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HIGHLIGHTS:  15 

• Enriched for Clostridiales and Lactobacillales putatively involved in 16 

production of industrially relevant carboxylates, independent of 17 

growth feedstock. 18 

• Alteration of operational conditions of bioreactors, e.g. increased 19 

temperature, can select for a different profile of fermentation 20 

products. 21 

• Two recently described MCFA-producing strains, Ca. Weimeria bifida, 22 

and Ca. Pseudoramibacter fermentans [1], enriched from 23 

lignocellulosic residues, have also been identified as prominent 24 

community members in the current experiments utilizing different 25 

feedstocks. 26 

 27 

BACKGROUND: Carboxylic acids, including succinic acid, lactic acid, and 28 

medium chain fatty acids (MCFAs), are valuable chemicals that can be 29 

produced from a variety of industrial residues by fermentative microbial 30 

communities. Residues from lignocellulosic biorefineries (conversion 31 

residue; CR), starch ethanol plants (thin stillage; TS), and the dairy industry 32 

(ultra-filtered milk permeate; UFMP) are examples of carbon-rich, low-value 33 

co-products that are typically sent to anaerobic digesters for biogas [2] or 34 

sold as animal feed [3]. Diverse product formation from primary feedstocks 35 

can help offset operating costs, reduce the selling point of the primary 36 

products (e.g. biofuel), and ultimately make these industries more 37 

economically viable [4]. 38 

RESULTS & DISCUSSION: The CR-fed bioreactor was stable for over 100 39 

d and produced primarily C4 and C6 fatty acids. The UFMP-fed bioreactor 40 

initially produced C6 and C8 fatty acids, and then, shifted to producing 41 

primarily butyrate (C4). TS-fed bioreactors produced a mixture of C5-C8 42 

fatty acids. Decreasing the retention time in the TS-fed bioreactor induced 43 

a shift to succinate production. Furthermore, increasing temperature of the 44 



TS-fed bioreactor to 55°C induced shifts to lactic and propionic acid as the 45 

primary fermentation products. Identification of microorganisms using 16S 46 

rRNA gene amplicon sequencing revealed high abundance of Clostridiales 47 

and Lactobacillales in communities enriched on CR, TS, and UFMP. The 48 

UFMP bioreactor enriched for organisms related to the recently defined 49 

Agathobacter genus [5] within the Lachnospiraceae. In the TS reactors, 50 

Prevotella (phyl. Bacteroidetes), Lactobacillus-relatives, and the Clostridia 51 

Pseudoramibacter were prominent under MCFA-producing conditions and a 52 

disappearance of Butyrivibrio occurred when retention time decreased 53 

(Figure 1). The Clostridia were absent from the thermophilic TS bioreactor, 54 

and Actetobacter were abundant in addition to the Lactobacillus-relatives. 55 

Metagenomic analyses of these microbial communities is underway 56 

CONCLUSION: The ability to enrich for carboxylate-producing taxa from 57 

the same inoculum source, but fed variety of organic-rich substrates is 58 

promising for the future of sustainable production of commodity chemicals, 59 

and is not tied to the residues of a single industry. The ability to adjust 60 

bioreactor conditions to control for certain microbial communities could help 61 

industries adapt to switches on prices or demand for chemicals produced by 62 

fermentation.  63 

 64 

Figure 1. 16S rRNA gene amplicon based operational taxonomic units with 65 

greater than 1% relative abundance. OTUs represent microbial community 66 

during periods of stable bioreactor conditions (ca. 50 d) for four different 67 

bioreactor operational conditions. TS1, unaltered thin stillage, pH 5.5, 35°C, 68 

6 d SRT; TS2, solids-removed thin stillage (SRTS), pH 5.5, 35°C, 6 d SRT; 69 

TSR, SRTS, pH 5.5, 35°C, 1 d SRT; TST, SRTS, pH 4.5-5.0, 55°C, 6 d SRT. 70 
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