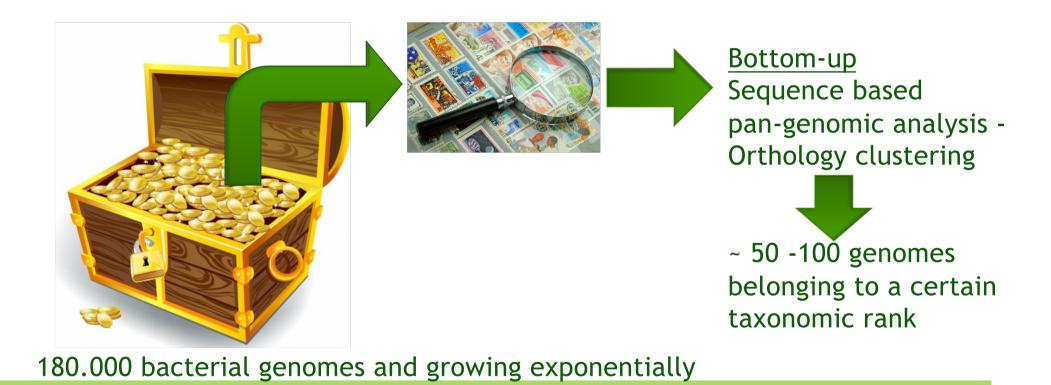
Tools for genome annotation SAPP/GBOL/Empusa

Peter Schaap Laboratory of Systems and Synthetic Biology Fairbydesign.nl



Laboratory of Systems and Synthetic Biology

- <u>Computational Systems Biology</u> -
 - Semantic and Model-based Systems Biology
- Microbial Systems and Synthetic Biology
 - Wet & Dry lab cycle
- <u>How genome information leads to function</u>
- How microbial metabolic processes are regulated and adapt in extant species,
- How microbial organisms and ecosystems respond to (a)biotic environmental cues
- How they can be manipulated to enhance the yield of desired products or to diminish their pathogenicity.

SAPP: Problem definition

AGENINGEN

looyear

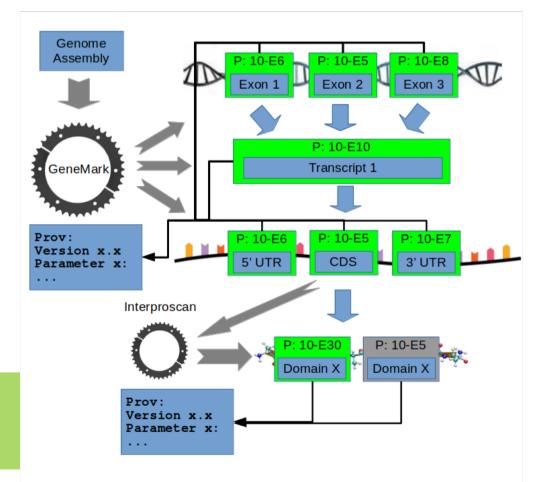
How to Really Unlock this Treasure Chest? Key Word: Interoperability

- <u>Bottom-Up</u>: From sequence to function
- Sequences are highly <u>Interoperable</u>
 - Available in an <u>accepted</u>, <u>specified</u> format (Fasta-format and IUPAC code for representation of AA and Nucl.)
- Limitations:
 - Aligning sequences is computational intensive scales quadratically
 - Focus on similarity what is in common

- <u>Top-Down</u>: From function to sequence
- Both common and unique features
- Very scalable (linear)
- Limitations: Currently not Interoperable
 - Functional descriptions are in a 'free format' Not machine readable
 - Data provenance of <u>derived data</u> not (well) presented in the DDBJ/ENA/GenBank Feature Table

4 ctg123 . mRNA 5 ctg123 . mRNA 6 ctg123 . mRNA	A "proj 1000 9000 . + . ID=gene00001;Name=EDE 1000 9000 . + . ID=tfbs00001;Parent=g 1050 9000 . + . ID=mRNA00001;Parent=g 1300 9000 . + . ID=mRNA00002;Parent=g	per" forma	at
7 ctg123 . exon 8 ctg123 . exon 9 ctg123 . exon 10 ctg123 . exon 11 ctg123 . exon 12 ctg123 . CDS 13 ctg123 . CDS 14 ctg123 . CDS 15 ctg 16 ctg DEFINITION 17 ctg 18 ctg ACCESSION 19 ctg VERSION	1300 1500 + ID=exon00001;Parent=mkvxaveves 1050 1500 + ID=exon00002;Parent=mkvxaveves 3000 3902 + ID=exon00003;Parent=mkNA00001,mkNA00003 5000 5500 + ID=exon00005;Parent=mkNA00001,mkNA00002,mkNA00000 7000 9000 + ID=exon00005;Parent=mkNA00001,mkNA00002,mkNA00000 1201 1500 + 0 ID=cds00001;Parent=mkNA00001,mkNA00002,mkNA00000 1201 1500 + 0 ID=cds00001;Parent=mkNA00001;Name=edenprotein.1 3000 3902 + 0 ID=cds00001;Parent=mkNA00001;Name=edenprotein.1 5000 5500 + 0 ID=cds00001;Parent=mkNA00001;Name=edenprotein.1 5000 5500 + 0 ID=cds00001;Parent=mkNA00001;Name=edenprotein.1 5000 5500 DNA PLN 21-JUN-1999 Saccharomyces cerevisiae TCP1-beta gene, partial cds, and Ax12p (AX12) and Rev7p (REV7) genes, complete cds. U49845 U1:1293613 501 501 501	el	irect link ement-v ne predio
20 ctg KEYWORDS 21 ctg SOURCE 22 ctg ORGANISM 23 ctg 24 ctg REFERENCE AUTHORS TITLE	Saccharomyces cerevisiae (baker's yeast) Saccharomyces cerevisiae Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Saccharomyces. 1 (bases 1 to 5028) Torpey,L.E., Gibbs,P.E., Nelson,J. and Lawrence,C.W. Cloning and sequence of REV7, a gene whose function is required for	•	(What wa was the o
JOURNAL PUBMED REFERENCE AUTHORS TITLE	DNA damage-induced mutagenesis in Saccharomyces cerevisiae Yeast 10 (11), 1503-1509 (1994) 7871890 2 (bases 1 to 5028) Roemer,T., Madden,K., Chang,J. and Snyder,M. Selection of axial growth sites in yeast requires Ax12p, a novel	• N	lining er
JOURNAL PUBMED REFERENCE AUTHORS TITLE JOURNAL	plasma membrane glycoprotein Genes Dev. 10 (7), 777-793 (1996) 8846915 3 (bases 1 to 5028) Roemer,T. Direct Submission Submitted (22-FEB-1996) Terry Roemer, Biology, Yale University, New Haven, CT, USA	• Q	uery ena
FEATURES source	Location/Qualifiers 15028 /organism="Saccharomyces cerevisiae" /db_xref="taxon:4932" /chromosome="IX" /map="9"	Bioinformatics	
CDS	<pre>/map- 3 <1206 /codon_start=3 /product="TCP1-beta" /protein_id="AAA98665.1" /db_xref="GI:1293614" /translation="SSIYNGISTSGLDLNNGTIADMRQLGIVESYKLKRAVVSSASEA AEVLLRVDNIIRARPRTANRQHM"</pre>	No cover fo image available da	Purchase Alerts /

- kage of dataset-wise and wise provenance with ctions
 - vas the tool used and what confidence score?)
- nabled
- abled


Top-Down; Interoperable Annotation files computational predictions linked with <u>confidence scores</u>

Example questions: Given the 180.000 sequenced genomes

- What other functions coexist in species that have a desired trait X?
- Which enzymes are available in gram+ bacteria that can catalyze reaction Y (maybe with different cofactors) using a E= 1e⁻⁵⁰ threshold for the domain?

Requires a resource of consistently annotated genomes that can be mined for data and meta-data

FAIR data management: FAIR-ified versus FAIR by design

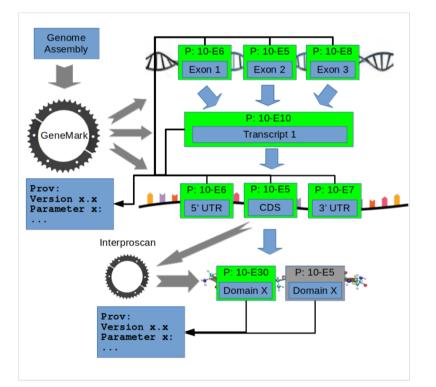
- <u>FAIR-ified data</u>: deals with making heterogenous data from experiments FAIR.
- This is achieved by using tools such as SEEK and RightField that add Minimal Information for all these types of data in a standardized way/ e.g. the Just Enough Results Model Ontology (JERM) in RDF.
- <u>FAIR by design</u>: works best with computationally derived data. An example of such data is genomic information described in the GBOL ontology. Output = linked (meta) data
- What both approaches have in common is that they use RDF to store the (meta)data and an ontology to standardize the way data and metadata is linked

Requirements for Interoperable genome mining

- A semantic annotation platform that incorporates common tools and stores the prediction and provenance in "proper" format. **SAPP**
- A graph database that can be mined: **SAGERP**
- A definition of the "proper format": definitions of biological terms and their relationships: GBOL ontology
- Interface to use the ontology: **GBOL stack**
- Tools to develop all of these: **EMPUSA**

Codebase http://www.gitlab.com/Empusa Documentation and tutorials http://empusa.org.

- SAPP is the only thing a user would need to use to annotate a genome
- Sager-P is the only thing a user would need to mine the data



SAPP: Annotation information storage

- Wrapper to commonly used annotation tools (prokaryotes and eukaryotes) and generates FAIR-bydesign data
- Examples:
 - Uniform annotation of over 100.000 bacterial species.
 - Uniform annotation of salmonoids (fish)

Koehorst et al Bioinformatics 2017 https://gitlab.com/sapp

Documentation: https://sapp.gitlab.io

Modular design: Existing tools that query the triple store for input and directly present their output in the RDF data model

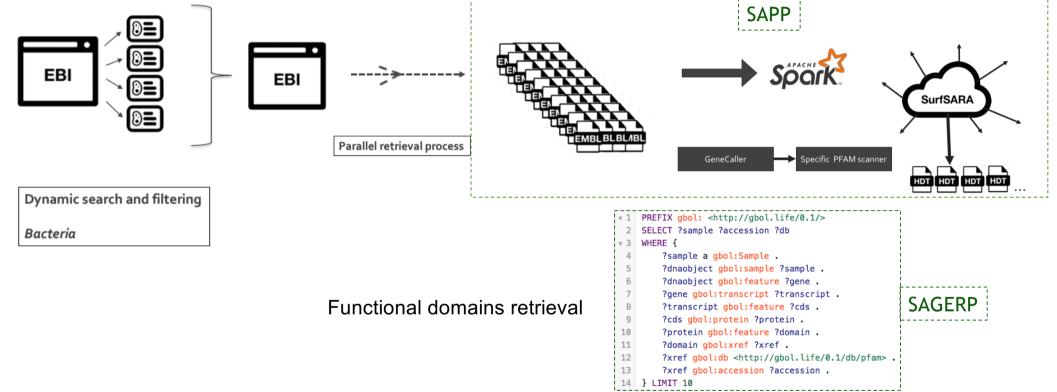
Conversion types

- EMBL / GenBank
- FASTA
- GFF
- QTL
- VCF
- ...

Genetic elements

- Gene prediction
- tRNA/rRNA
- Crispr
- ...

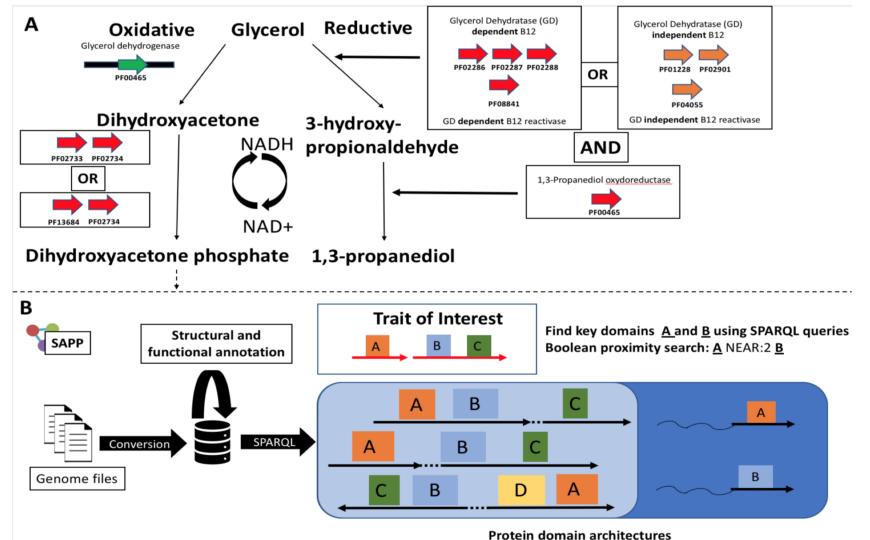
Functional annotation


- BLAST
- Enzyme predictions
- Domain annotation
- Signal peptides
- Transmembrane
- Localization

High Throughput Re-annotation in SAPP -> 80.000 subgraphs (One HDT file per genome)

A HDT file = a turtle (ttl) file in binary format

Use cases:


Computational genomics: In silico Bioprospecting

&

Organizing QTL data

1, 3-propanediol candidate species

100years

Domain	Mean Copy Number*	Proximity Search query
		(compounds and distance)
	Oxidative pathway	
PF02733 (DAK1)	2.2	DAK1 AND DAK2 OR DAK1_2 AND DAK2
PF13684 (DAK1_2)	1.6	(immediately adjacent)
PF02734 (DAK2)	2.7	
	B12-dependent reductive Pathway	
PF00465	16.6	All, within 20.000 up or
PF02286	1.7	downstream of the B12 dependent
PF02287	1.7	dehydratase domains
PF02288	3.7	
PF08841	1.7	
	B12-independent reductive Pathway	
PF01228	13.8	All, within 20.000 up or
PF02901	14.4	downstream of the B12
PF04055	32.4	independent dehydratase domains

Table 7.2: Properties of key domains involved in glycerol dissimilation in 1,3 PD producers

Gene fusion and fission event are frequently observed

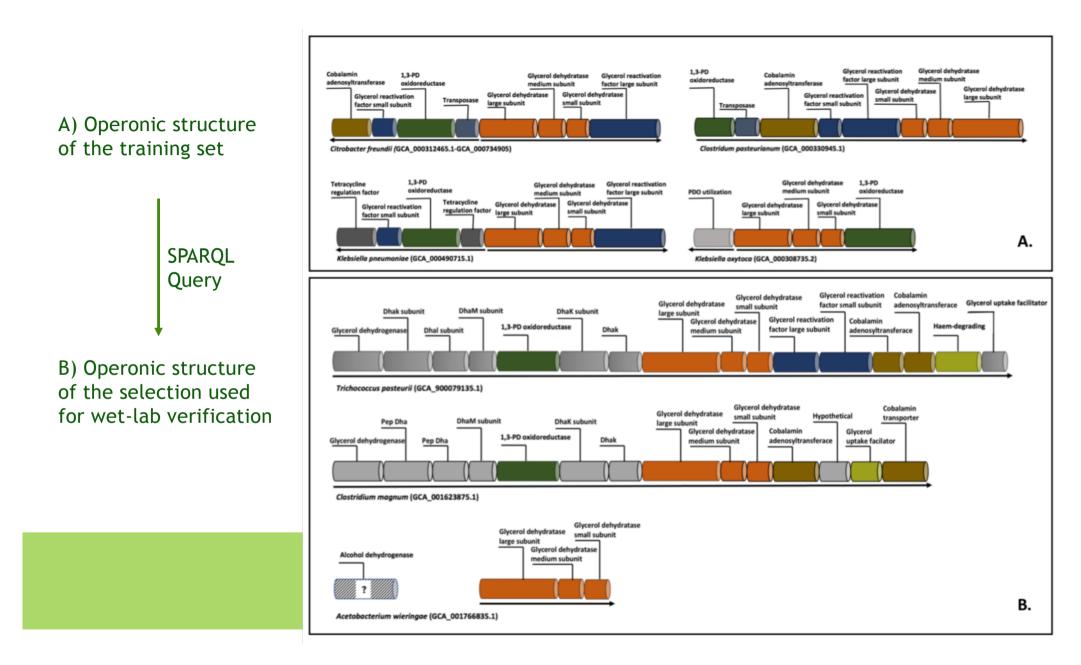
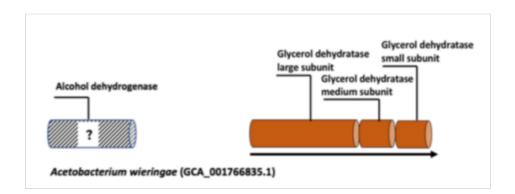



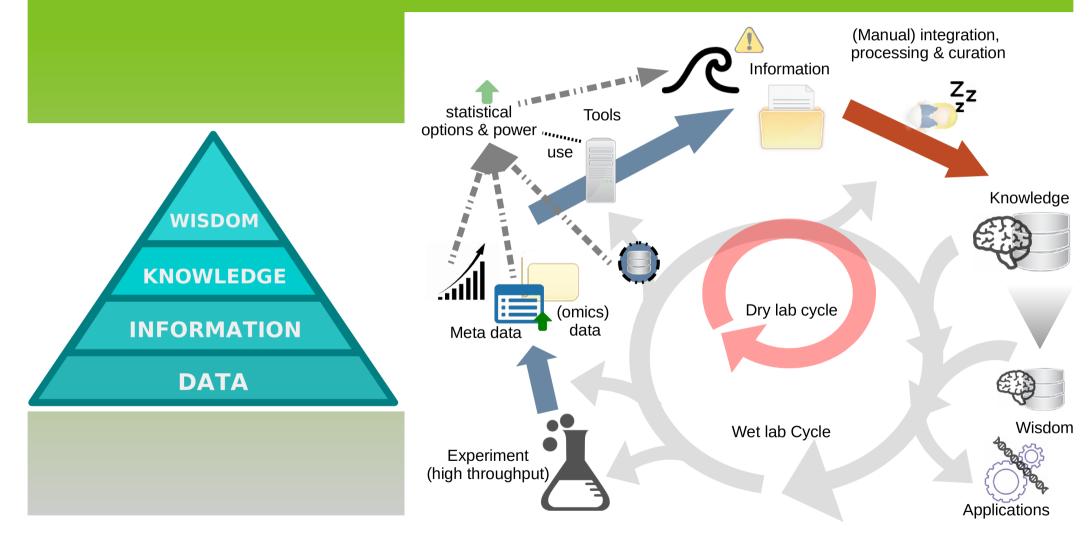
Table 7.3: 1,3-propanediol and acetate yields from glycerol fermentations of selected strains.

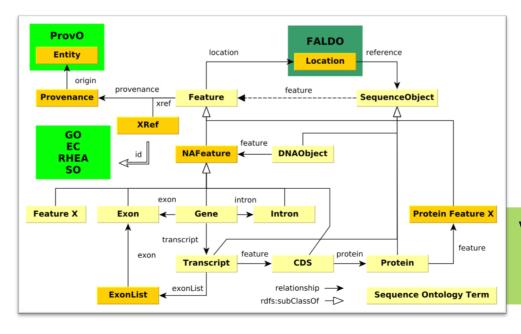
Organism	Genome assembly ID	1,3-PD (mol/mol)	Acetate (mol/mol)	OD
Acetobacterium wieringae DSM 1911	GCA_001766835.1	0.18	0.94	0.179
Carnobacterium funditum DSM 5970	GCA_000744185.1	0.33	0.07	0.266
Clostridium magnum DSM 2767	GCA_001623875	0.56	0.03	0.180
Trichococcus pasteurii DSM 2381	GCA_900079135.1	0.66	0.12	0.325

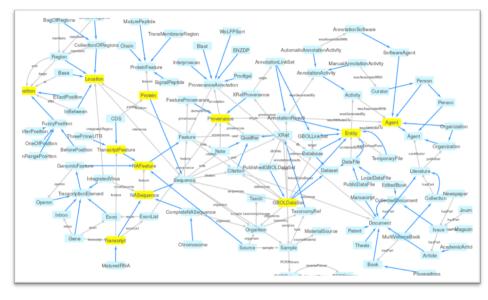
Conclusions

- <u>Semantic Systems Biology</u> and <u>model-based Systems Biology</u> are data integration and analysis approaches that strive to achieve complementary goals.
- Model-based Systems Biology uses mathematical modelling to analyse biological data.
- Integration and sharing of data, information and knowledge is in the realm of <u>Semantic</u> <u>Systems Biology</u>.
- The deliberate exploitation of Semantic Web technologies for integration and sharing of heterogeneous bio-data sources with computational predictions and associated meta-data will lead to:
 - the development of new, testable hypotheses
 - the ability to directly link data and data provenance (FAIR by design)
 - new ways for computational support in quality checking of computationally inferred annotations. (meta-analysis of element-wise provenance)

Acknowledgments


- Jesse van Dam -> Thesis defence 23 January 2019
- Jasper Koehorst -> Thesis defence 25 January 2019
- Maria Suarez Diez, <u>Bart Nijsse</u>, Niels Zondervan
- MycoSynVac: CRG Luis Serrano's group
- Digital Salmon: Jon Olav Vik
- SynBioChem: Carole Goble, Rainer Breitling and Paul Mulherin
- Manchester University (FAIRdom): Natalie Stanford


Big/FAIR data at SSB: tool development



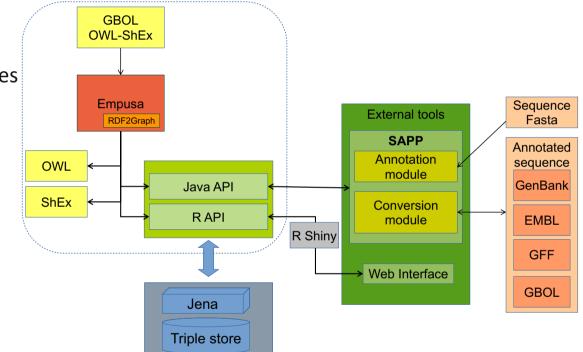
19

GBOL: Genome Biology Ontology Language

Sub domain	Classes	Properties
Genomic locations	16	17
Genes		
transcripts and features	114	133
Document structure	27	107
Dataset-wise provenance	22	54
Element-wise provenance	5	9
BIBO	59	90

Embedded with existing ontologies.

Van Dam et al. Journal of biomedical semantics 2015

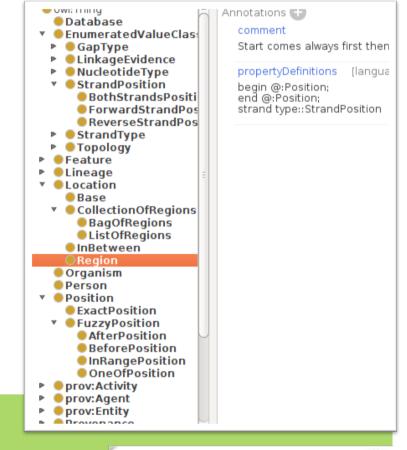


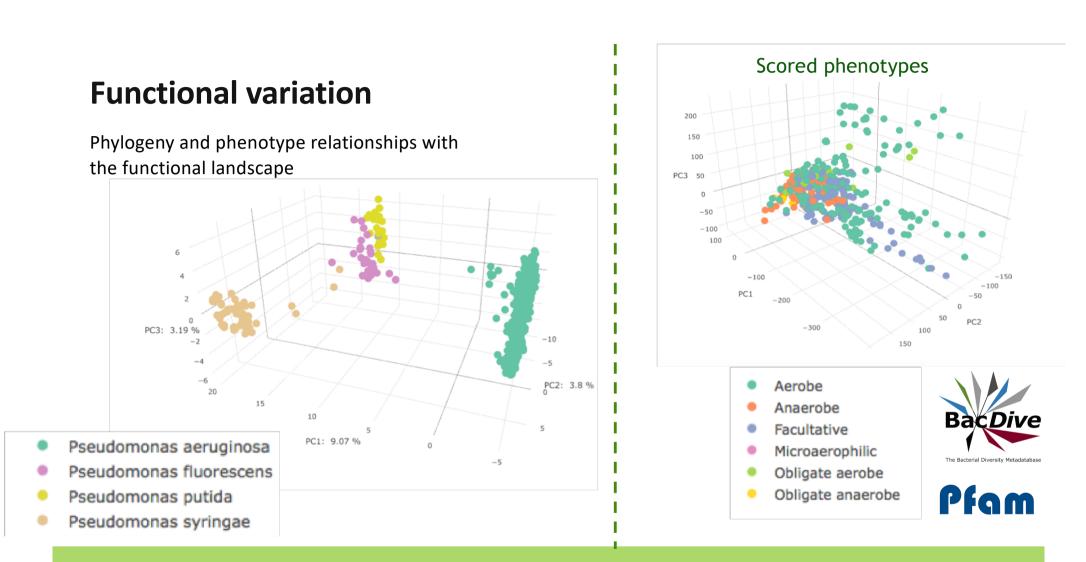
Tool development for FAIR genome annotation

- **SAPP**: an annotation platform
- SAGERP: resource with annotated genomes

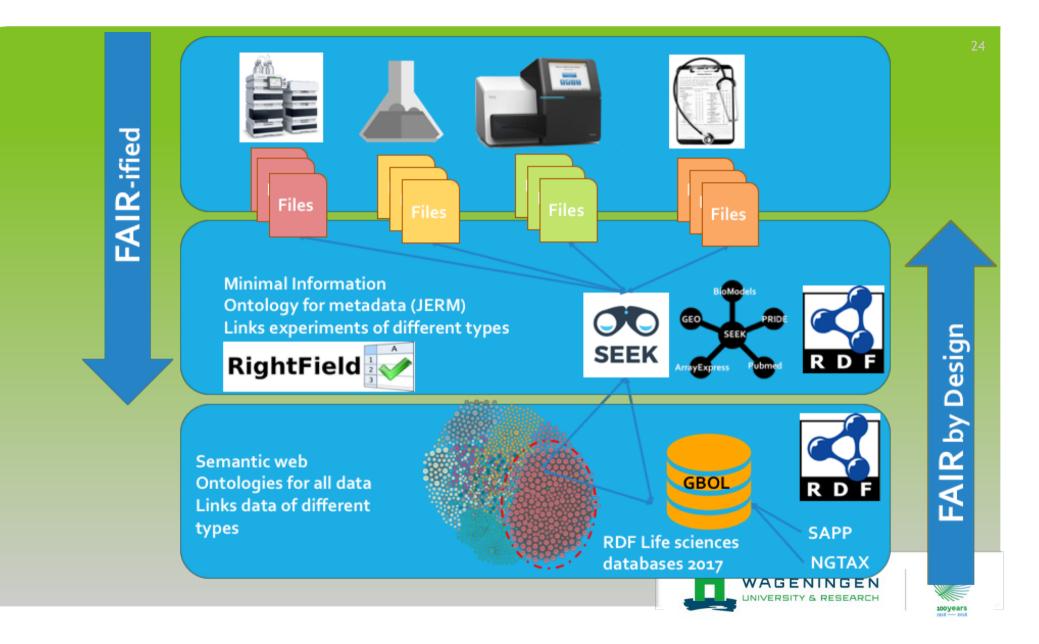
Developer:

- GBOL stack:
 - GBOL ontology (backbone)
 - Java/R Api
 - Owl/ShEx
 - Interface gate keeper Empusa
- Code generator: **Empusa** useful for developers




Code generation: EMPUSA

- Linked data graph is free format: Ontology defines structure but does not enforce it.
 - NEED TO MANTAIN CONSISTENCY ->
 - Gatekeeper tool
- From Ontology (protégé file)
 - OWL + ShEx
- API: Java + R
 - Instance validation included
- > 80.000 lines of code generated



Koehorst, Jasper J., et al. Scientific reports 6 (2016):

