Towards field specific phosphate application norms with machine learning

December 12th, 2018 - FAIR Data Science for Green Life Sciences, Wageningen

Erwin Mollenhorst, Michel de Haan, Jouke Oenema, Rita Hoving, Roel Veerkamp, Claudia Kamphuis

Nutrient cycle

Current situation

Fixed phosphate application norms for crops / grassland

- 3 classes, based on P status of field
- For crops: 50 / 60 / 75 kg P₂O₅ (app. 22 / 26 / 33 kg P)

However, differences in P yield dependent on, e.g.:

- Field
- Crop
- Weather
-

Goal

To predict future maize yields

based on farm data and

open source weather data

Dataset from "KTC De Marke"

162 records of maize yields

24 different fields

Years 1996 - 2014

On average 7 times maize

Information on:

N and P input and output

Irrigation, P status of field

Weather data (own weather station and open source)

Predicted variable

Maize yield, expressed in kg P per ha per year

Average yield: 22 kg P (13 - 36)

Generalized boosted regression models gbm package in R

Validation

70% train, 30% test, 1 year validation

Final performance: 5 validation years combined

Performance criteria

Ideal situation: y = x

Performance criteria

RMSE – root mean squared error

Deviation from y=x

Performance criteria

RMSE root mean squared error

Deviation from y=x

relative to linear fit

How much variation is

explained (trend)

Pyield 2010 – Observed vs predicted

Pyield 2011 – Observed vs predicted

Norm vs model

Most important variables

Cropping scheme

Crop in previous year (grass/maize)

Soil status

Phosphate status field

Weather

Maximum temperature in July

Yield history

Average Pyield maize same field past 7 yrs

Conclusions

Machine learning is marginally better in predicting P yield than a generic norm (similar RMSE)

Furthermore, a trend could be shown in P yield (r = 0.40)

Multiple data sources are utilized

To be further explored, e.g., by including grassland

Lessons learned

- Gained knowledge and expertise in machine learning
- Long term predictions are possible on available data
 - Detailed farm records
 - Open source data
- Importance of domain knowledge

Acknowledgements

KTC De Marke

Gerjan Hilhorst

This project was part of KB-27-01-001

