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Data is never perfect

• Precise method

• Reliability

• Structured approach

• Cost-efficient

• Integrate human knowledge
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• Budget: 16.2 m Euro

• Lighthouse project

• 48 partners

• 100 organization involved in demonstrations 

 Agriculture

 Forestry

 Fishery

DataBio project

https://www.databio.eu

https://www.databio.eu/
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Big data

• Data from Neuropublic SA

• Images available for 16 

days for year 2016 

• Labelled at parcel level

• 27k parcels for 1 tile

Wheat

Maize

Legumes

Fruits
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Satellite Image time series

Time series of pixel values
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Approach

Preprocessing Learning

Input: Time-series of 
pixel spectral values 

Classifier

Inference New Data

Add new 
samples 

Classification
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Quality of training data

What if the parcels are incorrectly labelled?

Preprocessing Learning

• Identify outliers and use clean parcels to train classifier 

• Traditional approach: statistically remove outliers, needs understanding of data

Data cleaning

Additional step

Expert

Input



Copyright 2018 CSEM   | RNN based classification of land usage |  I. Kastanis |  Page 7

Data cleaning

• AutoEncoder learns optimal filters for reconstructing the input signal

Encoder Decoder
R

G
B

NIR

1 sample: 16x4

0.2
1.3
.
.
.
2.5
.14
0.3

Reconstructed

t = 0  1  2  . . . . . . . . . . . . . . . . . . . 15         

Latent space

• RNN-AE encodes spectral temporal changes for a particular crop
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Data cleaning 

• Wheat: latent space features for pixels from 1312 parcels

 k-mean clustering (k=2) iterated 2 times, choose clean parcels (424)

Expert
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Binary Classifier

• Build a classifier for each crop using its pre-trained AE

• Non-crop classes selected from other crops (balanced classes)

RNN-based 
Encoder
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Legumes Fruits

La
te

n
t 

sp
a

ce

D
en

se
 la

ye
r

Si
n

g
le

 o
u

tp
u

t

Probability of 
pixel belonging 
to crop 
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Parcel results

• Classifier generated probability for each pixel in a parcel

• Parcel classified using “Majority Vote”

Mixed pixel parcels: 
802/888 as wheat
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Detect non-wheat

• Parcels from legumes and stone fruits: 516 parcels

509 7

Non-wheat Wheat

Predicted labels
Accuracy = 0.98
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• Legumes (1102 clean from 1437 parcels)

• Mixed pixel parcels: 253/335 as legumes

Results on other varieties

• Maize (971 clean from 2003 parcels)

• Mixed pixel parcels: 818/1032 as maize
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Results on untrained sub-varieties

• Binary classifier tried out-of-box on sub-varieties with more than 100 parcels

Wheat (7931*)

Legumes (1043*)

Maize (8019*)

* Crop Variety used for training AE and classifier
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• Systematic approach

• Efficient and precise method

• Extendable to other sensors

• Digitalization of knowledge

Conclusion

Preprocessing LearningData cleaning Expert

Expert

• Future direction: Prediction


