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Calibration in a Bayesian modelling framework 
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Abstract 
 

Bayesian statistics may constitute the core of a consistent and comprehensive 
framework for the statistical aspects of modelling complex processes that involve 
many parameters whose values are derived from many sources. Bayesian statistics 
holds great promises for model calibration, provides the perfect starting point for 
uncertainty analysis and provides an excellent starting point for decision support. The 
purpose of this paper is to draw attention to problems and possible solutions. It is not 
our intention to introduce ready-for-use methods.  
Keywords: Bayesian analysis; Monte Carlo; complex models; model calibration; 
uncertainty analysis; sensitivity analysis; decision support 
 
Introduction 
 

This paper discusses three related statistical aspects of complex modelling, namely 
Bayesian calibration, uncertainty analysis, and decision-making under uncertainty. 
Figure 1 sketches a framework that connects these aspects. French (2001) gives a 
similar framework. 

The dark-grey boxes in the upper left-hand corner of Figure 1 represent the data 
analysis, given the model and the prior distribution of the parameters. Bayesian 
methods hold great promises for model calibration. Currently, the calibration of 
complex models is an art rather than science. No problems are encountered in the 
calibration of a simple model, such as a regression model with a small number of 
parameters, estimated from one single and simple data set. If the model is complex, 
however, like most parameter-rich ecological or economic models, and if the modeller 
draws information from many diverse data sets and other sources, calibration often 
becomes obscure. Although modellers find ways to produce values for parameters, the 
methods used are often intuitive and non-reproducible, while the accuracy of the 
estimates is unspecified. Bayesian methods may bring conceptual clarity in the 
calibration of complex models, especially because they enable combination of 
heterogeneous information about parameter values, like several types of data sets. In 
addition, expert judgement may be used as prior information.  

Nevertheless, the use of Bayesian methods for the calibration of complex models 
is far from straightforward in practice. The most notorious problem is the obligation 
to use prior information even if there is no such information, since priors flawlessly 
expressing total ignorance do not exist. Apart from that, the analyst may encounter 
quite a few computational difficulties, of which the computer time required to run a 
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complex model thousands of times may be the most serious one. There is also a 
shortage of suitable software, which necessitates the detailed implementation of many 
details of – fundamentally quite transparent – numerical recipes. After the above 
difficulties have been surmounted, the problem of convergence monitoring still 
remains. 
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Figure 1. Framework. The dark-grey boxes in the upper-left corner represent the data 
analysis. The light-grey boxes in the lower-left corner show how uncertainty analysis 
fits in. The white boxes in the right part pertain to decision theory 
 

The light-grey boxes in the lower left-hand corner of Figure 1 show how 
uncertainty analysis fits into the framework. The results of an uncertainty analysis 
may suggest whether the collection of new data is required for sufficiently precise 
model predictions, and may also suggest what kind of data are required most for 
sharper predictions. Uncertainty expressed as randomness, as resulting from a 
Bayesian data analysis, is attractive as a starting point for uncertainty analysis. The 
currently most common form of uncertainty analysis assumes that parameters and 
other uncertain quantities that specify a model and its working in a specific context, 
are represented as interdependent random variables (e.g. Saltelli, Chan and Scott 
2000). Thus, a Bayesian analysis of the quantities that enter a model can be 
seamlessly linked with a subsequent uncertainty analysis. On the other hand, when 
results of a non-Bayesian (classical) statistical analysis of model parameters have to 
enter an uncertainty analysis, some forcing has to be applied in order to transform 
classical results into the required form.  

The white boxes in the right-hand part of Figure 1 pertain to decision theory. 
Almost invariably, decision support is based on results of a mathematical or statistical 
model. A Bayesian analysis of the uncertainty of model parameters and other inputs 
can be used quite well as starting point for decision analysis (e.g. Berger 1985). 
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Although there is a classical form of decision analysis under uncertainty, the Bayesian 
way is most widespread (e.g. Efron 1986). A decision analysis needs an inventory of 
possible actions that might be taken, and between which a choice has to be made. 
Apart from that, one has to formulate a goal function, probably compromising 
between several goals of several stakeholders. The decision analysis uses the posterior 
parameter distribution to evaluate the uncertainty of the goal values and the 
uncertainty of the difference in goal values between the possible actions. Moreover, 
the decision analysis may help identifying what model results are the most interesting 
subjects for an uncertainty analysis.  

This paper starts with a brief sketch of uncertainty analysis, with food-chain 
models as example. The paper ends with Bayesian calibration of complex models as 
major subject. The purpose of the paper is to draw attention to problems and possible 
solutions. It is not the intention to introduce ready-for-use methods. 
 
Uncertainty analysis of a food-chain model 
 

A simple food chain may be modelled by a train of sub-models, say A, B, C, D..., 
the output of one sub-model serving as input of the next (Jansen 1998). The sub-
models can pertain to production, transport, processing, storage and so on. The whole 
food-chain model yields some property of the end-product, say y, as output. 
 
 A → B → C → D →  ...  → y 
 ↑      ↑      ↑      ↑     
 

Each sub-model is specified by imperfectly known parameters and influenced by 
unpredictable exogenous inputs. Uncertainty entering the chain is represented by the 
upward arrows in the diagram, and accumulates down-stream. The purpose of an 
uncertainty analysis is firstly to evaluate if the accumulated random effect is still 
acceptably small, and secondly to pinpoint the major sources of uncertainty in order to 
assess the possibilities to reduce uncertainty by control of the chain or by additional 
research. Uncertainty analysis often takes the form of an analysis of variance, 
producing for instance an answer to the question: “What is the expected reduction of 
variance of model output y if some group of inputs would become known perfectly?” 
(e.g. Jansen, Rossing and Daamen 1994; Saltelli, Chan and Scott 2000). 

In the most common form of uncertainty analysis – often also referred to as 
sensitivity analysis – uncertain quantities that specify a model and its working in a 
specific context, are represented as interdependent random variables. Thus, Bayesian 
analyses of the data used to parameterize the model produce precisely the description 
of input uncertainty that is needed for an uncertainty analysis. On the other hand, the 
results of classical data analyses require some conversion and re-interpretation before 
they can enter such an uncertainty analysis. 

The analysis estimates the resulting distribution of one or more model outputs. 
Most often, the uncertainty of an output is characterized by its variance.  
 
Model calibration 
 

Calibration of a model is often viewed in the narrow sense of adapting some of the 
parameters in order to get better resemblance between observations and major end-
predictions in a specific situation. Still too often, calibration is performed in a totally 
irreproducible way, sometimes even by hand according to some eyeball criterion, 
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producing results of unknown quality. Even if such a calibration is performed in a 
reproducible way, the choice of the adjusting parameters and of the resemblance 
criterion remains problematic by lack of guiding principles. 

From the very beginning of complex modelling until the present day, some 
authors speak of degeneration or corruption of mechanistic models by such a form of 
calibration.  

De Wit (1970, p. 17-18) for instance, distinguishes an explanatory level and an 
explainable level in modelling. At the explanatory level, more or less basic and known 
laws are at work. The knowledge at this level is summarized in a model whose 
behaviour is used to predict phenomena at the explainable level. According to De Wit, 
parameters have to be estimated at the explanatory level. But “it will often be found 
that the results obtained with experimenting with the model and the actual system do 
not agree. In that case the model may be adjusted such that a better agreement is 
obtained. Since there are many parameters and many equations involved this is not 
difficult. However, it is a disastrous way of working because the model degenerates 
from an explanatory model into a demonstrative model [like a planetarium] which 
cannot be used anymore for extrapolation, and the technique reduces into the most 
cumbersome and subjective technique of curve fitting that can be imagined.” 

More recently, Beck and Chen (2000, p. 402) similarly state: “After a model 
structure has been created in a maximally physically meaningful manner, calibration 
may corrupt the original relatively pure articulation of theory”.  

An extreme example of spoiling the mechanistic nature of a model is provided by 
a theoretically positive parameter that takes a negative value after calibration. A 
subtler instance would be a parameter assuming a value that is implausible in view of 
experimental results or expert knowledge.  

The essence of the misgivings in the above quotations seems to be that calibration 
in the narrow sense may corrupt a model by ignoring information. The obvious 
solution would be to perform calibration in the broad sense of combining all relevant 
information about the parameters. Characteristically, complex models draw their 
information from quite diverse sources: observations at several spatial and temporal 
scales, experiments with sub-models, information from literature and experts, 
observations of end-predictions of the model etc. A good calibration should combine 
the available information in a reproducible and scientifically sound way into estimates 
of parameters, accompanied by an indication of their accuracy.  

In the context of broad-sense calibration, the term ‘model’ should be viewed in a 
broad way: firstly, it should account for measurement errors and other possible forms 
of randomness; moreover, it should comprise all kinds of special models for special 
situations, for instance, measurement models or models for experiments where only a 
sub-set of the parameters plays a role. By these extensions the model need not be seen 
as a black box producing end-results only. After the formulation of the extended 
model, the choice of a calibration criterion poses no problem, since no such criterion 
is needed any more; instead the whole Bayesian procedure follows from the extended 
model. 

Before and during the combination of the information from the various sources, 
one should remain aware of the possibility that the bits of information are somehow 
conflicting. Parameter values that were in force during an experiment with a sub-
model might differ from the values in the current situation. Experts may have drawn 
their experience from situations quite different from the current one, while over-
confidence of experts has been reported more than once. The model for all the data 
used during the calibration should be considered very critically, and checked 
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whenever possible. If the model for the calibration data is wrong, Monte Carlo 
algorithms for Bayesian analyses may suffer from convergence problems. The 
awareness of the possibility of conflicting evidence is analogous to the care required 
in meta-analysis, the statistical analysis of results of individual studies for integrating 
their findings. Indeed, a large part of meta-analysis theory is directed towards the 
detection and resolution of contradictions (e.g. Hedges and Olkin 1985). 

In principle, a broad-sense calibration might be performed with classical statistical 
methods, but such an analysis may be hampered by technical problems. It is often 
very difficult to combine heterogeneous information with classical statistical methods. 
Moreover, in a classical analysis all parameters should be identifiable from the data: 
the prediction of the data should be different for different values of the parameter 
vector. A classical statistical analysis requires several more regularity conditions (e.g. 
Cox and Hinkley 1974, Chapter 9): the analysis requires continuity of the model’s 
response to parameter changes, and continuity of the derivative of the response. 

Bayesian methods seem to be much more promising for calibration in the broad 
sense. First of all, these methods can easily integrate diverse information. 
Heterogeneous data sets can be analysed consecutively, the posterior of the previous 
analysis taking the role of prior in the next one. Expert knowledge can be used as 
prior information for the first analysis. 

Similarly, Bayesian methods can elegantly manage ‘missing data’. The term often 
refers to planned measurements that were not executed. Some calculations cannot be 
performed efficiently, or cannot be performed at all, when such data are missing. In a 
Bayesian analysis one can efficiently cope with missing values by treating their values 
as unknown parameters. This stratagem may be applied to supplement the data with 
any other data – planned or not – that may enable or facilitate analysis. 

The problem of selection of calibration parameters might be dealt with by 
calibrating all parameters rather than a few selected ones. Insensitive parameters can 
be handled: the posterior distribution of a totally insensitive parameter will be the 
same as the prior distribution. Moreover, with most Monte Carlo methods for 
Bayesian analysis, the computational burden hardly grows by the addition of 
insensitive parameters. If the calibration situation was insensitive to some parameters, 
the same insensitivity might occur in a new prediction situation, so that one can still 
make sufficiently sharp predictions; but in a new situation that is sensitive to a badly-
known parameter, predictions will appear to be vague. In both cases the method of 
prediction under the given uncertainty is the same. 
 
Fast emulator errors  

Kennedy and O’Hagan (2001) describe a general Bayesian framework for the 
calibration of complex models. They provide the most complete treatment to date of 
computer-code uncertainties: errors due to replacement of the model by a fast 
emulator. As pointed out above, Bayesian calibration often requires thousands of 
model runs, and thus it may become necessary to replace the model by a quick and 
simple stand-in. A Bayesian approach is chosen because the authors seek to evaluate 
post-calibration uncertainty taking into account all kinds of causes of differences 
between model prediction and measured realization. 
 
Almost-Bayesian procedures 

Several authors have proposed procedures to improve on the above-sketched state 
of affairs in present-day model calibration. Their appraisal of the current situation is 
similar to ours. Their solution has a Bayesian flavour but is less formal. Beven and 
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Binly (1992) propose a procedure called Generalized Likelihood Uncertainty 
Estimation, to calibrate a hydrological model for a river catchment. The term 
likelihood is used in a very general loose sense and not in any formal statistical sense. 
Klepper (1989) claims to have calculated post-calibration parameter uncertainty with 
the use of the so-called Price algorithm, but no proof of the claim is given. 
 
Examples of model calibration 
 

In this section we briefly discuss a few examples of Bayesian calibration. 
Admittedly, most examples are somewhat simpler than the complex cases discussed 
in the previous sections. This fall in complexity reflects the fact that Bayesian 
calibration is still in its infancy. 
 
Crop growth  

The first example is an exercise in the calibration of a crop growth model, 
SUCROS, tailored for maize. The model simulates maize growth during one growing 
season, with daily temperature and solar radiation as input. A prior distribution for 21 
of the parameters had been obtained from a meta-analysis of worldwide literature 
results (Metselaar 1999). Possibly, this prior distribution may be viewed as a 
description of the variation of the parameters of different maize cultivars over the 
world. This prior information was supplemented with a fictitious harvest measurement 
of 15 ton/ha dry-weight with a standard error of 1 ton/ha, with a specific cultivar in 
The Netherlands in 1985.  

The Bayesian analysis is based on sampling from the posterior distribution of the 
parameters. A sample of 1000 independent draws was constructed with a very basic 
Monte Carlo method. In a for loop, independent draws from the prior parameter 
distribution were proposed, and accepted into the posterior sample by chance with 
probability proportional to the likelihood. As soon as the required posterior sample 
size was reached, the for loop ended. 

The effect of combining this generic prior information with cultivar-specific data 
will be illustrated by making model predictions under slightly different weather 
conditions, namely those of 1986, while the measurement pertained to 1985 weather. 
Figure 2 (left) shows a histogram of a size-1000 sample from the prior predictive 
harvest distribution for 1986; only the prior information is used here. The histogram 
shows that this prior information is insufficient by itself: the distribution is very 
vague. The effect of the information about the 1985 harvest on prediction for 1986 is 
illustrated by Figure 2 (right), which shows the histogram of a size-1000 sample from 
the posterior predictive harvest distribution for 1986, taking into account the 1985 
harvest measurement in the way described above. The histogram is much sharper, 
which shows that combining the two kinds of information has a positive effect. 
Moreover, the mean of the posterior predictive distribution is greater than the prior 
mean, which might express that the cultivar in question is adapted to the local climate. 

Since the data consist of merely one observation, whereas 21 parameters have to 
be estimated, these parameters cannot be estimated with a classical analysis, which 
requires that the prediction of the data should be different for different values of the 
parameter vector. The Bayesian approach enables us to compensate for this lack of 
information in the data by taking prior information into account. Even if the data 
would have been sufficiently numerous for a classical analysis, a Bayesian analysis 
has  an advantage  that is worth mentioning  particularly  in the  context of  calibrating 
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Figure 2. Left: Histogram of size-1000 prior predictive sample for 1986 maize harvest 
in kg/ha. Right: Histogram of size-1000 posterior predictive sample for 1986 maize 
harvest in kg/ha 
 
complex models. Usually, model outcomes are not equally sensitive to changes in all 
21 parameters considered over their range of variation. For a non-Bayesian 
calibration, one would normally restrict the calibration to a small number of sensitive 
parameters with a wide range. Such a restriction, which always suffers from some 
arbitrariness, is not necessary in most Monte-Carlo-based Bayesian analyses, since 
insensitive parameters hardly increase the workload. 
 
Markovian meta-population model 

O’Hara et al. (2002) and Ter Braak and Etienne (2003) analyse a meta-population 
model, an often-used model describing a population dispersed over several distinct 
patches. The model has 5 parameters, defining extinction probability, colonization 
probability and connectivity. The data describe for N patches over T years whether 
the patches were occupied that year. The patches-by-year data matrix typically 
contains many missing values, which is the major reason to choose a Bayesian 
approach. This is because in a Bayesian analysis, as mentioned above, unknown 
observations can be treated as parameters, which can simply be sampled in a Monte-
Carlo-based calculation of the posterior distribution. Using simulated data sets O’Hara 
et al. (2002) show that the approach can successfully deal with missing data for this 
important type of ecological model. Ter Braak and Etienne (2003) improve on their 
approach by additionally augmenting the data with a past period preceding the first 
year of observation. This obviates the need to condition the likelihood on the first-
year observations, and thus uncovers the information in those observations, a gain 
worthwhile in data sets that typically cover only a few years. The attached past period 
has to be chosen sufficiently long for an approximate establishment of quasi-
stationarity in the meta-population model, such that the likelihood is virtually 
independent of the fixed initial state at the start of the attached period.  This results in 
a well-founded and efficient estimation of parameters, with a posterior distribution 
expressing post-calibration uncertainty. 
 
Correlated random walk 

Another important type of ecological models is that of the correlated random 
walk, briefly CRW (Turchin 1998). CRW models describe animal movement within 
and/or between habitats, and as such they can be used to inform the construction and 
parameterization of the meta-population models discussed in the previous example.  
Data from animal-tracking experiments are perhaps the most important type of 
information used to calibrate CRW models. In this type of data missing observations 
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tend to be abundant, so again the best-choice calibration approach seems to be the 
Bayesian one. In Figure 3 we present results for a very simple model variant 
describing movement in a single homogeneous vegetation type, in which the animal 
movement is described by two distributions, one for the step length and one for the 
turning angle between consecutive steps. The simulated data are for an exponentially 
distributed step length (specified by one parameter, the mean step length λ) and a 
turning angle following a wrapped-normal distribution centred at zero angle (again 
specified by a single parameter, namely the turning angle standard deviation σ). The 
results suggest that a Bayesian analysis can indeed be very powerful in estimating 
CRW model parameters from animal-tracking data with many missing observations 
(Hagenaars, Goedhart and Jansen in prep.). In the Markov-chain Monte Carlo 
algorithm underlying the results of Figure 3b, the unobserved data points are sampled 
by drawing CRW steps using the last-sampled CRW parameters. The standard 
deviation of the posterior sample is only 1.2 times larger than that of the sample in 
Figure 3a, showing that the effort of including the unobserved animal positions in the 
estimation procedure is paying off.  
 

 
 
Figure 3. Left: Histogram of size-5000 posterior sample for CRW parameter σ. 
Calculated using a simulated data set of 5 correlated random walks of 100 steps each. 
The data set was generated with σ=0.1, and the sample of turning angles has an exact 
standard deviation σ=0.1051. Right: Histogram of size-5000 posterior sample for 
CRW parameter σ. Calculated using the same simulated data set as on the left side, of 
which 50% (randomly drawn) of data points (animal positions) are now considered 
unobserved.  
 
Discussion and conclusions 
 

The current state of affairs with respect to the calibration of complex models is far 
from ideal. We have argued that Bayesian methods provide a promising avenue along 
which this situation may be improved. The examples of the paper illustrate some of 
the advantages of the Bayesian approach, but they also show that still much research 
and development are needed in order to harvest these advantages in the calibration of 
truly complex models. 
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