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Some explorations into Bayesian modelling of risks due to 
pesticide intake from food 
 
 
Hilko van der Voet# and M. João Paulo# 
 
Abstract 
 

This paper presents some common types of data and models in pesticide exposure 
assessment. The problems of traditional methods are discussed in connection with 
possibilities to address them in a Bayesian framework. We present simple Bayesian 
models for consumption of food and for residue monitoring data.  
Keywords: Bayesian model; Monte Carlo; MCMC; exposure assessment; food 
safety; risk analysis; dietary consumption; residue monitoring 
 
Introduction 
 

Food safety has become a major focus of attention for consumers, and therefore 
also for producers and other parties in the agro-food chain. In this paper we will 
consider the risks associated with the possible presence of pesticides in vegetables and 
fruits.  

Traditionally the analysis of such risks by food-safety authorities has been in terms 
of deterministic estimates of exposure (Submission and evaluation of pesticide 
residues data for the estimation of maximum residue levels in food and feed 2002), 
but currently there is a shift in thinking from deterministic to probabilistic approaches 
(Ferrier et al. 2002). However, currently available probabilistic approaches require 
data of sufficient quality and quantity, which are often not available. Bayesian models 
hold a promise to allow an efficient use of prior knowledge or an efficient pooling of 
parameters. 

The objective of this paper is to explore the possibilities of Bayesian models for 
exposure assessment in order to prepare more realistic risk-analysis methods in the 
field of food safety. The methods found in current Bayesian literature cannot be 
applied directly to the type of data which are commonly available, and therefore new 
models are developed. 
 
Data for exposure assessment 
 

For exposure assessment it is necessary to have data on food consumption (x) and 
residue levels in food (c). Also, it is necessary to have knowledge of the population of 
individuals for whom the exposure assessment will be assumed to be relevant 
(including knowledge of their body weights w). We will now successively consider 
consumption data and concentration data. 
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The most common type of data on food consumption arise from National Food 
Consumption Surveys (Verger et al. 2002). In the European Union it is currently 
attempted to harmonize such national surveys in the interest of international 
comparability (Brussaard et al. 2002). In a Food Consumption Survey (FCS) a 
stratified random sample of consumers is asked to complete a diary writing down their 
consumption for a number of days. For example, from the Dutch National FCS of 
1997/1998 (Zo eet Nederland: resultaten van de voedselconsumptie-peiling 1997-
1998 1998) the food consumption of 6250 Dutch individuals in 2564 households is 
available for two consecutive days. Here we can already note that there is much 
structure in these data (stratification, households, consecutive days) which needs 
attention in statistical modelling. In current applications this data structure is often 
ignored. 

A common feature in food consumption data sets is the sparseness, that is the fact 
that most products on any day are not consumed. In statistical parametric modelling it 
will be necessary to account explicitly for the spike of zero consumptions. 

A disadvantage of usual FCS data for the assessment of chronic risks is that hardly 
any information about the long-term use of food products is included. An alternative 
type of data about consumption is provided by a food-frequency questionnaire (FFQ). 
An example is the Dutch VEG questionnaire on the consumption of vegetables and 
fruit (Van Dooren-Flipsen, Van Donkersgoed and Van Klaveren 1999). Here a typical 
question is: How often (in the last summer) did you eat apples? with 7 possible 
categorized answers ranging from never or less than 1 day per month to 6-7 days per 
week. In addition it is then asked how many apples are typically consumed on such a 
day. Such data can be converted to rough estimates of the average consumption of 
apples for this person, but no information about the variability of consumption and 
about the between-product correlations is obtained.  

In order to make food consumption data x compatible with concentration data c it 
will almost always be necessary to apply food conversion tables to transform the 
amount of products as eaten (e.g. pizza) to raw agricultural commodities (e.g. tomato). 
This conversion, currently often applied without regard for variability and uncertainty, 
is clearly another stage where probability models may be incorporated in a Bayesian 
context. 

Data on concentrations of chemicals in raw agricultural commodities may be 
available from supervised trials or, for substances which are already in use for some 
time, from monitoring programmes. In this paper we consider the latter type of data 
from the Dutch Quality Programme for Agricultural Products (Van Klaveren 1998). 
Under this programme a database is filled with residue- and contaminant-monitoring 
results in many types of food. Here we will consider the example of the pesticide 
iprodione in vegetables and fruit. On a period of 5 years (1998-2002) iprodione was 
found on 53 vegetable and fruit commodities. In the monitoring database we had 
between 12 and 1367 measurements per commodity (average 232), but only between 
1 and 293 of those were positive values (average 27). Among the 53 commodities 
there were only 14 (26 %) with at least 20 positive values, and for as much as 31 
commodities (58 %) there were less than 10 positive values available. It can be 
remarked that this will present a problem in parametric modelling, especially 
considering the fact that in practice an exposure assessment is often based on data for 
a shorter time period than 5 years. 

Often, a pesticide is found in higher concentrations on only a few commodities. 
For example in the iprodione example the highest concentrations were found on 
endive and kiwi fruit. But note that we cannot be certain that other commodities are 
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not relevant for acute exposure, because incidental high values may occur for other 
commodities, and also high consumptions with relatively low concentration levels 
may still contribute significantly to the exposure. 
 
Models for exposure assessment 
 

The basic model of exposure assessment is 
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where yij is the intake by individual i on day j (in µg chemical substance per kg body 
weight), xijk is the consumption by individual i on day j of food commodity k (in g), 
cijk is the concentration of the chemical substance in commodity k eaten by individual 
i on day j (in mg/kg), and wi is the body weight of individual i (in kg). Finally, p is the 
number of food commodities accounted for in the model.  

In this section we discuss four types of model for exposure assessment: 
1. deterministic models as currently in use by official organizations; 
2. probabilistic models using simulation 

a) based on resampling empirical data; 
b) based on parametric modelling of data; 
c) Bayesian models (parametric modelling of data and prior information). 

Types 2a and 2b are also known as Monte Carlo (MC) models, whereas type 2c can 
be implemented as a Markov Chain Monte Carlo (MCMC) model. 

Traditionally, exposure assessment has been done without regard for variability, 
that is, by multiplying average consumption by average concentration for all 
commodities. Considering that the risks of acute exposure could be underestimated 
due to the big variability of both consumptions and concentrations, a natural reaction 
has been to apply worst-case values, leading to exposure estimates of the type 

meanw
cxy max5.97 ⋅

=  

where x97.5 is the 97.5th percentile in the consumption distribution of the eaters of the 
chosen commodity, cmax is the largest observed residue concentration, and wmean is the 
mean body weight in a population. This exposure estimate has been further developed 
into the International Estimate of Short-Term Intake (IESTI) which is now adopted by 
the Joint FAO/WHO Meeting on Pesticide Residues (JMPR) for the evaluation of 
residue data when maximum residue levels (MRLs) in food and feed have to be 
estimated (Submission and evaluation of pesticide residues data for the estimation of 
maximum residue levels in food and feed 2002). It is clear that the actual intake is 
overestimated by the combination of two conservative (worst case) values from 
distributions that are independent. It may be noted that this type of estimate can only 
be applied to single food commodities because summation over commodities makes 
no sense as this would correspond to a simultaneous worst case situation for all 
products.  

In a Monte Carlo analysis using empirical data (type 2a) the empirical intake 
distribution is estimated by combining, in a large number of iterations, the 
consumption pattern and body weight of a randomly selected consumer with 
concentration values randomly selected from the monitoring data (allowing for the 
observed proportion of non-detects). See Figure 1 for an example of such an empirical 
distribution, obtained with the programme MCRA (Van Der Voet et al. 2003). The 
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risk assessment is usually made by comparing toxicological limits, such as for 
example the acute reference dose, with percentiles of this distribution. Figure 2 shows 
selected percentile estimates, together with bootstrap estimates of the uncertainty in 
each percentile estimate due to sampling errors of the consumption and concentration 
data (the bootstrap distributions were obtained by calculating the selected percentiles 
in 1000 intake distributions based on 1000 Monte Carlo iterations each).  
Although this type of Monte Carlo analysis performs well in cases where sufficient 
regular data are available, there are often problems which prompted us to investigate 
the possibilities of parametric modelling in a frequentist or fully Bayesian framework: 
1. The quantity of data is often small. For example, winter carrot was only consumed 

on 5 out of 12,500 days, and over a period of five years only 12 measurements of 
iprodione in kohlrabi have been made (one of which was positive). In such cases 
resampling the data can only generate a strictly limited set of values. Fitting a 
parametric distribution to the data allows the generation of a more smooth 
distribution of future values. 

2. With empirical modelling each commodity is separate, and in that sense empirical 
models are maximally complex. Parametric modelling allows models with 
common parameters, e.g. coefficients of variation that are equal for all 
commodities in a certain class. Bayesian modelling allows the specification of 
priors to estimate parameters which are intermediate between ‘all separate’ and 
‘all equal’. 

3. Sometimes no primary data are available, but only data in summary form, for 
example as means, standard deviations, percentiles or maxima. This type of 
information can only be used in connection with a distributional assumption to 
generate new values. 

4. Much of the structure in the data sets (e.g. days within persons within households) 
is commonly ignored in an empirical analysis. Hierarchical modelling techniques 
seem appropriate to take such structure into account. 

5. There are analytical limitations to detect low residue levels. This means that the 
failure to find a positive concentration (non-detect) actually can be due to two 
causes: either the pesticide is really absent (pesticide was never used) or it is 
present in a low concentration below the limit of reporting. In parametric analysis 
this can be modelled as a mixture of distributions. 
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Figure 1. Empirical intake distribution of iprodione from vegetables and fruit based on 
1,000,000 iterations. Non-detects were replaced by the limit of reporting. ArfD is the 
acute reference dose, which is the toxicological limit-value set for acute risks 
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Figure 2.  Estimated mean and selected percentiles of empirical intake distribution. 
Bars and line segments limit the quartiles and 2.5% and 97.5 % points of the 
uncertainty distribution based on bootstrapping 
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A Bayesian model for consumption 
 

As an exercise in Bayesian modelling we developed a simple model for the 
example data set. Given the sparseness of the data it was considered necessary to 
model the binary result (commodity consumed yes or no) separate from the 
quantitative result (amount eaten). For one commodity the model can be written as: 
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where Bj is an indicator function for consumption, and xj is the amount of product j 
consumed. ( )0δ  represents a spike at 0=jx . There are three parameters (the 
probability of consumption jπ and the mean jµ and variance 2

jσ of the ln-transformed 
consumptions) for which we need to specify prior distributions. We chose the 
conventional prior distributions for the parameters of the (log)normal distribution, that 
is a normal prior distribution for jµ and an prior  inverse-chi square distribution for 

2
jσ . In a multivariate context (with p commodities) this is easily generalized to a 

multivariate normal distribution and an inverse-Wishart distribution, respectively (see 
e.g. Gelman et al. 1995). Therefore a straightforward Bayesian model for  the 
consumed amount is: 
 
 ),(~     );,(~      );,( ~)ln( 00xxx dfRWNNx pxpp ΣΣΣ µµµ . 
 
Typically, in an analysis where there are sufficient data, the prior distributions will be 
taken vague by specifying covariance matrices Σ0 and R equal to e.g. 1000 times the 
identity matrix, and means µ0 equal to 0. The degrees of freedom df should be at least 
p+2 in order for the mean of R-1 to exist. This choice therefore gives the maximum 
amount of vagueness attainable in the inverse Wishart distribution. 
For the Bernoulli parameter jπ , the conventional conjugate prior is the beta 
distribution. However, in a multivariate context this model is less attractive because 
there is no straightforward generalization to the multivariate case. We investigated 
two possibilities: a logit-normal model and a loglinear model. 
In the logit-normal model we introduce an auxiliary variable zj, defined as the logit 
transform of the Bernoulli parameter jπ , and then assume a normal prior distribution 
for zj. This can be easily generalized to a multivariate normal distribution in a model 
for more food commodities.  The multivariate Bayesian model for binary food 
consumption specified by a binary vector B is then specified by 
 
 ),(~)(logit                    ;)(~ ππµππ ΣpNBernB . 
 
In the loglinear model the binary consumption patterns are tabulated in a 2p 
contingency table. The counts nB for each possible consumption pattern B are then 
modelled as Poisson variables with a parameter given by a loglinear model: 
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where u0, u1j and u2jk are parameters describing the mean, the main effects of the 
components of B, and the two-factor interaction effects, respectively. The model is 
easily extended with higher-order interactions. All u parameters are given vague 
normal prior distributions with mean 0 (exception: u0  has a higher mean, e.g. 5) and a 
large variance (e.g. 1000): 
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Although both models for binary patterns could be used, we ultimately preferred the 
loglinear model, because it is the most general model allowing to model any kind of 
interaction, and because in the logit-normal model correlations between commodities 
could only be modelled via the prior distribution. 
 
Example: consumption of relatively-high-risk commodities 
 

The consumption models were implemented in Winbugs 1.4 (Spiegelhalter et al. 
2003), and could be used to generate posterior distributions for the parameters, and 
predictive distributions for consumption p(x). However, the models could only be 
applied to a limited set of food commodities. For the full set of 53 commodities in our 
example data set there are far too many parameters that would have to be estimated. 
Therefore in this example we first ran the empirical Monte Carlo model to identify the 
four commodities which contributed most to the upper tail (upper 2 %) of the 
exposure distribution. These four commodities turned out to be endive, cabbage 
lettuce, grape and kiwi fruit (relative contributions to the tail 21, 15, 12 and 10 %). 
The frequencies of occurrence are shown in Table 1. 
 
Table 1. Occurrence of four relatively-high-risk commodities in the diet of 6250 
consumers (fractions in parentheses) 
 

 3. kiwi fruit 0  1  
 4. grape 0 1 0 1 
1. endive 2. cabbage lettuce     

0 0 3088 
(0.494) 

1938 
(0.310) 

83  
(0.013) 

116 
(0.019) 

 1 282 
(0.045) 

195 
(0.031) 

9 
(0.001) 

10 
(0.002) 

1 0 230 
(0.037) 

138 
(0.022) 

10 
(0.002) 

11 
(0.002) 

 1 76 
(0.012) 

54 
(0.009) 

4 
(0.001) 

6 
(0.001) 
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Table 2. Posterior statistics (15000 samples in three Markov chains, after a burn-in 
run of 5000 samples each) for cell probabilities (prob), mean log amounts (mu.x), and 
amounts consumed (yy). Indices of prob correspond with the row-wise order of cells 
in Table 1 
 

 node  mean  sd median 90.0% 95.0% 97.5% 
prob[1] 0.4942 0.006166 0.4942 0.5022 0.5044 0.5063 
prob[2] 0.3103 0.005729 0.3102 0.3177 0.3198 0.3216 
prob[3] 0.01352 0.001383 0.01349 0.01531 0.01587 0.01636 
prob[4] 0.0181 0.001606 0.01804 0.02019 0.02082 0.02137 
prob[5] 0.04491 0.002522 0.04487 0.04818 0.0491 0.04989 
prob[6] 0.03123 0.002045 0.03116 0.03386 0.03465 0.03546 
prob[7] 0.001309 2.835E-4 0.001291 0.001684 0.00181 0.001922 
prob[8] 0.001938 3.987E-4 0.001916 0.002454 0.002632 0.002801 
prob[9] 0.03644 0.002239 0.0364 0.03932 0.04021 0.04094 
prob[10] 0.02212 0.001699 0.02208 0.02433 0.02499 0.02557 
prob[11] 0.001564 3.248E-4 0.001542 0.001993 0.002129 0.002241 
prob[12] 0.002022 4.08E-4 0.001995 0.002559 0.002722 0.002882 
prob[13] 0.01253 0.00118 0.01251 0.01407 0.01454 0.01493 
prob[14] 0.008429 9.069E-4 0.008395 0.009611 0.009993 0.0103 
prob[15] 5.701E-4 1.529E-4 5.535E-4 7.814E-4 8.542E-4 9.126E-4 
prob[16] 8.166E-4 2.186E-4 7.882E-4 0.00111 0.001222 0.001319 
mu.x[endive] 2.972 0.1073 2.972 3.11 3.15 3.185 
mu.x [cabbage  lettuce] 3.028 0.07216 3.027 3.12 3.149 3.17 
mu.x [kiwi fruit] 3.673 0.1574 3.675 3.873 3.931 3.981 
mu.x [grape] 2.024 0.04342 2.024 2.08 2.094 2.109 
yy[endive] 72.23 4596.0 0.0 0.0 12.92 93.55 
yy[cabbage lettuce] 10.16 130.4 0.0 0.0 19.9 64.0 
yy[kiwi fruit] 51.51 2556.0 0.0 0.0 0.0 19.46 
yy[grape] 40.47 855.8 0.0 32.44 87.55 192.6 

 
The posterior statistics in Table 2 show that a loglinear model with only main effects 
and two-factor interactions could well estimate the original cell probabilities in Table 
1 (for example, prob[1] nicely estimates 3088/6250 = 0.494). More importantly, the 
posterior predictive consumption distributions, integrated over consumers and non-
consumers, show that more than 50% of the intakes are 0 for all 4 products (median is 
zero). The 97.5th percentiles are estimated at 94 g of endive, 64 g of cabbage lettuce, 
19 g of kiwi fruit, and 193 g of grapes. It may be noted that among these four 
products, grape has the lowest mean daily portion size (among grape consumers the 
geometric mean consumption is emu.x[grape] = e2.024  = 8 g against e.g. emu.x[kiwi fruit] = 
e3.673  = 39 g). However, the 97.5th percentile in the distribution of consumption of all 
individuals (both consumers and non-consumers) is 193 g, which is higher than for 
the other products (e.g. 19 g for kiwi fruit). These differences can be explained by the 
proportion of consumers and the different variability of consumption sizes (both 
higher for grape than for kiwi fruit).  

In a further analysis (outside the scope of this paper) it will now be straightforward 
to combine these consumption distributions with the distributions for concentration 
derived in the second part of this paper. 
 
Chemical residue present in food 
 

The residue data come from monitoring programmes run at several stages of the 
agro-food chain. Monitoring programmes are run to ensure that the residue 
concentration present in the food commodities is below the safe limit as set by the 
government. Data from monitoring programmes are also useful to assess the risk 
posed to consumers. Monitoring data essentially are a collection of measurements 
performed on a number of food samples on the concentration of the residue present in 
the sample. The residue concentration present in food strongly depends on the sort 
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and origin of the crop, and in the case of pesticides, it also depends on whether use of 
that particular pesticide is allowed on the crop or not. Apart from that, the number of 
samples taken varies very much from one food commodity to another. To make things 
worse, the measurement devices are not sensitive to very low concentrations, and only 
results above a certain value are reported, called the Limit of Reporting (LOR). A 
sample of food is either found to be contaminated with a concentration c above the 
LOR, or the residue is not detected (ND). If no residue is detected in a sample it 
obviously does not necessarily imply that residue is not present; it may very well be 
that residue is present at a low concentration, below the LOR. Formally, the residue 
concentration present in a food sample, *

jc , will be either zero or positive, with a 
given probability: 

⎩
⎨
⎧

=
=

=
  1 if )(
0 if )0(

)|( *

j

j
jj If

I
Icp

θ
δ        

  
where we further define jI  as a variable taking the value 0 if the chemical in question 
was not used on the population from where sample j was collected, and taking value 1 
otherwise. The observed/measured concentration jc  on sample j is then 
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The lognormal distribution has been found to describe the positive concentrations 
very well, and therefore is usually used as )(θf . The lognormal density function is 
given by 
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with parameters µ  and σ . It has the nice property that if ),(~ σµLNc  then  
),(~)ln( σµNc . Figure 3 shows the histogram of iprodione residue found in strawberry 

(the y-axis is set in two scales to accommodate the 1096 non-detects, shown below the 
LOR, and 271 detects), and Figure 4 shows the same data, ln-transformed (y-axis 
shown in two scales, point LOR in the x-axis is actually ln(LOR)).  
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Figure 3. Histogram of iprodione residue found in strawberry. The limit of reporting is 
0.02. The y-axis was set in two scales to accommodate the 1096 non-detects, shown 
below the LOR,  and 271 detects 
 
 

ln(residue)

A
bs

ol
ut

e 
Fr

eq
ue

nc
y

LOR -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0  

10  

20  

30  

40  

50  

60  

    

1096  

 
Figure 4. Histogram of the ln-transformed iprodione residue found in strawberry. The 
y-axis was set in two scales to accommodate the 1096 non-detects and 271 detects. 
LOR in the x-axis is actually ln(LOR) 
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Model for ln(residue) 
 

We model the number of observed zeros (i.e. censored concentrations and real 
zeros) separately from the sample of detects:  
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The number of observed zeros (N0) has a binomial distribution with probability that an 
observed zero is either a real zero or a non-detect. The detects (c) are a truncated 
sample from a lognormal distribution, ( ) σµα /)LORln( −= , and )(αΦ  is the 
cumulative distribution function of the standard normal at α . 
 
Example: iprodione concentrations in vegetables and fruit 
 

Iprodione concentrations were measured in 53 sorts of vegetables and fruit. A 
different number of samples were taken in each food commodity, the total number of 
samples varied between 12 and 1367. The number of detects varied between 1 and 
293, since the LOR for iprodione was 0.02 mg/kg (in practice the LOR is likely to 
vary from one laboratory to another, but here it is assumed to be constant). 
The ln-transformed observed positive concentrations were tested as to whether their 
underlying distribution was Normal, using the Anderson-Darling goodness-of-fit test. 
The Anderson-Darling test (Anderson and Darling 1954) compares the empirical 
distribution )(cFn  of a sample of size n  with a given distribution function )(cF , 
through the weighing of the squared difference of the two functions with 

( ))(1)( cFcF − . The difference is then integrated over the domain of )(cF : 
( ) ( )[ ] )()(1)(/)()( 22 cdFcFcFcFcFnA n∫ −−= . 

This test has similarities with the Kolmogorov-Smirnov test, but has some advantages 
over the latter, namely that it allows parameter estimation from the data, and it is more 
sensitive at the tails of the distribution. A discrete version of the test is obtained for 
the ordered observations },,,{ 21 nccc K  (Stephens 1974), and it is given by 
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The test rejects normality at the 95% confidence level for test values above 0.752. The 
test was performed on the products with a number of 4 or more detects. For each 
product two normality tests were carried, using the sample mean and sample standard 
deviation, respectively (ignoring the fact that the observations are truncated at the 
LOR), and using the maximum likelihood parameters of the truncated normal 
distribution. Figure 5 shows the resulting test statistics for the second test (maximum 
likelihood parameters) versus sample size.  
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Anderson-Darling test for normality

  currant
plum

lamb's lettuce

carrot

grape

   strawberry
cab.lettuce

kiwi fruit

endive

winter carrot

sweet pepper

tomato

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 10 100 1000

sample size

 test statistic (trunc. norm
al)

 
Figure 5. Results of normality test for 34 products with sample size n ≥ 4. The line 
represents the critical value at the 95% confidence level 
 

The two tests produced very similar results, except for one commodity, kiwi fruit, 
where the first distribution was rejected, and the second was not. For the 34 products, 
the test rejected normality in 2 samples, endive and winter carrot, even after 
accounting for truncation. The histograms of the ln-transformed positive 
concentrations in endive and winter carrot are shown in Figure 6 and Figure 7, 
respectively. Although we recommend caution when estimating the risks associated to 
these two products, we find it reasonable to assume a lognormal distribution for the 
residue for all other products. 
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Figure 6. Histogram of the ln-transformed positive residue found in endive. The 
Anderson-Darling goodness-of-fit test rejected normality for this  sample, even after 
accounting for left truncation 
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Figure 7. Histogram of the ln-transformed positive residue found in winter carrot. The 
Anderson-Darling goodness-of-fit test rejected normality for this  sample, even after 
accounting for left truncation 
 

Model (1) was implemented in WinBUGS 1.4 (Spiegelhalter et al. 2003), the 
current version of  BUGS. BUGS (Bayesian inference Using Gibbs Sampling) is a 
software for Bayesian analysis that uses Markov chain Monte Carlo (MCMC) 
methods.  
Model (1) was coded in BUGS as follows: 
 
model truncated{ 
 
  low   <- log(LOR) 
  sigma <- sqrt(1/prec)       
  pcens <- phi((low - mu)/sigma) 
  pzm   <- p0+(1-p0)*pcens 
  big   <- 1.0E6  
 
  N0     ~ dbin(pzm,N) 
  for(i in 1:Npos){ 
 z[i]    <- (ln.res[i] - mu)/sigma 
 arg[i]  <- -pow(z[i],2)/2 
 dens[i] <- sqrt(prec/(2*3.14159))*exp(arg[i])/(1-pcens) 
     like[i] <- dens[i]/big 
 ones[i] <- 1 
   ones[i] ~ dbern(like[i]) 
  } 
 
# priors 
  mu   ~ dnorm(0,0.01)      
  prec ~ dgamma(0.1,0.1)  
  p0   ~ dbeta(1,1) 
 
}# end-of-model 
 
We show the results of two applications of the model, namely to residue found in 
strawberry and in kiwi fruit. 
 



Chapter 13 

158 

Residue in strawberry 
 

A positive residue was detected in 271 samples of strawberry, out of a total of 1367 
samples. The histogram of the ln-transformed detected residue with non-detects 
(residue below the LOR) is shown in Figure 4. The ln-detected residue in the data has 
a sample mean equal to -1.2 and sample standard deviation 0.9. Since we observe a 
truncated sample, we are more interested in obtaining the parameters of the original 
distribution. We used vague priors for the model parameters to express our lack of 
knowledge in this situation. The resulting statistics of the stationary posterior 
distributions are shown  in Table 3. The posterior kernel densities are shown in Figure 
8. The posterior distributions synthesize how much information we have about the 
parameters from the prior distributions and from the data combined. The mean 
posterior µ  and σ  (mu and sigma) are -1.2 and 1.2, respectively (slightly higher 
posterior σ  than in the data). The posterior probability of observing a real zero is 
between 0.78 and 0.82 with a 95% chance, with mean at 0.8, i.e. about 20% of the 
samples are likely to be positive. In our data set we could expect to have 273 positive 
samples, i.e. 2 censored samples. 
 
Table 3. Posterior statistics in strawberry 
 

node mean sd MC error 2.50% median 97.50%
p0 0.799 0.011 0.000 0.777 0.799 0.820

Pcens 0.011 0.004 0.000 0.005 0.011 0.021
pzm 0.801 0.011 0.000 0.780 0.802 0.822
mu -1.198 0.076 0.001 -1.348 -1.197 -1.052

sigma 1.183 0.058 0.000 1.076 1.180 1.305
 
 
 

mu chains 1:3 sample: 90000
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Figure 8. Posterior kernel densities in strawberry 
 
Residue in kiwi fruit 
 

In kiwi fruit there were 115 samples taken, residue was detected in 13 samples. 
The histogram of the residue in kiwi fruit can be seen in Figure 9, and the histogram 
of the ln-transformed residue is shown in Figure 10. 
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Figure 9. Histogram of iprodione residue found in kiwi fruit. The limit of reporting is 
0.02. The y-axis was set in two scales to accommodate the 102 non-detects, shown 
below the LOR, and 13 detects 
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Figure 10. Histogram of the ln-transformed iprodione residue found in kiwi fruit. The 
y-axis was set to accommodate the 102 non-detects and 13 detects. LOR in the x-axis 
is actually ln(LOR)) 
 

The ln-detected residue has sample mean equal to -1.4 and sample standard 
deviation 5.0, meaning that the detected residue has a very large dispersion (in fact a 
very high concentration, 18.4 mg/kg, was measured in kiwi fruit). The Bayesian 
model was solved as before, using vague priors, and the resulting posterior statistics 
and kernel densities are displayed in Table 4 and Figure 11, respectively. The 
posterior distributions have a lot of variation. The mean posterior 0p  is 0.53, but in 
fact ]88.0,04.0[0 ∈p  with a 95% probability. In our data set we could expect 47% of 
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the samples with a positive concentration (54 positive samples), meaning that a 
substantial part of the concentrations would be below the LOR and was not detected. 
The mean posterior µ  (-6.4) is also much lower than the sample mean, as one would 
expect if there is strong censoring in the data. These values need to be handled with 
caution though, since variation in the posterior distributions is so large. 
 

Table 4. Posterior statistics for kiwi fruit 
node mean sd MC error 2.50% median 97.50% 

p0 0.531 0.253 0.005 0.036 0.576 0.881 
Pcens 0.662 0.211 0.005 0.152 0.730 0.905 

pzm 0.885 0.029 0.000 0.822 0.888 0.936 
mu -6.413 2.817 0.066 -12.030 -6.409 -1.637 

Sigma 4.150 1.369 0.026 1.994 3.987 7.297 
 
 
 

mu chains 1:3 sample: 90000
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Figure 11. Posterior kernel densities in kiwi fruit 
 
Discussion 
 

In this paper we analysed some uses of Bayesian models for risks due to pesticide 
intake from food. Such models can in principle be applied to the type of data which is 
available from food consumption surveys and residue-monitoring programmes. We 
presented separate models for consumption and concentration. A next (and trivial) 
step will be to combine these two submodels into a model for pesticide intake. It will 
be interesting to incorporate more of the detailed structure of the data, such as hinted 
at in this paper, into such a model, and to devise a proper weighting scheme of prior 
information and available data. 

Bayesian methods have several advantages. First, in principle all available 
information can be combined to obtain posterior distributions. This is certainly 
important in food safety, where information often comes from several sources and 
data can be very scarce. For example, Bayesian approaches seem to offer possibilities 
to combine the information of both FCS data and FFQ data in one model. For 
example, in a situation where the FFQ data have been obtained for a subset of the FCS 
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sample, a sketch of a useful hierarchical model (restricting ourselves here to one 
product) may be 
 

)1500,...,1(
)6000,...,1(

=++=

=++=

ierrorpersonmeanxFFQ
idaypersonmeanxFCS

iii

ijiij  

 
where, with i and j indices for person and day, xFCS and xFFQ refer to (the logarithm 
of) daily consumption as estimated from FCS and FFQ respectively, mean and person 
are mean consumption and person-specific deviation (equal for both submodels), day 
is the day-specific deviation in the FCS data (including any error component), and 
error is the measurement error in the FFQ data. Parameters to estimate in this simple 
model would be the mean consumption, and three variance components for between-
person variation, between-day variation and questionnaire error variation. Note that 
the last two components can be separately estimated thanks to the combination with 
the FCS model. Expanding such a hierarchical model to a full Bayesian model is 
standard (Gelman et al. 1995), at least for simple cases. 
A second advantage of Bayesian modelling is the fact that non-informative priors can 
be used where no information is available. We showed two examples for which no 
prior information was available. In the first example, iprodione residue in strawberry, 
there was a substantial number of detects, yielding posterior distributions with small 
variances. In the second example, iprodione residue in kiwi, there was a small number 
of detects and as a result the posterior distributions had large variances.  
Third, hierarchical models are more naturally specified in a Bayesian framework. 
They allow us to combine data from different sources. Hierarchical models can be 
applied, for example, to the consumption of several commodities by individuals 
grouped in households. They can also be of great use to combine information from 
similar products, when modelling the amount of residue for commodities with a very 
small number of detects. Fourth, there is no limit for Bayesian inference either in the 
amount of prior information or in the amount of data, so that Bayesian inference is 
possible even with small samples.  
 
Conclusions 
 

Bayesian modelling of the multivariate consumption pattern was possible in simple 
cases (few commodities), but needs to be elaborated for higher dimensions. The 
modelling of chemical-residue data was easier because this could be done 
univariately. The lognormal distribution proved to be a sensible choice for the positive 
iprodione concentrations found in almost all commodities. 
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