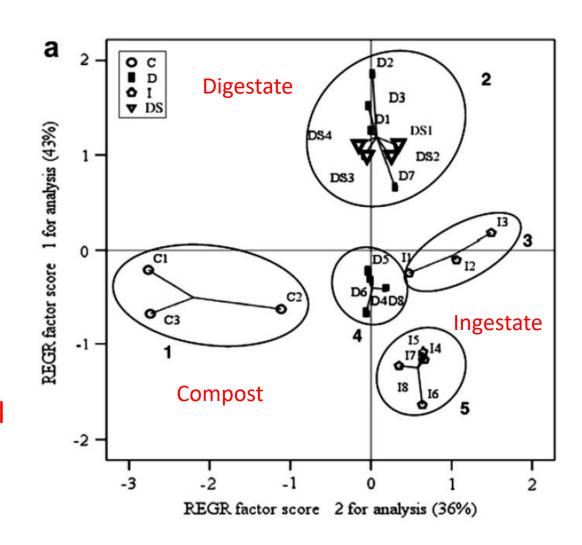
e.g.: ANAEROBIC DIGESTION transforms biomass into

BIOFUELS

.....and more.....

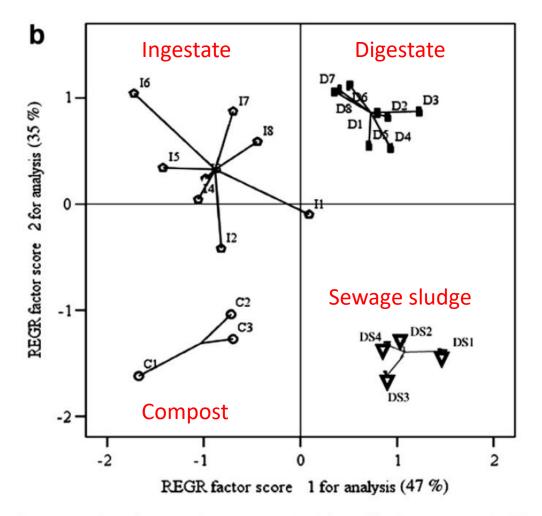
Renewable fertilizers®

Anaerobic digestion: modification of both elements and organic matter contained


Biological stability = OC stability

Compost = digestate >> ingestate

Good amendment properties (soil fertility)



What about mineral fraction.....?

Digestate is different for ingestate and compost.

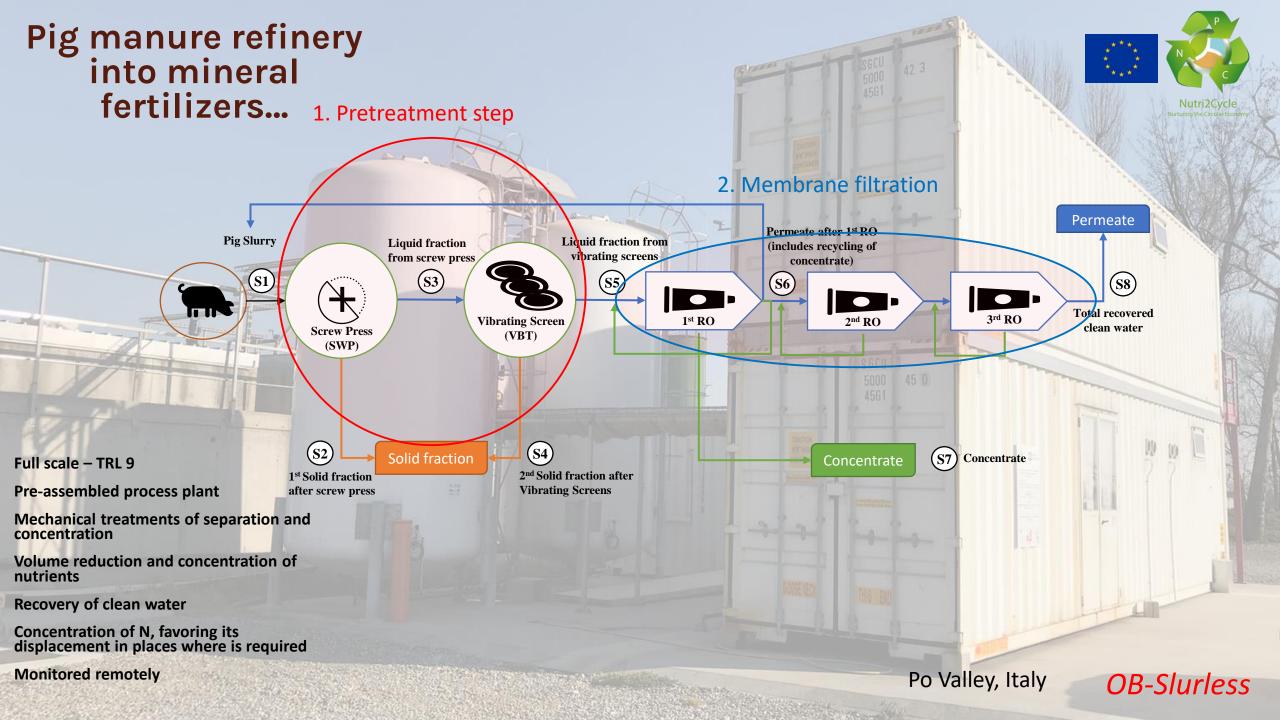
Good fertilizers replacing synthetic mineral fertilizers

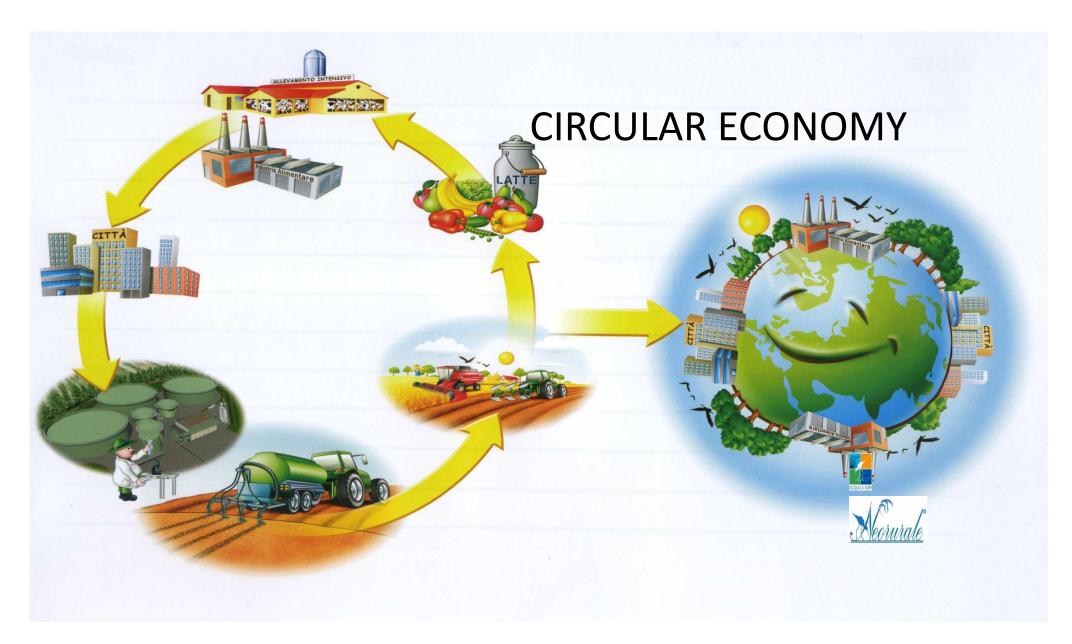
Fig. 1. PCA plots for amendment properties (a) and fertilizer properties (b).

Agronomic use of liquid separated fraction of digestate

Moreover: anaerobic digestion makes digestate suitable to be transformed in mineral fertilizers if nutrient exceeded plant request............

..REcovered Nitrogen from manURE (RENURE)


total organic carbon to total N ≤ 3 or a mineral N to total N ratio ≥ 90%



Ammonia sulfate production by NH₃ stripping for export

Po valley, Italy

Digestato equiparato (Digestate equivalent) ai fertilizzanti chimici: stabilite nuove agevolazioni! Pubblicato in Gazzetta il D.L. 21 marzo 2022, n. 21

- "1. In order to promote the spread of ecological practices in the biogas production phase and reduce the use of chemical fertilizers, increase the supply of organic matter in the soils and limit production costs, the Agronomic Utilization Plans referred to in article 5 of the decree of the Minister of Agricultural, Food and Forestry Policies of 25 February 2016, published in the ordinary supplement to the Official Gazette of the Italian Republic no. 90 of 18 April 2016, provide for the replacement of synthetic chemical fertilizers with equivalent digestate referred to in Article 52, paragraph 2-bis, of the decree-law of 22 June 2012, no. 83, converted, with modifications, by the law 7 August 2012, n. 134, as amended by paragraph 2 of this article.
- 2. In article 52, paragraph 2-bis, of the decree-law no. 83 of 2012, converted, with amendments, by law no. 134 of 2012, the second sentence is replaced by the following: "The digestate referred to in this paragraph is considered equivalent to fertilizers of chemical origin when it is obtained from the anaerobic digestion of substances and materials alone or mixed with each other, pursuant to provided for by article 22 of the decree of the Minister of Agricultural, Food and Forestry Policies of 25 February 2016, published in the ordinary supplement to the Official Gazette of the Italian Republic no. 90 of 18 April 2016, used in a low-emissivity and high-efficiency mode of nutrient recycling and in compliance with the requirements and characteristics defined by the decree referred to in the third period of this paragraph, for products that act on the soil of chemical origin. The characteristics and methods of use of the equivalent digestate are defined by decree of the Minister of Agricultural, Food and Forestry Policies, in agreement with the Minister of Ecological Transition, to be adopted within thirty days from the date of entry into force of this provision. "
- 3. Letter o-bis) of paragraph 1 of article 3 and Chapter IV-bis of Title IV of the decree of the Minister of Agricultural, Food and Forestry Policies of 25 February 2016, as introduced by article 1, paragraph 527, of the law 27 December 2019, n. 160, are repealed.

GRUPPO RICICLA

Environmental Performance in the Production and Use of Recovered Fertilizers from Organic Wastes Treated by Anaerobic Digestion vs **Synthetic Mineral Fertilizers**

Axel Herrera, Giuliana D'Imporzano,* Massimo Zilio, Ambrogio Pigoli, Bruno Rizzi, Erik Meers, Oscar Schouman, Micol Schepis, Federica Barone, Andrea Giordano, and Fabrizio Adani*

RF = Recovered fertilizers (digestate)

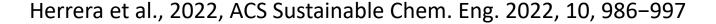

RS = Synthetic mineral fertilizers

Table S6. Average maize productions yield in grain for

the three years of experiments (mean \pm SD; n=9). Table

modified from Zilio et al., 2021.

Fertilizer	Grain yield dw ^a (Mg Ha ⁻¹)
Unfertilized	$10.4 \pm 3.5 \ (a)^b$
Synthetic fertilizer	17.4 ± 1.2 (b)
Recovered fertilizer	18.1 ± 2.9 (b)
adw: dry weight	

^bLetters are referred to One-way ANOVA analysis (Tukey post-test, p < 0.01; n=9).

GHG, NH₃ and NO₃⁻ emissions

Table S4. Comparison between emissions (Ammonia, GHG and Nitrate leaching) and grain production measured from experimental soils fertilized with digestate and urea during the agronomic season (maize) (RF = Recovered Fertilizers and SF = Synthetic Fertiliser). The column "unfertilized" refers to the control plots set during the experimental design.

RF =	recovered	fertilizers	(digestate)	
------	-----------	-------------	-------------	--

RF = Synthetic mineral fertilizers

Parameter	Unit	RF	SF	Unfertilized
NH ₃ ^a	kgN ha ⁻¹	$25.6 \pm 9.4(a)^b$	$24.8 \pm 8.3(a)$	Undetectable ^c
N_2O^d	kgN ha ⁻¹	$7.59 \pm 3.2 (ab)$	$10.3 \pm 6.8(b)$	$1.71 \pm 1.1(a)$
CO_2^d	kgC ha ⁻¹	$6216 \pm 1160(a)$	$6144 \pm 1491(a)$	$5698 \pm 935(a)$
$\mathrm{CH_4}^\mathrm{d}$	kgC ha ⁻¹	$0036 \pm 0.03(a)$	$0.053 \pm 0.04(a)$	$0.066 \pm 0.06(a)$
NO ₃ -e	$ m mgN~kg^{-1}$	6.45 ± 7.6 (a)	7.24 ± 8.6 (a)	$6.23 \pm 7.1(a)$
Grain Yield	${ m Mg~ha^{ ext{-}1}DM^f}$	$18.1 \pm 2.9(b)$	$17.4 \pm 1.2(b)$	$10.4 \pm 3.5(a)$

^aCumulative emissions measurements carried out up to 90 hours after spreading (n = 9). The measures were repeated for three consecutive years (2018-2019-2020). Total N dosed: 370 kgN ha⁻¹ (Digestate), 185 kgN ha⁻¹ (Urea) (from Zilio et al., 2021)

fDM = dry matter

Herrera et al., 2022, ACS Sustainable Chem. Eng. 2022, 10, 986-997

^bLetters in brackets are referred to One-way ANOVA analysis carried out for each of the emission source reported in the table (Tukey post-test, p < 0.05; n = 3).

^cAmmonia emission in unfertilized plots did not differ from background.

 $^{^{}d}$ Cumulative emissions measurements carried out from 28/05/2020 (spreading) to 17/03/2021 (293 days, n = 36). Total N dosed: 370 kgN ha⁻¹ (Digestate), 185 kgN ha⁻¹ (Urea)

^eAverage concentration of NO₃⁻ in the soil at 1-meter depth. The measurements were carried out in 3 moments of the season (before spreading in pre-sowing, 20 days after spreading and after harvesting). n for each measure = 3. Total N dosed: 370 kgN ha⁻¹ (Digestate), 185 kgN ha⁻¹ (Urea)

RF = recovered fertilizers (digestate)

RF = Synthetic mineral fertilizers

Figure 2. Comparative environmental results for Scenarios Recovered Fertilizers (RFs) and Synthetic Fertilizers (SFs). Impact assessment (Ecopoint—Pt) calculated according to the ReCiPe 2016 end point (H) V 1.03 impact assessment method.

Definition Circular Economy

A Circular Economy is an industrial system that is restorative or regenerative by design. It replaces the 'end-of-life' concept with restoration, shifts towards the use of renewable energy, eliminates use of toxic chemicals, which impair reuse, and aims for the elimination of waste through the superior design of materials, products, systems, and, within this, business models.

Circular economy is not recycling but it must include the review of production processes to allow a real and safe use of waste as feedstock to produce "Renewable Fertilizers".

- E.g. Reducing chemicals (antibiotics) in animal slurries = review animal breeding;
- E.g. Reducing pollutant and inert in OFMSW = door to door separate collection and bioplastics as substitute of plastic;
- E.g. Reducing pollutant, micro plastics etc. in sewage sludge = redesign goods limiting the presence of pollutant and microplastics and redesign wastewater treatment plant.

Circular responsibility traceability City Inhabitant asplica amminist. Food security traceability treatment acqua & sole traceability **Precision** agriculture distribution **RICICLA**

Real example of Circular economy under investigation in two H2020

NUTRI2CYCLE: Transition towards a more carbon and nutrient efficient agriculture in Europe

Call: H2020-SFS-2016-2017: Sustainable Food Security - Resilient and resource-efficient value chains

SYSTEMIC aspires to produce fertilizers that are up to standard compared to synthetic products. In order to realize this ambition, product quality will be monitored and optimized in order to meet the criteria of the end users, who are naturally closely involved in the whole process. This iteration process ensures that demonstration plants will produce user-specific products that can be applied in the nearby region.

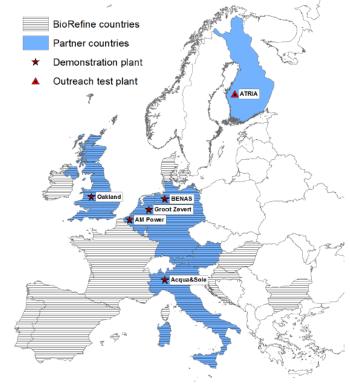


Figure 2 Location of SYSTEMIC's large scale demonstration plants for the demonstration of novel nutrient recovery technologies for biowaste valorisation.

THANK YOU FOR YOUR ATTENTION

Arianna Carrara Biotechnologist

Fulvia Tambone Associate professor

Parisa Abbasi Parizad Biologist

Axel Herrera *Agricultural Engineer*

Marta Dell'Orto Agronomist

web site: http://users.unimi.it/ricicla/

Barbara Scaglia
Associate professor

Andrea Goglio *Bioelctrochemistry*

Mirko Cucina Biotechnologist

Elisa Clagnan Molecular biologist

Min Su Agricultural Engineer

Tommy Pepè Sciarria *Biologist*

Massimo Zilio Biologist

Patrizia De Nisi Agronomist

Giuliana D'Imporzano Agronomist

