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Bayesian methods for updating crop-model predictions, 
applications for predicting biomass and grain protein 
content 
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Abstract 
 
 Crop models can be used for predicting crop quality and for optimizing agricultural 
practices, but the errors of prediction of these models are often important. The 
objective of this paper is to describe several methods for improving the accuracy of 
crop-model predictions with real-time measurements. First, we present a simple linear 
dynamic crop model simulating winter-wheat biomass production and we show how 
the Kalman-filter method can be used for updating model predictions. Second, we 
describe a general framework for updating complex nonlinear dynamic crop models. 
Finally, we present a case study with a nonlinear crop model predicting winter-wheat 
grain quality. The results presented in this paper show that Bayesian methods are 
useful for improving the reliability of the information provided to stakeholders by 
crop models but that additional research is required for implementing these methods 
with complex models. 
Keywords: data assimilation; dynamic crop model; grain protein content; Kalman 
filter; prediction 
 
Introduction 
 
 Numerous dynamic crop models have been developed for simulating crop growth 
in function of environmental factors (soil characteristics, climate) and of agricultural 
practices (date of sowing, nitrogen fertilization…). Some of these models can be used 
for predicting crop yields and crop quality before harvest. Some models can also be 
used to determine optimal agricultural practices in order to satisfy economic, 
environmental or quality objectives. For example, AZODYN (Jeuffroy and Recous 
1999) is a dynamic model developed for predicting winter-wheat yield and grain 
protein content in function of the dates and rates of nitrogen-fertilizer applications and 
of field characteristics. This model is currently used to improve nitrogen-fertilizer 
management and to predict yields and grain quality. 
 Crop models can provide useful information to farmers’ advisers and collecting 
firms, but an important limitation of these models is that their errors of prediction are 
often large due to uncertainties in equations, in parameters, and in input variables. A 
promising way for improving crop-model performances is to update model 
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predictions with real-time measurements of crop and soil variables like leaf 
chlorophyll contents, soil water potentials, or biomass measurements. Such 
measurements can be obtained by farmers or by collecting firm operators. 
 A natural approach for updating crop-model predictions is to use a Bayesian 
method (Figure 1). The first step is to describe the crop-model errors by using a 
statistical model. The crop model and the statistical model are used to derive a prior 
distribution of the model state variables (biomass, nitrogen uptake…) at the time of 
the measurement. This prior distribution represents a first guess of the state-variable 
values and takes into account uncertainty in model prediction. The second step is to 
compute a posterior distribution from the prior distribution, the measurements, and the 
measurement errors. The posterior distribution is then used to derive an updated 
prediction of the model state variables. This two-step procedure can be repeated with 
several measurements obtained at different dates. Methods have recently been 
developed for complex nonlinear models (Burger, Van Leeuwen and Evensen 1998; 
Anderson and Anderson 1999; Doucet, Godsill and Andrieu 2000) and have been 
applied to ecosystem and hydrological models (Allen, Eknes and Evensen 2002; 
Margulis et al. 2002). 
 

 

 

 

 

 

 

 
Figure 1. General framework for updating crop-model predictions 
 
 The objective of this paper is to introduce several methods for improving crop-
model predictions. First, we present a simple application of the Kalman-filter method 
to a linear dynamic crop model predicting only one state variable, namely winter-
wheat biomass. We show how the model predictions can be sequentially updated by 
using several measurements, and we study the sensitivity of the results to the variance 
of the model errors. Second, we introduce several methods for updating predictions of 
complex nonlinear crop models. One of these methods is applied to a nonlinear model 
predicting an important winter-wheat quality criterion, grain protein content. In this 
case study we show how the model predictions can be updated by using a chlorophyll-
content measurement obtained at flowering and we study the sensitivity of the results 
to the value of the measurement.  
 
A simple example 
 
A dynamic model simulating wheat biomass 
 We describe here a simple dynamic crop model that will be used in the next section 
to illustrate the principle of the Kalman-filter method. Our crop model has a single-
state variable representing above-ground winter-wheat biomass. This state variable is 
simulated on a daily basis in function of the daily temperature and the daily incoming 
radiation according to the classical efficiency approach (Varlet-Grancher et al. 1982). 
The biomass at time t+1 is linearly related to the biomass at time t as follows: 

Crop-model 
equations 

+ 
Error model

Initial prediction 
at time t 

= 
prior estimate 

Updated prediction 
at time t 

= 
posterior estimate 

Observation at time t 
+ 

Error of measurement 



Makowski, Jeuffroy and Guérif 

59 

 
1 max 1 tK LAI

t t b i t tU U E E e PAR ε−
+ ⎡ ⎤= + − +⎣ ⎦       (1) 

where t is the day number since sowing, tU  is the true above-ground plant biomass on 
day t, tPAR  is the incoming photosynthetically active radiation on day t, tLAI  is the 
leaf-area index on day t and tε  is a random term representing the model error. The 
crop biomass at sowing is set equal to zero: 1 0U = . tLAI  is calculated in function of 
the cumulative degree-days (over a basis of 0°C) from sowing until day t, noted tT , as 
follows (Baret 1986): 
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Parameter 2sT  is set equal to ( )2 1
1 log 1 exps sT A T
B

= ⎡ + × ⎤⎣ ⎦  in order to have 1 0LAI = . 

The model includes two input variables [ ]',t t tX T PAR=  and seven parameters 

( )'max max 1, , , , , ,b i sE E K L A B Tθ = . bE  is the radiation use efficiency which expresses 
the biomass produced per unit of intercepted radiation, maxiE  is the maximal value of 
the ratio of intercepted to incident radiation, K  is the coefficient of extinction of 
radiation, maxL  is the maximal value of LAI, 1sT  defines a temperature threshold, and 
A  and B  are two additional parameters. The parameter values were determined in 
previous studies (Baret 1986). 
 On a practical point of view, model (1) can be used either for agronomical 
diagnosis or for estimating crop yield from biomass predictions. With this crop model, 
the crop biomass predicted at time Pt  is simply: 

1
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=
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We suppose that 10 measurements of biomass, 1 10,...,t tm m , are made at different times 
before harvest on the site-year of interest. In practice, values of tm  can be derived 
from plant samples or from remote-sensing data. We assume that each measurement 

tm  is related to the biomass tU  by 
t t tm U τ= +           (3) 

where tτ  is a random term representing measurement errors. In the next section we 
show how such measurements can be used to improve the accuracy of biomass 
predictions. 
 
Standard Kalman filter 
 The Kalman filter (Kalman 1961) is a method for updating sequentially model 
predictions with measurements obtained at different dates. This method is presented 
here within a Bayesian framework with the simple model described in the previous 
section. The general idea is to compute the posterior distribution of the state variable 

tU :  

1,t t t t tP U M P U m M −⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  
where 1tM −  is the set of all the measurements taken at/or before time t-1, tm  is a new 
measurement obtained at time t, and tM  is the set including both 1tM −  and tm . The 
probability distribution t tP U M⎡ ⎤⎣ ⎦  can be used to predict the state of the model or to 
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provide the prior distribution at the time of the next available observation. Applying 
Bayes’ rule to t tP U M⎡ ⎤⎣ ⎦  gives 1 1 ,t t t t t t tP U M c P m U M P U M− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦  where c is a 
constant independent of tU . With independent measurements we obtain: 

1 t t t t t tP U M c P m U P U M −⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦        (4) 
Eq.(4) shows that the posterior distribution depends on two terms, namely 

1t tP U M −⎡ ⎤⎣ ⎦  and t tP m U⎡ ⎤⎣ ⎦ . The first term, 1t tP U M −⎡ ⎤⎣ ⎦ , represents the prior 
distribution of the state tU  calculated from earlier observations. This is a first guess 
distribution for the dry matter at time t before making the new observation tm . The 
second term, t tP m U⎡ ⎤⎣ ⎦ , depends on the new measurement and evaluates how likely it 
is to obtain tm  if the true dry matter is equal to tU . To apply the Kalman filter to our 
simple model, it is necessary to specify the distribution of the error terms associated 
with the model and with the measurements, tε  and tτ . We assume further that 

( )~ 0,t N Qε  and [ ]~ 0,t tN Rτ .  
 As no observation is available before the date of the first measurement 1t , the prior 

distribution at time 1t  is defined simply by { }1 1 1

2ˆ ,t t tP U N U σ⎡ ⎤ =⎣ ⎦  with 

1
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2
1 1  t t Qσ = − . The prior mean 

1

ˆtU  represents 

an initial biomass prediction at time 1t . With these notations, eq.(4) becomes 

1 1 1 1 1
 t t t t tP U m c P m U P U⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ ⎣ ⎦  with 

1 1 1 1
,t t t tP m U N U R⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ . It follows that the 

posterior distribution at time 1t  is defined by { }1 1 1 1
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Eq.(5) shows that the expected value of the posterior distribution, 
1,ˆK tU , is defined as 

a linear combination of the initial prediction 
1

ˆtU  and a weighted difference between 
the actual measurement and the initial prediction. The weight (7) depends on the 
errors associated with the model and with the measurements. Eq.(5) and eq.(7) show 
that the posterior mean 

1,ˆK tU  can differ strongly from the prior mean 
1

ˆtU  when the 
error associated with the measurement is low compared to the error associated with 
the crop-model prediction. The posterior mean 

1,ˆK tU  represents an updated prediction 
of the dry matter at time 1t  and takes into account both the initial prediction and the 
measurement. In case of perfect measurement, we have 

1
0tR = , 

1
1tK = , and 

1 1,ˆK t tU m= . On the contrary, when 
1tR is very large, 

1tK  is near from zero and 
1,ˆK tU  is 

not very different from the initial prediction. Eq.(6) and eq.(7) show that the variance 
of the posterior distribution 

1 1t tP U m⎡ ⎤
⎣ ⎦  is lower than the variance of the prior 

distribution 
1tP U⎡ ⎤⎣ ⎦ : as 

1
1tK < , we have 

1 1

2 2
,K t tσ σ< . This result shows that the 
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measurement 
1tm  reduces the uncertainty in the predicted biomass. The extent of this 

reduction depends on the variance associated with the measurement. Lower 
1tR , lower 

1

2
,K tσ .  

 Another measurement, 
2tm , is obtained at time 2t . The prior distribution of 

biomass at time 2t  is defined by: 

{ }2 1 2 2

2ˆ ,t t t tP U m N U σ⎡ ⎤ =⎣ ⎦   

where the prior mean and variance are defined by 
2

2 1

1

1
 

max,
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−

=

⎡ ⎤= + −⎣ ⎦∑  and ( )
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2 2
2 1,  t K t t t Qσ σ= + − , respectively. 

2

ˆtU  is the initial prediction of biomass at time 2t . It depends on the updated prediction 

at time 1t  
1,ˆK tU  (and, so, on the first measurement) but not on 

2tm . The new 
measurement 

2tm  is used to compute a new posterior distribution defined by: 
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2,ˆK tU  is the 

updated biomass prediction at time 2t . 
 This procedure is used sequentially with the eight other measurements obtained 
before harvest.  
 
Numerical application 
 We present here a numerical application of the Kalman filter. First, the crop model 
described in section ‘A dynamic model simulationg wheat biomass’ is used alone for 
estimating biomass for a field located in the South of France (Camargue) for the year 
1987. The predicted values of biomass are calculated by applying eq.(2) each day 
between sowing and harvest. Second, we use the Kalman filter to update sequentially 
the crop-model predictions with 10 biomass measurements. The posterior distribution 
(4) is computed at each date of measurement with the Kalman-filter equations. We 
obtain successively 10 posterior distributions: 

1 1t tP U M⎡ ⎤
⎣ ⎦ , 

2 2t tP U M⎡ ⎤
⎣ ⎦ , …, 

10 10t tP U M⎡ ⎤
⎣ ⎦  with { }

1 1t tM m= , { }
2 1 2

,t t tM m m= , …, { }
10 1 10

,...,t t tM m m= . As shown 

above, the posterior distributions depend on the variances of the measurement errors 
tR  and on the variance of the daily model error Q. In this study the values tR  are set 

equal to the empirical variances calculated from replicates. Different values of Q in 
the range 1-10 (g/m²)² are tested successively in order to study the influence of the 
model error variance on the posterior distribution. The biomass at harvest is estimated 
with the crop model by using the expected value of the last posterior distribution 

10 10t tP U M⎡ ⎤
⎣ ⎦  as a starting point. 
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Figure 2. Prior and posterior distributions of biomass at time 10t  obtained with Q=10 
(g/m²)². The black dot indicates the value of biomass measured at time 10t  
 
 Figure 2 shows the full prior and posterior distributions at time 10t =191 days (time 
of the last measurement) obtained with Q=10 (g/m²)². Both distributions are Normal 
but the two distributions are characterized by very different expected values and 
variances. The prior mean (845.4 g/m²) is lower than the posterior mean (896.6 g/m²) 
and the latter is nearer to the measured biomass value. It is important to note that the 
posterior mean is not strictly equal to the biomass measured at time 10t . This is due to 
the error associated with the measurement. As shown in eq.(5), the posterior mean is a 
weighted sum of the prior mean and of the measurement. The weight depends both on 
the variance of the prior distribution and on the variance associated with the 
measurement. The posterior distribution results from an optimal combination of the 
prior distribution and of the measurement. Another interesting result is that the prior 
variance (111.7 (g/m²)²) is much higher than the posterior variance (51.8 (g/m²)²). 
This result shows that the use of the measurement at time 10t  has reduced the 
uncertainty in the crop-model prediction.  
 Figure 3 presents the initial and updated crop-model predictions obtained between 
sowing and harvest. The updated predictions reported in Figure 3 (continuous lines) 
correspond to the expected values of the posterior biomass distributions. For example, 
the updated prediction at time 10t  obtained with Q=10 is equal to the expected value 
of the posterior distribution presented in Figure 2. Figure 3 shows that errors of 
predictions are large when the crop model is not updated with measurements (dashed 
curve). At harvest, the initial biomass prediction (1698.2 g/m²) is much higher than 
the measured value (1486.7 g/m²). The biomass at harvest is more accurately 
predicted when the crop model is adjusted to the 10 measurements by using the 
Kalman filter (continuous curves). Figure 3 illustrates the influence of the size of the 
model error Q on the results of the Kalman filter. The model predictions are more 
strongly adjusted to the measurements with Q=10 than with Q=1. This is logical 
because high values of Q tend to increase the Kalman coefficient tK . However, for 
the situation considered in Figure 3, the value of Q has almost no influence on the 
accuracy of the prediction at harvest. This result is not general and, in practice, the 
parameters describing the model errors must be chosen carefully, for instance by 
using a training dataset.  
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Figure 3. Initial model predictions (dashed line) and updated model predictions 
(continuous line). Model predictions were updated with 10 measurements by applying 
the Kalman-filter method with Q=1 (left) and with Q=10 (right). Black dots represent 
biomass measurements. The measurement obtained at time t=248 is the biomass 
measured at harvest 
 
Methods for complex nonlinear crop models 
 
General framework 
 A nonlinear crop model can be defined by :  

( )1 , ;t t t tF Xϕ ϕ θ ε+ = +          (8) 
where tϕ  is the (p×1) vector including the true p state variables values at time t, tX  is 
the vector including the input variable at time t (radiation, temperature, fertilizer dose, 
…), F  is a nonlinear function, θ  is the set of parameters, and tε  is a vector including 
p error terms. There are two important differences between model (8) and the simple 
crop model presented in 2.1. First, model (8) includes several state variables and the 
errors associated with the different state variables are likely to be correlated. Second, 
model (8) is a nonlinear model: the state variable at time t+1 is a nonlinear function F 
of the state variable at time t.  
 Suppose that a measurement tm  is available at time t and that tm  is related to the 
state variable vector by:  

t tm Hϕ τ= +           (9) 
where H is (1×p) one-row matrix and τ  is an error term. Our problem is to compute 
the conditional density ( )t tP mϕ  i.e., the posterior distribution of the state variables. 

An analytical expression of ( )t tP mϕ  can easily be derived when the model is linear 
(see section ‘Standard Kalman filter’). On the contrary, this is generally impossible 
with complex crop models. Several methods have been proposed to solve this 
problem. A first method is called Extended Kalman filter. The principle is to linearize 
eq.(8) and to apply the standard Kalman-filter method to the following model: 

( ) ( )1 ˆ ˆ, ;t t t t t t tF X Aϕ ϕ θ ϕ ϕ ε+ = + − +  
where tA  is a (p×p) matrix of partial derivatives of F  with respect to the five state 
variables, ˆtϕ  is the predicted state variable at time t, tε  is a (p×1) error-term vector 
assumed to be Normally distributed. The main drawback of this method is that the 
linearization has been shown to be invalid in a number of applications. The linear 
approximation does not always describe properly the error evolution of the model.  
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 The Ensemble Kalman filter is another popular method described by Burgers, Van 
Leeuwen and Evensen (1998). The principle is to approximate the prior and posterior 
distributions by an ensemble of state-variable values. First, an ensemble of N values 
of tϕ , 1

tϕ , …, j
tϕ , …, N

tϕ  and an ensemble of N values of tm , 1
tm , …, j

tm , …, N
tm , 

are randomly generated. Second, the Kalman-filter equation is applied to each 
ensemble element as follows: 

( ),
j j j je

t t t tt K K m Hϕ ϕ ϕ= + −         (10) 

where e
tK  is a (p×1) vector defined by ( ) 1

' 'e e e
t t t tK H H H R

−
= Σ Σ + , tR  is the variance of 

the measurement error, and e
tΣ  is the (p×p) variance−covariance matrix of N state 

vectors j
tϕ , j=1,…, N. The ensemble of state variables j

tϕ , j=1,…, N, describes the 
uncertainty in the state-variable values before using the measurement. In this 
approach, the updated crop-model prediction is set equal to the average value of the 

,
j

t Kϕ , j=1, …, N, noted further ,t Kϕ . Note that ,t Kϕ  is related to the average value, 

tϕ , of the initial ensemble j
tϕ , j=1, …, N, by 

( ),
e

t K t t t tK m Hϕ ϕ ϕ= + −         (11) 

where tm  is the average value of j
tm , j=1, …, N. tϕ  and ,t Kϕ  can be interpreted as 

prior and posterior means, respectively. The attractive feature of this method is that its 
implementation does not require a linear approximation of the crop model. However, 
it is necessary to choose the value of N, to define a procedure for generating j

tϕ , 
j=1,…, N, and to define another procedure for generating j

tm , j=1,…, N. The values 
of j

tm , j=1,…, N, can simply be generated by adding random terms to tm : 
j j

t t tm m τ= +  with ( )~ 0,j
t tN Rτ  (Burger, Van Leeuwen and Evensen 1998). This is 

straightforward if tR  is known. On the contrary, there is no systematic method for 
choosing N and for generating the ensemble of vectors j

tϕ , j=1,…, N. The value of N 
is generally selected by trial and error. For generating the ensemble of state variables, 
a common approach consists in calculating N vectors of state variables at each time 
step as follows (e.g. Allen, Eknes and Evensen 2002):  

( )1 , ;j j j
t t tt F Xϕ ϕ θ ε+ = +  

where ( )~ 0,j
t tN Qε . The procedure requires the knowledge of tQ . As before, 

different values tQ  can be tested by using a training data set. Another approach is to 
generate randomly N values for all the uncertain elements of the crop models 
(parameters and input variables) (Margulis et al. 2002). 
 Finally, particle filter is another method to compute the posterior distribution. This 
method is not described here. See Doucet, Godsill and Andrieu (2000) for more 
details.  
 
Application to a crop model predicting grain protein content 
 The AZODYN crop model (Jeuffroy and Recous 1999) is a nonlinear dynamic 
model simulating winter-wheat crop in function of environmental variables 
(characteristics of the crop at the end of winter, soil characteristics, climate) and of 
nitrogen fertilization (dates and rates of fertilizer applications). This model can be 
used to predict grain yield, soil mineral nitrogen, and grain protein content at harvest. 
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AZODYN is a useful tool for studying the effects of nitrogen management on crop 
yield, grain quality and risk of pollution by nitrate (Meynard et al. 2002). Before 
flowering, five state variables are simulated each day by AZODYN: nitrogen uptake 
(NU), dry matter (DM), nitrogen-nutrition index (NNI), leaf-area index (LAI), soil 
mineral nitrogen supply (SNS). 
 We consider chlorophyll-content measurements obtained with a chlorophyll meter. 
These measurements are correlated to one of the model state variables, namely 
nitrogen uptake, and can be easily performed by farmers, collecting-firm operators, or 
farmers’ advisors. Here, we suppose that only one chlorophyll-content measurement 
is performed at flowering and that this measurement is linearly related to the model 
state variables as follows: 

flo flom Hµ ϕ τ= + +          (12) 
where flom  and floϕ  are, respectively, the chlorophyll-content measurement and the 
(5×1) vector of the true state-variable values at flowering, µ  is an intercept 
parameter, and H  is a one-row matrix defined by ( ),0,0,0,0H α=  where α is the 
slope of the linear equation relating the measurement to nitrogen uptake. We assume 
that the error term τ  is Normally distributed, ( )~ 0,N Rτ . 
 The Ensemble Kalman filter is implemented with AZODYN. The objective is to 
study the sensitivity of the model predictions to the value of the measurement flom  
obtained at flowering. We consider a particular site-year (Grignon-1995) and we use 
AZODYN to predict the characteristics of a wheat crop at harvest, specifically yield 
and grain protein content. The crop model is first run without updating the simulations 
with any chlorophyll-content measurement. Next, the model is run a second time and 
the Ensemble Kalman-filter method is used to update the five state variables of 
AZODYN with a single chlorophyll-content measurement performed at flowering. 
Yield and grain protein content at harvest are then computed from the updated state 
variables.  
 To apply the Ensemble Kalman-filter method, we generate N=150 state-variable 
vectors at time t=1. Each vector contains five elements representing particular 
realizations of the five state variables. The N vectors are generated by sampling N 
values for each of seven uncertain parameters and input variables. Parameter and 
input-variable distributions were specified from expert knowledge. The N state-
variable vectors are propagated forward in time until the date of measurement 
(flowering). Figure 4 shows the evolution of ten realizations of two state variables, 
nitrogen uptake and soil nitrogen supply, between the end of winter and flowering. 
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Figure 4. Ten realizations of nitrogen uptake and soil nitrogen supply between the end 
of winter and flowering for Grignon-1995. Nitrogen fertilizer was applied at days 121, 
150, and 209 
 
 The (5×5) variance−covariance matrix of the model errors, e

tΣ , is computed at 
t=flowering from the 150 state-variable vectors obtained at the date of measurement. 
Then eq.(10) is applied to each vector with 30.26µ = , 0.083α = , and 8.11R = , these 
parameters being estimated by linear regression on 42 measurements of nitrogen 
uptake and chlorophyll content obtained in Grignon at flowering. The (5×1) vector 

e
tK  is computed at flowering from e

tΣ , α , and R  as explained in 3.1, and we obtain 

[ ] [ ]' ', , , , 2.67,384.7,0.13, 0.005,1.99e
t NU DM LAI NNI SNSK K K K K K= = − , where NUK , 

DMK , LAIK , NNIK , SNSK  are the coefficients associated with the five state variables. 
Note that all the state variables are updated by using a single chlorophyll-content 
measurement, even if only nitrogen uptake is explicitly related to chlorophyll content. 
For example, at flowering, the updated value of soil N supply is equal to 

 SNS SNS flo NUK mϕ µ α ϕ⎡ ⎤+ − −⎣ ⎦ , where flom  is the measurement performed at 
flowering, NUϕ  and SNSϕ  are, respectively, the means of the 150 nitrogen-uptake and 
soil nitrogen-supply values obtained at flowering before correction. SNSK  depends on 

eΣ and notably on the covariance between nitrogen uptake and soil nitrogen supply.  
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Figure 5. Sensitivity of the updated values of nitrogen uptake and soil N supply at 
flowering (continuous lines) to chlorophyll-content measurement. Dotted lines 
indicate the initial model predictions 
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 Figure 5 shows the initial and updated values of crop nitrogen uptake at flowering 
and cumulated soil N supply from sowing to flowering for different values of the 
measurement flom  taken in the range 30-55. Each value reported in Figure 5 results 
from averaging 150 individual values. Compared to the initial state-variable values 
(dotted lines), the updated values (continuous lines) are either increased or decreased 
depending on the value of the measurement. Figure 6 shows the resulting effects on 
two variables simulated by AZODYN at harvest, yield and grain protein content. 
Higher chlorophyll content, higher yield but lower grain protein content.  
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Figure 6. Updated values of yield and grain protein content obtained at harvest in 
function of chlorophyll-content measurement 
 
Conclusion 
 
 The Kalman-filter method is an attractive method for updating crop-model state 
variables with real-time measurements. Updated values of model state variables can 
be used either to predict crop characteristics or to optimize farmers’ practices in order 
to achieve economic, quality or environmental objectives. The Kalman filter can be 
easily applied to simple crop models but its application to complex models is not 
straightforward. Several methods have recently been developed in order to update 
predictions of complex nonlinear models, and an application of one of these methods 
has been presented in this paper. However, we think that additional research is 
required to demonstrate the operational capabilities of these methods. Their 
performances depend on several key elements: the variance−covariance matrix of the 
model errors, the relationship between measurements and state variables, and the 
number of measurements. Different approaches can be used to estimate the 
variance−covariance matrix and to relate state variables to measurements. The interest 
of these approaches will be evaluated in further studies. 
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