Towards Contagious Animal Disease Detection using Machine Learning

Gert Jan Boender, Ronald Petie, Aldo Dekker, Jose Gonzales

Wageningen Bio-Veterinary Research, Lelystad, The Netherlands

Background

- Sensors are used increasingly in livestock farming for monitoring the production process (smart farming)
- Automated interpretation of large amounts of digital data by Machine Learning (ML) is becoming more and more common

Can sensor data be used for the automated monitoring of animal diseases?

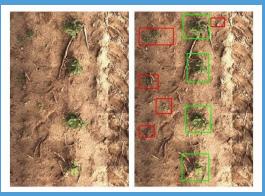
Need for Animal Disease Monitoring

Contagious Animal Disease epidemics in the Netherlands

- Classical swine fever (CSF)
- Foot and Mouth Disease (FMD)
- Highly Pathogenic Avian Influenza (HPAI)
- Bluetongue virus (BTV)
- Q Fever
- Schmallenberg virus (SBV)

```
1998. CSF
1999.
2000.
2001. FMD
2002.
2003. HPAI
2004.
2005.
2006. BTV
2007. BTV
2008.
2009. Q FEVER
2010. Q FEVER
2011. SBV
2012. SBV
2013.
2014. HPAI
2015.
2016. HPAI
2017. HPAI
2018. HPAI
```

1997. CSF

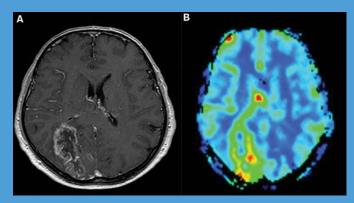

Feasibility of Automated Monitoring

Smart Monitoring

inspired inspours Neighbours

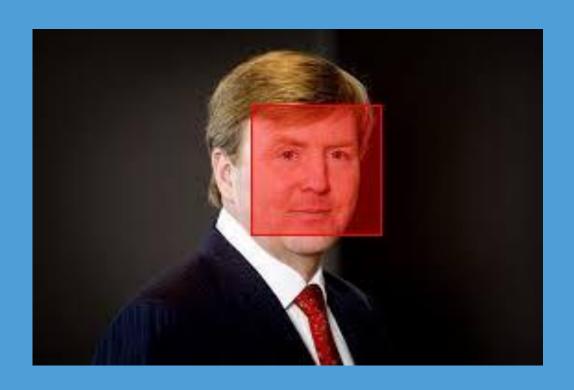
Plant Health

Blue River Technology


Rijkswaterstaat

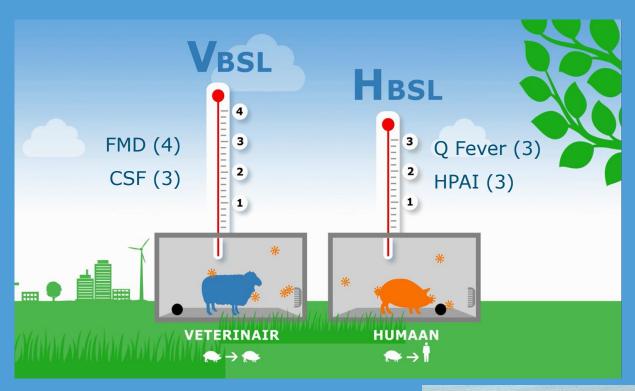
Smart Farming

Canadian telco Bell MTS


Human Health

Neurooncology

Availability of Easy to Use ML Software


- Find Face
- Age Estimation
- Gender Estimation

Age: 47 (30-64)

Gender: Male (99.9%)

Feasibility to Monitor Animal Diseases

Contagious
Animal Diseases
can be
investigated in
the High
Containment
Unit of

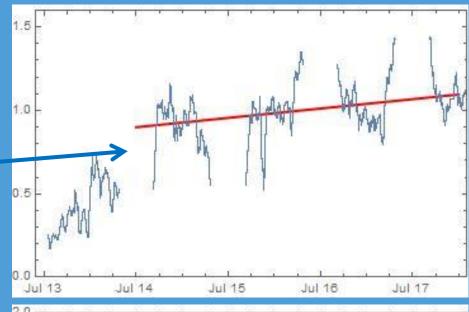
WBVR in Lelystad

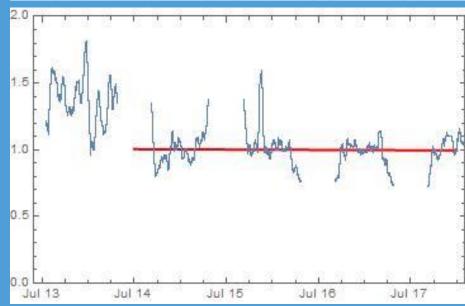
Sensing Animal Disease

Syndromic Aspect Sensor Vision Photo Camera Movement Video Camera Sound Microphone **Infrared Camera** Temperature Smell **Electronic Nose**

Sensing: Movement

- Input
 - video (Tinka Jelsma 13-17 July 2017)
 - Chicken Challenge experiment (at WBVR)
 - IBV (Infectious Bronchitis Virus)
- Methods
 - Dynamics of Animals (Optical Flow)
- Output
 - Digital Animal Dynamics Diagnostics




Movement Quantification

Mean group motion: +5.5% per day

Start of the experiment

Inhomogeneity group motion: constant

Sensing: Image Analysis

- Input
 - Images (before and after infection) (Aldo Dekker)
 - Cattle (several experiments)
 - FMD (Foot and Mouth Disease)
- Methods
 - Image Selection by Image instance Query
 - FMD Detection by Classification
- Output
 - Digital Diagnostic Test for FMD Cattle

Image Selection

Cattle Pig Artifact

ImageInstanceQ

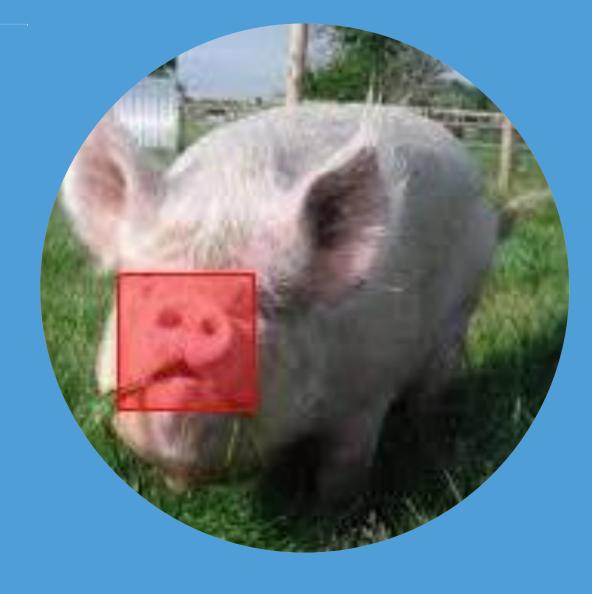
Category: {cattle, domestic pig, artifact}

FMD Cattle Image Classification (I)

Before Infection 57 images After Infection 54 images

Digital Diagnostic Test for FMD Cattle

- Machine Learning Classification
 - 25 images before infection
 - 25 images after infection
- Validation:
 - Sensitivity (True Positive Rate) about 70 %
 - Specificity (True Negative Rate) about 70 %



Aspects of Improvement

- Uniformity of data for infected and susceptible animals
- Larger dataset to improve the ML
- Linkage of experimental findings and practical applications
- Combination of multiple sensors
 - Microphone for animal sound classification
 - Infrared camera for temperature measurement
 - Electronic Nose for air composition

Thank for your attention

