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Obstacle detection for a sweet-pepper harvest robot.

2

Plant part localization.

2

Using state-of-the-art machine learning: Deep Learning.

2

Large annotated datasets on a per-pixel level.

2

Synthetic dataset to bootstrap the model.
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Generated 10k images on a supercomputer.
Annotated 50 empirical photographs manually.

Create a semantic segmentation deep learning pipeline!

2

Train on synthetic data

2

Fine-tune on empirical data
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(C1) 4 feature maps (S2) 6 feature maps  (C2) 6 feature maps
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sub-sampling layer | convolution layer | sub-sampling layer IWComectedHLP]

Cel;i'er.glement of the kernel is placed over the (0% 0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.
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Image as published in "Conditional Random Fields as Recurrent Neural Netw
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Real Image




Classification
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We manually labelled 50 empirical images for the classes
fruit, peduncle and stem (30 training, 20 validation).

For the synthetic dataset, 250 images were re-rendered
with separated instances (200 training, 50 validation).
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‘Synthetic Image













Results

" Fruit detection over empirical test set

Network Precision | Recall IoU

Pixelwise

MaskRCNN
over R101
trained on

synthetic
MaskRCNN
with
finetuning
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Conclusion

We have succesfully trained a model to tell us where plant
parts are in the image.

Synthetic data helps to improve the performance.

Mask-RCNN moreover provides the recognition of
Instances.

This is of extreme improtance for agricultural robotics.
The computer vision can now cope with a lot of the

variation it can encounter. We now have a method to
exactly tell where the robot must go.






