Last Frontier of Agricultural BigData in Rotation?

Paul Keizer

Sabine Schnabel

Marleen Riemens

2018

Yield-Gap

Yield Gap

Potential Yield

Realized Yield **Improved** varieties

Limiting Yield

Management

Sustainable intensification of food production

Water, Nutrients,
Salinity, Pests and
Weeds

Rotation-'Big'-Data

Participants (19)

Cultures (2)
Starch potatoes & Sugar beet

Time (7) 2010-2016

Variables (1400+)

RotationDB (~ 556)

BigData -> Empty space

Analysis:

- Many variables
- Relevance?
- Relations?

Data set

- Observational set over consecutive years
- Weather is 'spoiling' for analysis
- Growth models copes with a major variable part across time
 - Location
 - Crop
 - Area
 - Radiation
 - Temperature
 - Water Limited (Rainfall hardly integrated)
 - Growing period

Analysis -> Mixed Models

Basic data -> categorical and continuous variables

Linear Mixed Models

Model: CropYield = μ + Year + Growth model + Variety + ... + ϵ

Stochastic Frontier Analysis (SFA)

Observed yield explained by year of starch potatoes

How efficient?

- Frontier Evaluation
 - Individuals
 - Important variables
- Optimal combinations of variables

What did we learn!

- Important variables: Year + Simulated_Yield + Variety + Fertilizer
- Linear Mixed Models & Growth-models & Stochastic Frontier Analysis
- Tilling, Fertilizing and Protection to model the yield-gap
 - Very diverse and a challenge to incorporate
- App development: input & feedback
- Sensors >> continuous and reliable
- Curation of collected Data

Future: Yield-Gap-APP

FAIR

Future of BigData an APP?

