Breeding API (BrAPI) Session C: Data Sharing & Use

Maikel P.H. Verouden

December 12, 2018

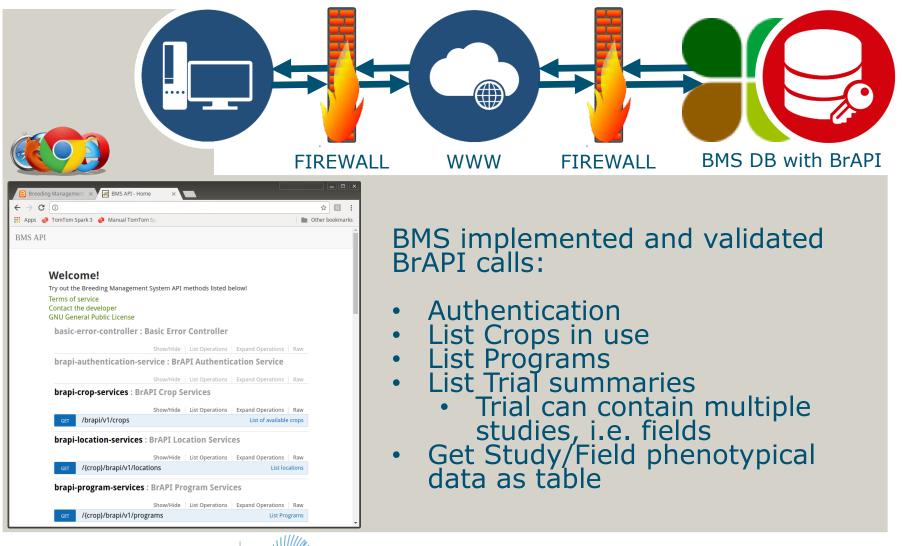
Biometris Quantitative methods brought to life

Plant Breeding

- Crucial to feeding a rapidly growing population
- Necessity to breed new varieties
 - high productivity with reduced inputs
 - Adapted to new eco-agricultural environments resulting from climate change
- Complex undertaking that necessarily integrates many interrelated disciplines
 - Each their own conventions for data structures and storage (un-FAIR!),
 - Increasingly large, multi-faceted datasets

What is

- Breeding Application Programming Interface is an effort to enable Interoperability and Reusability among plant breeding data-bases.
 - API: a set of subroutine definitions, protocols for building application software.
 - Allow requesting systems to access and manipulate resources.
 - Implemented at the database side and in dedicated application software



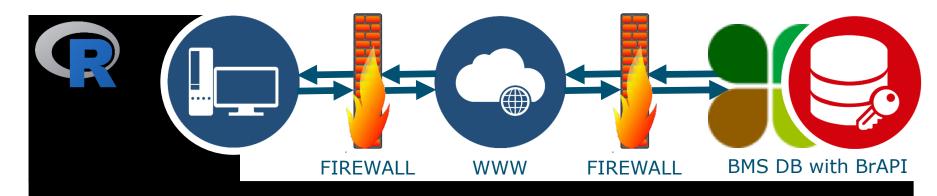
- Specifies a standard interface for plant phenotype /genotype databases to serve their data to crop breeding applications.
 - It is a shared, web-based, open standard
 - Compatibility: MCPD, MIAPPE
 - Optimized for Speed
 - Modular
 - Community-Driven (see <a href="mailto:brapility-brive-community-brive-commut-community-brive-commut-community-brive-commut-commu

Example Database (BMS) with BrAPI

100 years

Example Software BrAPI R Package (I)

WAGENINGEN UNIVERSITY & RESEARCH

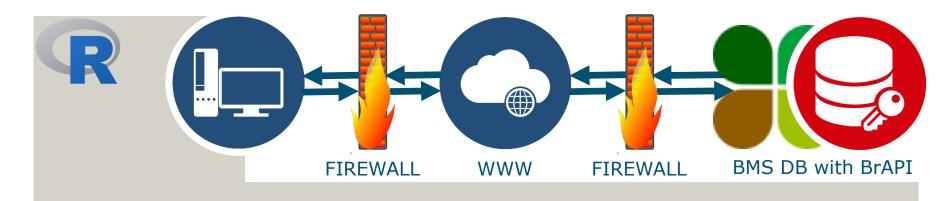


Example Software BrAPI R Package (II)

Example Software BrAPI R Package (III)

- > # Display the first three rows of the data extracted from BMS
- > head(studyTable21, n = 3)[, c(1, 5, 7, 9, 10, 11)] # A few selected columns are shown vear locationName germplasmName plotNumber replicate GY calc thal22661

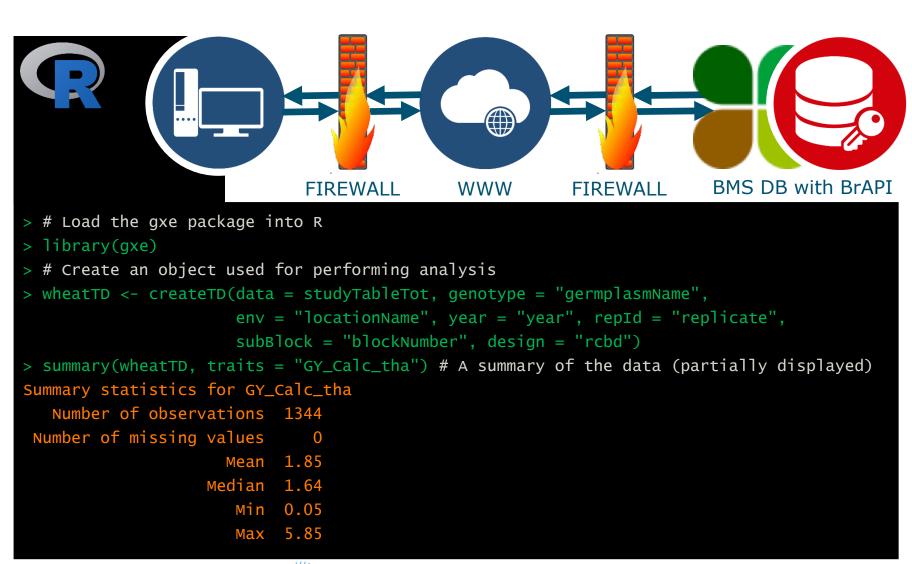
	- · · · · · · · · · · · · · · · · · · ·	It is it if it is			
1 2017	Site01	BELIKH02	1	1	3.957
2 2017	Site01	SAHEL77	2	1	4.222
3 2017	Site01	O.ZENADI	3	1	2.481


> head(studyTable38, n = 3)[, c(1, 5, 7, 9, 10, 11)] # A few selected columns are shown
year locationName germplasmName plotNumber replicate GY_Calc_tha|22661

1 2017	Site18	BELIKH02	1	1	1.187
2 2017	Site18	HEBD/GDO	2	1	0.974
3 2017	Site18	O.ZENADI	3	1	1.887

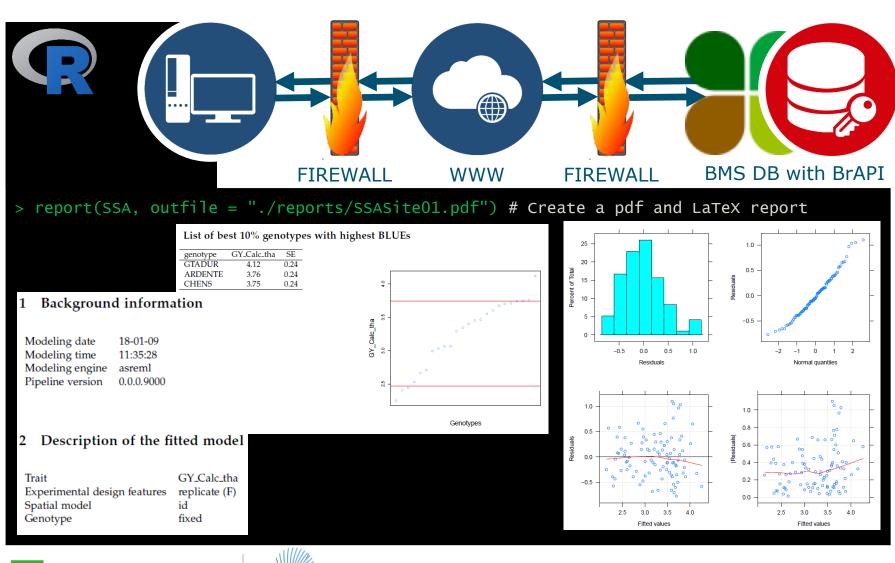
Use Case BrAPI and gxe

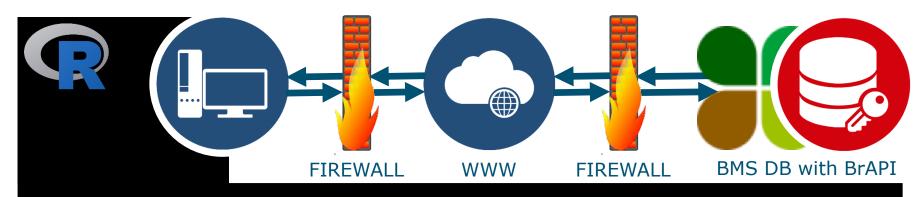
- Read data into R using BrAPI R package
- Analyse data using gxe R package


Advantages:

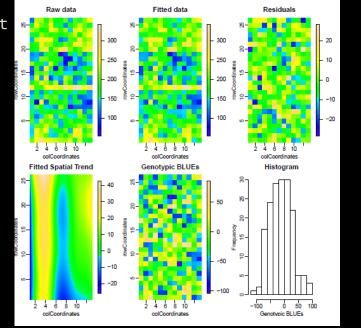
- Platform independent
- Open source
- Both packages are under development and will become available on CRAN

gxe Package (I)


gxe Package (II)

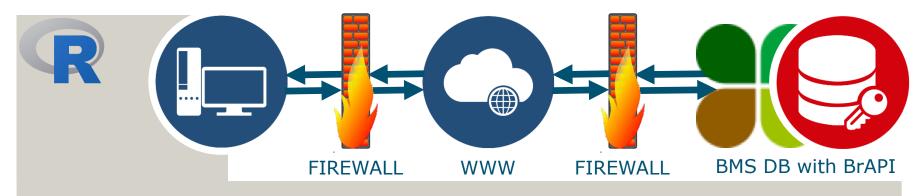


gxe Package (III)



gxe Package (IV)

For row column designs SpATS is used as default # to estimate the spatial trend.


	Effective	Model	Nominal	Ratio	Type
Genotype	168.0	168	168	1.00	F
Intercept	1.0	1	1	1.00	F
Replicate	1.0	1	1	1.00	F
Row (replicate)	18.3	52	51	0.36	R
Col(replicate)	1.1	26	25	0.04	R
Linear trend along cols	1.0	1	1	1.00	S
Linear trend along rows	1.0	1	1	1.00	S
Linear trend along rows and cols	1.0	1	1	1.00	S
Smooth trend along cols	4.2	8	8	0.52	S
Smooth trend along rows	0.0	14	14	0.00	S
Linear trend in rows changing smoothly along cols	0.0	8	8	0.00	S
Linear trend in cols changing smoothly along rows	1.3	14	14	0.09	S
Smooth-by-smooth interaction trend over rows and cols	2.3	28	28	0.08	S
Total	200.2	323	321	0.62	
Residual	137.8				
Number of observations	338				

Use Case BrAPI and gxe R packages

Available functions gxe R package:

- Single Site Analysis: Using SpATS, asreml or Ime4
- GxE analysis: Variance covariance modeling, AMMI, Finlay-Wilkinson, Stability
- QTL mapping: Quality checks, QTL Detection, Multi QTL modeling

Report generation available for all analyses:

- PDF and LaTeX
- Figures saved separately for reuse

Questions?

BrAPI:

 Unlocks data by making it FAIR

Internet:

 <u>brapi.org</u> links to BrAPI (API specs, events, etc.) and Software (a.o. BrAPI R package)

