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1. OBJECTIVE

 Develop a method to assign a DELETERIOUSNESS 

SCORE to variants anywhere in LIVESTOCK GENOMES.
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Model Objective 



2. METHODOLOGY 

Combined Annotation Dependent Depletion (CADD)

Standing on the Shoulders of Giants

• Kircher et al., Nature Genetics 

2014

• Beyond SIFT, PROVEAN,

PolyPhen etc.: one model, 

one comparable score 

for variants in coding 

and non-coding regions



2. METHODOLOGY 

Feasibility Study: mCADD



2. METHODOLOGY 

Next step: P(ig)-CADD



2. METHODOLOGY 

pCADD – Model outline

pCADD content

Proxy benign Variations

Proxy deleterious 
Variations

Variation Annotations

Algorithm that learns a 
barrier to differentiate 
between both classes

Model outline



 Infer common ancestor with closely 
related species

2. METHODOLOGY 

pCADD – proxy benign variations

Ancestor inference

pCADD content

Proxy benign Variations

Proxy deleterious Variations

Variation Annotations

Algorithm that learns a 
barrier to differentiate 
between both classes



2. METHODOLOGY 

pCADD – Simulating SNPs and their constraints 

Deriving substitution rates

pCADD content

Proxy benign Variations

Proxy deleterious Variations

Variation Annotations

Algorithm that learns a 
barrier to differentiate 
between both classes



2. METHODOLOGY 

pCADD – Variant annotations

39 basic annotations

Ensembl-VEP91

Secondary DNA 
structure

conservation scores

Protein scores

pCADD: 868 features

Annotation labels

pCADD content

Proxy benign Variations

Proxy deleterious Variations

Variation Annotations

Algorithm that learns a 
barrier to differentiate 
between both classes



derived

simulated

2. METHODOLOGY 

pCADD – Generation of the Machine Learning Model

Decision
boundary

X1

X2

X3

Notes: X(n)=feature(n)

In this research more than 3 

features were used

General representation of a Machine 

learning model

pCADD content

Proxy benign Variations

Proxy deleterious Variations

Variation Annotations

Algorithm that learns a 
barrier to differentiate 
between both classes



3. METHODOLOGY

pCADD Model Extension - PHRED-like scores

• All possible SNPs on chromosome 

1-18 and X were generated and 

annotated (7,158,434,598).

• SNPs were ranked with respect to 

their deleteriousness.  

-10 ∗ 𝑙𝑜𝑔10(
𝑖

7158434598
)

Lowest 90%

•PHRED: 0-
10

Lowest 99% 

•PHRED: 0-
20

Lowest 
99.9% 

•PHRED: 0-
30

Hypothetical representation of PHRED-like score distribution



4. Results

pCADD - Evaluating Known Deleterious Variants

Hap. Type SSC Position Ref Alt Gene AA change 
(SIFT) 

Raw-score PHRED-
score

DU1 Splice-donor 12 38,922,102 G A TADA2A - 0.95885 21.88258

LA1 Splice-region 3 43,952,776 T G POLR1B - 0.69472 10.14103

LA2 Frameshift 13 195,977,038 C - URB1 1961-V/X NA NA

LA3 Missense 6 54,880,241 T C PNKP 96-Q/R 
(0.02) 

0.9967 29.46386

small set of known variants



MACC1 example of PHRED-scores 

4. Results

pCADD – JBrowser Implementation



4. Results

pCADD – Identification of NCBI genebuild element

Intergenic high-impact, high frequent SNP 
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