
NJAS 55-2, 2008 199

Integrating the production functions of 
Liebig, Michaelis–Menten, Mitscherlich and 
Liebscher into one system dynamics model

G.O. Nijland1,*, J. Schouls2 and J. Goudriaan3 

1 Biological Farming Systems Group, Wageningen University, P.O. Box 9101, NL-6700 HB 

 Wageningen, The Netherlands

2 Crop and Weed Ecology Group, Wageningen University, Wageningen, The Netherlands

3  Plant Production Systems Group, Wageningen University, Wageningen, The Netherlands

* Corresponding author (e-mail: lukkenaer@planet.nl)

Received 1 June 2007; accepted 19 February 2008 

Abstract

Any agricultural production process is characterized by input–output relations. In this paper we show 

that the production functions of Liebig, Mitscherlich and Liebscher for the relation between nutrient 

supply and crop production can be regarded as special variants of one ‘integrated model’. The model 

is elaborated for two nutrients, nitrogen and phosphorus, and is based on the Michaelis–Menten 

hyperbolic equation. This basic equation has two main terms and one multiplicative interaction term. 

The parameter values determine which one of the aforementioned functions is generated. ‘Greenwood’s 

variant of the Michaelis–Menten function’ is approached if the main terms dominate. ‘De Wit’s variant 

of the Mitscherlich function’ is approached if the multiplicative term dominates. Liebig’s function 

emerges from any of these variants if nutrient supply is constrained to such an extent that nutrient 

uptake continually exhausts the nutrient stock. The ‘Liebscher variant’ – considered the most appropriate 

for most empirical situations – is intermediate between those of Liebig, Michaelis–Menten and ‘De 

Wit’s Mitscherlich’, and can be obtained by parameter calibration. Generally, these functions result 

in ‘decreasing marginal returns’ with increasing nutrient supply. However, if interacting nutrients 

are supplied in precisely the required proportion, the variant with a multiplicative term does show 

‘increasing marginal returns’, but only in conditions of low nutrient supply rates, low nutrient affinities 

and / or high nutrient losses.

Additional keywords: crop production, nutrient losses, nutrient productivity, nutrient uptake, proportional 

supply of nutrients, resource use efficiency, responsive ‘plant nutrient content’, simulation models
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Introduction

Production functions

Any production process is characterized by input–output relations. This paper deals 
with the relation between the input of one or more nutrients and the resulting crop 
production. Well known – almost classical – forms of input–output relations in the field 
of crop production are the function of Liebig (or Blackman), associated with the ‘law of 
the minimum’ and the function of Mitscherlich (also Mitscherlich–Baule), connected 
with the ‘law of constant activity’ (Nijland & Schouls, 1997). (Note: throughout this 
paper we shall refer to ‘laws’ and ‘equations’ as ‘production functions’.) Different 
authors have proposed functions that are positioned in between the functions of Liebig 
and Mitscherlich. Paris (1992) presents a hybrid function that combines the concepts of 
Mitscherlich and Liebig, giving a truncated non-linear Liebig function.
 Liebscher (1895) proposed a theory that may now be regarded as an early synthesis of 
the concepts of Liebig and Mitscherlich. More recently, Greenwood et al. (1971) and Nijland 
& Schouls (1997) presented the ‘Greenwood variant of Michaelis–Menten’s function’ (M–M 
function) as a formalization of ‘Liebscher’s law of the optimum’. A suggestion for a more 
fundamental theoretical and mathematical integration of the different functions came from 
De Wit (1992a, b). He developed a theoretical-ecological synthesis in his last papers as 
well as in vivid discussions, and in a first version of a new paper that regrettably was never 
published. In the framework of the question if and when increasing or decreasing marginal 
productions occur in agriculture, De Wit breathed new life into the more than 100-years-
old discussion on production functions. He proposed that ‘Mitscherlich’, ‘Liebscher’ and 
‘Liebig’ could be considered as special variants of one system dynamics model, in which it 
is just a matter of changing one parameter value to produce the different model variants. By 
elaborating the manuscript that we inherited from De Wit we have been able to confirm his 
approach and add some other concepts to the model. 

Research questions

Our study comprised two research questions: (1) Is it possible – and how – to integrate 
different well-known production functions within the theoretical framework of one 
‘integrated model’? and (2) Do some of the discussed variants of the ‘integrated model’ 
give rise – and under what conditions – to ‘increasing marginal returns’?

Outline of the paper

We start with the elaboration of the ‘integrated model’, using a sketch of Liebig’s 
function, as it is the most elementary production function. Next we explain why 
most empirical production curves depart from this simple truncated linear function. 
Then, we present the more versatile Michaelis–Menten (M–M) function and extend 
it with the concept of multiplicative interaction, providing a bridge to the ‘negative 
exponential Mitscherlich function’. By mathematical analysis we derive some of 
the model features. For deduction of the more complicated features the model was 
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implemented as a system dynamics simulation model. Several runs were done to 
demonstrate its behavioural variants. Via trial-and-error simulation runs the model 
was fitted to different empirical datasets and compared with these data by subjective 
visual inspection. In a final discussion a summary of the paper is given, conclusions are 
drawn and possible further research is suggested. 

Overall structure of the model

In the ‘integrated model’ (see Figure 1 for an overview) nutrients, nitrogen (N) and 
phosphorus (P), are taken up and become part of the plant biomass. Paramount in 
this model is the variable ‘stock of available nutrients’ (in this paper nutrient stock is 
synonymous with ‘nutrient level’ and with ‘nutrient concentration’, expressed as g of 
nutrient per m2 of land area). The nutrient stock is changed by three processes: (1) 
nutrient supply (either by the farmer or from other sources), (2) nutrient uptake (by 
the crop), and (3) nutrient loss (to the environment or to other sinks). Nutrient supply 
is assumed to be an exogenous input variable. Nutrient uptake – and with it dry matter 
production – is assumed to increase with increasing soil nutrient stock. The form of 
this relation is specified in the ‘basic production function’, which we assume to be a 
Michaelis–Menten function. Also nutrient loss increases with increasing soil nutrient 
stock according to the ‘basic nutrient loss function’. This function may have different 

Figure 1. Overall structure of the integrated model. The basic production function and the basic nutrient 

uptake function within the box are formulated by the Michaelis–Menten function. The relation between 

nutrient supply rate and production rate yields the output function of the integrated model.

Integrating a number of production functions into one system dynamics model
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forms, but in our study we assume a simple linear relationship: ‘nutrient loss per day’ 
= ‘nutrient stock in the soil’ ∑ ‘fraction loss per day’. The interaction between these 
processes determines the overall response of crop growth to nutrient input. Figure 1 
shows the overall structure of this ‘integrated model’.

Liebig’s production function as ‘archetype’

Linear response in Liebig’s function

Several factors influence plant production. For unrestricted growth the various necessary 
factors should all be available at a non-limiting rate. The starting point of this paper is the 
simplification formulated by Liebig. His concept implies that at any moment there is only 
one factor that limits production. This factor is said to be in minimum supply. If its supply 
is increased, production will increase proportionally up to a point where a second factor gets 
into minimum supply and in turn limits production. In Liebig’s function the transition of 
limitation from one factor to the next is an abrupt one, as depicted in Figure 2A. 
 Before we discuss how to model interactions of different factors, we shall first 
have a closer look at the response to a single factor, for instance the response of plant 
production to uptake of soil nitrogen. At this point it is useful to introduce some 
symbols that will be used throughout this paper; for a complete list of symbols see 
Appendix 1. Soil nitrogen is symbolized by Nsol (the amount of nitrogen in the soil 
solution, in g per m2) and production rate by r (the rate of dry matter production, in g 
per m2 per day). This production rate has a climatically determined maximum, rmax, 
called the potential production rate (De Wit, 1994). The parameter rmax has a value 
of about 20 g of plant dry matter per m2 of soil surface per day. For simplification 
purposes, ‘plant nitrogen content’, n, is assumed to be constant at a value of 0.02 
g nitrogen per g of DM. Now, if there are no losses, Liebig’s function of the plant 
production rate in terms of nitrogen supply rate, SN, is given by the following equation:

  r = min (rmax , SN / n)     (1)

where SN is expressed in g per m2 per day. 
 When r is plotted against SN, the production function shows as a ‘broken stick’ 
(Figure 2A). The production rate increases linearly with increasing SN of the limiting 
factor nitrogen until a transition point is reached (the obtuse angle in Figure 2A). 
Increasing SN beyond this transition point has no effect on the production rate. The 
production rate is now limited by shortage of the second nutrient (here P), or eventually 
by climatic factors such as radiation, even if soil factors like other nutrients and water 
are fully available. For the given parameter values, the transition point for nitrogen 
limitation is situated at a supply rate of rmax ∑ n = 0.4 g of nitrogen per m2 per day. The 
function may be generalized for multiple nutrients, for example for nitrogen (N) and 
phosphorus (P), as shown by the following equation:

  r = min (rmax , SN / n , SP / p)    (2)
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Figure 2. 

A: The Liebig production function with respect to nitrogen, at one (limiting) rate of phosphorus supply 

and at maximum production, i.e., nitrogen and phosphorus not limiting. Parameter values: rmax = 20; n = 

0.02; p = 0.002; SP= 0.03.

B: The Liebig production function for three steps of P-supply rate. Parameter values: rmax = 20; n = 0.02; 

p = 0.002; SP step 1 = 0.0075; SP step 2 = 0.015; SP step 3 = 0.03.

This generalized Liebig function is shown in Figure 2B, in which the relation between r 
and SN is plotted for three phosphorus supply rates, SP.

Comparison with gradual saturation curves in practice

The instantaneous response of production to nutrient supply can hardly be measured 
experimentally. In practice, the plants will be harvested at the end of a much longer 
production period, so that the response must be determined in terms of accumulated 
dry matter versus total nutrients – either taken up or applied, or even as initial soil 
stock. This means that Equation 1 should be rewritten in the form of a time integral. 
The abrupt Liebig type of transition will be retained only if the production rate and 
the nutrient supply rate remain constant during this longer period. However, usually 
the maximum production rate will vary from day to day, due to weather fluctuations, 
so that production may, for example, be nutrient-limited on a clear day but radiation-
limited on a cloudy day. As a result, the response of accumulated plant dry matter to 
nutrient supply over that period will not be characterized by a sudden saturation, but 
by a more gradual one (Nijland, 1994; Whitmore & Van Noordwijk, 1995; Nijland & 
Schouls, 1997). At high nutrient supply rates plant dry matter will become equal to 
rmax accumulated over time. At low nutrient supply rates it will be proportional to the 
accumulated nutrient uptake over time divided by ‘plant nutrient content’, n (the mass 
fraction of N in the dry matter). By similar reasoning, spatial variability will also lead to 
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a less abrupt saturation of the response curve. Indeed, in practice, a gradual saturation 
is more common than an abrupt one.

Components of the ‘integrated model’

The Michaelis–Menten function

Searching the literature for an acceptable mathematical function of a gradual convex 
production curve, the Michaelis–Menten (M–M) function appeared to be one of the 
most frequently adopted. This function, which was originally developed in chemistry, is 
as follows:

  V = Vmax ∑ C / (K + C)      (3)

where Vmax is the maximum reaction rate, C the concentration of the limiting 
compound, and K the M–M constant. 
 In our field of interest, i.e., plant production, the maximum reaction rate, Vmax, is 
the potential production rate, rmax, and the concentration of the limiting compound, C, 
is the nitrogen concentration of the soil, Nsol, here taken as the available nitrogen per 
m2 in the soil solution. The M–M constant, K, can also be written as rmax divided by the 
affinity for nitrogen, αN. Analogous to the custom in chemical reactions we may define 
the affinity coefficient here as the production rate per unit nitrogen when nitrogen is 
almost 0. It has the unit of (gDM gN–1 d–1). The resulting function for production will 
then prove to be similar to the chemical reaction in Equation 3, which in terms of plant 
production is represented by the following equation:

  r = rmax ∑ Nsol / (rmax / αN + Nsol)    (4)

 The graphical image of this production function is depicted in Figure 3A. It is the 
simplest M–M production function for one nutrient with maximum production rate, 
rmax. At a low nitrogen supply rate, r approaches αN ∑ Nsol, which means that the 
nitrogen uptake rate, rN  (nitrogen uptake by the crop in g per m2 per day), is then 
equal to n ∑ αN ∑ Nsol. If there are no losses, the supply rate will be equal to this value. 
Comparing the curves in Figure 3A with the curve for the Liebig function in Figure 
2A we see that their slopes at very low nitrogen supply rates and their maxima at high 
nitrogen supply rates are the same. At intermediate values the production rate in the 
M–M equation is lower. In particular, at the transition point, rmax ∑ n, the production 
rate has a value of 50% of the maximum rate (Figure 3A). If we write Equation 4 in its 
reciprocal form the following equation is derived:

  1 / r = 1 / rmax + 1 / (αN ∑ Nsol)    (5)

 This form of representation of the function has its own merits. The first one is that 
generalization for two or more nutrients gives a convenient arrangement of the terms 
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for the different nutrients. Later on we shall see that also multiplicative interactions 
between nutrients can be conveniently added to this function. Generalization for the 
two nutrients nitrogen and phosphorus gives:

  1 / r = 1 / rmax + 1 / (αN ∑ Nsol) + 1 / (αP ∑ Psol)  (6)

 Equation 6 represents the ‘Greenwood variant of the M–M production function’. 
Figure 3B is the normal representation of this function, in which the production rate, 
r, is plotted against the soil nitrogen concentration, Nsol, for three constant levels of 
soil phosphorus concentration, Psol, and also for the condition that phosphorus does 
not limit production (the upper curve). If plotted reciprocally (1 / r against 1 / Nsol) a set 
of parallel straight lines with upward slope, 1 / αN, is obtained for different Psol levels. 
Here we have a second advantage of reciprocal representation: it offers the possibility 
to estimate the parameter values α, αP and rmax by linear regression, if ‘Michaelis–
Menten’ applies, or test any other production curve on possible deviation from the 
‘Greenwood variant of the M–M function’ (Nijland & Schouls, 1997; Kho, 2000). In the 
normal representation of ‘Greenwood’ (Figure 3B), the ‘law of diminishing marginal 
returns’ can be observed. The slopes of the curves in the origin are the same for all 
variants with different phosphorus supply rates. The curves are diverging at a higher 
nitrogen supply rate. The absence of an interaction term does definitely not imply that 
there is no interaction effect.

‘Abruptness of the bending’

The transition from the increasing part of the curve to its saturated maximum will be 
referred to as the bending of the production function. This transition may be gradual, as in 
the M–M function, or abrupt, as in the Liebig function (Figure 3A). So the ‘abruptness of 
the bending’ is different for the two production functions discussed in the foregoing.
 This brings us to the question of the mechanism that underlies the bending of 
the curve becoming more abrupt or pointed, or becoming more gradual. One such 
mechanism is the variation in diffusion rate between soil-bound nutrients and nutrients 
in the soil solution. A very low diffusion rate means a very low nutrient supply rate to the 
plant. As a result, plant demand exceeds supply, the concentration at the site of uptake 
becomes almost 0 and the rate of uptake will be virtually equal to the supply rate. This 
situation is known to exist for nitrogen uptake by roots, especially because nitrogen is 
taken up at an extremely high affinity. 
 The limitation of the uptake rate by the supply rate requires an equation additional 
to Equation 4 to represent the nitrogen balance in the soil solution. The nitrogen uptake 
rate, rN, is the product of the production rate, r, and ‘plant nitrogen content’, n. In 
addition, the losses to the environment have to be accounted for. To this end we lump 
the effects of all possible losses into one parameter, the relative loss rate of nitrogen, 
λN, representing the fraction of the soil nitrogen in solution (Nsol) that is lost daily. The 
equation for the balance between uptake rate, supply rate and loss rate now becomes:

  r ∑ n = SN – Nsol ∑ λN     (7)

Integrating a number of production functions into one system dynamics model
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Equation 7 is combined with Equation 4 by eliminating the local nitrogen concentration 
in the soil solution, Nsol. Substituting Nsol = (SN – r ∑ n) / λN from Equation 7 into 
Equation 4 and taking SN explicit gives:

  SN = r ∑ [n + (λN ∑ rmax) / αN ∑ (rmax – r)]    (8)

 Because of (rmax – r) in the denominator we immediately see that very large values 
of SN are required to reach a production rate close to rmax. On the other hand, for very 

Figure 3. 

A: The Michaelis–Menten production function compared with the Liebig function with nitrogen as the 

only limiting nutrient. Parameter values: rmax = 20; αN = 50. The nutrient factor on the X-axis is Nsol for 

the M–M function and SN for the Liebig function. The scale for Liebig’s ‘basic production function’(r 

against SN) may be transformed into the scale for the M–M function (r against Nsol) by dividing the 

Liebig scale by a factor αN × n.

B: The Michaelis–Menten production function for three steps of soil-P concentration. Parameter values: 

rmax = 20; αN = 50; αP = 500; Psol step 1 = 0.0075; Psol step 2 = 0.015; Psol step 3 = 0.03.

C: Required N supply rate, SN, as a function of the production rate, r, for the Michaelis–Menten basic production 

function, for values of the parameter λN of 0.01 and 1.0. Other parameter values: αN = 20; rmax = 20; n = 0.02. 
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small values of r the supply rate approaches:

  SN = r ∑ n ∑ [1 + λN  / (αN ∑ n)]     (9)

 This linear function in r also shows how the loss parameter λN increases the 
required supply rate, even if the production rate is very small. In Figure 3C the required 
supply rate, SN, is plotted as a function of the production rate, r. From this it appears 
that with a low as well as a high relative loss rate λN, the same maximum growth rate 
will be reached but that with a high λN the rate of approach is much more gradual. 
In fact, Equation 9 represents the tangent in the origin of the curve of Equation 8. 
The latter is a non-rectangular hyperbola in r. Equation 8 furthermore shows that the 
parameters αN and λN only occur as their ratio. In addition, as the quotient (αN ∑ n) / 
λN is dimensionless it is useful to substitute it by a new dimensionless parameter ϕN 
that is defined as follows:

  ϕN = (αN ∑ n) / λN     (10)

 In Figure 3C we have seen that the expression of SN as a function of r turns out to 
be more elegant and more suitable for the demonstration of some of its characteristics 
than the reverse function, which has production rate as a function of supply rate. 
Yet, we have to return to this more common input–output relationship, as the M–M 
function and the Liebig function are written in this form. In case of a very large 
relative loss rate, λN,  we may rewrite Equation 8 in the following way, expressing the 
production rate as a function of supply rate:

  r = rmax ∑ αN ∑ SN / [αN ∑ SN + (λN + αN ∑ n) ∑ rmax]  (11)

 This expression is a normal rectangular hyperbola, just like the M–M function 
represented by Equation 5. It is even identical to this equation, as the soil nitrogen 
balance requires that the sum of loss rate and uptake rate is equal to the nitrogen supply 
rate. So the equilibrium soil nitrogen concentration, Nsol, will be equal to SN / (λN + 
αN ∑ n), and substitution of this expression for Nsol in Equation 5 shows that we obtain 
Equation 11 again. The production rate in Equation 11 will eventually reach the maximum 
value, rmax, for very large values of the nitrogen supply rate. The 50% point of Equation 11 
is reached when the nitrogen supply rate is equal to (λN + αN ∑ n) ∑ rmax / αN.
 The question now is how to represent situations intermediate between the M–M 
function and the Liebig function. By dimensionless representation we can easily 
compare the production functions for different parameter sets, even though the 
absolute values may be different. For instance, growth rate r, which ranges between 
0 and maximum growth rate, rmax, can be plotted on a relative scale from 0 to 1 if we 
define a dimensionless output variable y as:

  y = r / rmax      (12)

 In Equation 8 the required supply rate SN (the input) was given as a function of 
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the growth rate r (the output). Replacing r / rmax by y and (αN  ∑ n) / λN by ϕN we can 
rewrite this equation as:

  SN / (n ∑ rmax) = y ∑ [1 + 1  / (ϕN  ∑ (1 – y))]   (13)

 Now SN should be scaled as well. At maximum growth rate the nutrient uptake 
rate is equal to n ∑ rmax. This maximum uptake rate will be part of the scaling of SN, 
but the loss rate should also be taken into account. Even at a very low supply rate, the 
ratio of loss over uptake is at least equal to the inverse of ϕN, as shown in Equation 
10. Therefore the scaling factor for SN will be given by n ∑ rmax ∑ (1 + 1 / ϕN), and the 
dimensionless x-variable will be defined as:

  x = SN / [n ∑ rmax ∑ (1 + 1 / ϕN)]    (14)

 Using this definition of x, Equation 13 can be rewritten as follows:

  x ∑ (1 + 1 / ϕN) = y ∑ [1 + 1  / (ϕN  ∑ (1 – y))]   (15)

 Equation 15 yields a normal second order equation in y:
 
  y2 / (1 + 1 / ϕN) – y ∑ (1 + x) + x = 0     (16)  

 For all values of ϕN between 0 and infinity, the solution for y ranges between 
the ‘broken stick’ expression by min(x , 1) for the Liebig function and the hyperbolic 
expression x / (1 + x) (Figure 4). For very large values of ϕN (almost no losses) we 
almost have a Liebig function with an abrupt bending at x = 1. As losses increase and 
thereby the value of ϕN decreases, the bending becomes more gradual so that eventually 
the M–M function is approached. 
 The parameter ϕN  is a measure of the ‘abruptness of the bending’ of the production 
function. As long as the considered nutrient is still the major production-limiting 
factor, ϕN  represents also the maximum uptake / loss ratio of the production system. If 
extended for two or more nutrients the parameter is more complicated than the simple 
expression αN ∑ n / λN for one nutrient.

The Mitscherlich function

The M–M function is a rectangular hyperbola in which the maximum is approached 
gradually. There are other functions that also have a gradual approach of the maximum. 
One of them is the Mitscherlich function. However, the theoretical idea behind it is 
different from that of M–M function. The idea behind Mitscherlich is that the relative 
decrease of the remaining gap between actual and maximum production remains the 
same for each subsequent unit of nutrient uptake. In the literature this constant relative 
decrease of the remaining gap (rmax – r) per unit of increasing growth factor is referred 
to as the ‘law of constant activity’ (Humphrey, 1997), which can be expressed by the 
following differential equation:
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  dr / dNsol = αN / rmax ∑ (rmax – r)    (17)

where dNsol represents the relative decrease of the remaining gap, (rmax – r). 
 Integration over Nsol leads to a negative exponential function: 

  r = rmax ∑ [1 – exp ( –αN ∑ Nsol / rmax)]   (18)

 The corresponding production function of Mitscherlich is shown in Figure 5A 
(upper curve). If properly parameterized, the curve of Equation 18 has the same initial 
slope and the same maximum as the M–M function and Liebig’s function, but an 
‘abruptness of the bending’ that is intermediate between ‘Liebig’ and ‘M–M’. At the 
transition point, where Nsol = rmax / αN, the production rate, r, has a value of 63% of 
the maximum. So the maximum is approached more rapidly than in the ‘M–M’ of 
Figure 3A. The ‘hyperbolic M–M function’ and the ‘negative exponential Mitscherlich 
function’ are mechanistically different, but ‘M–M’ can be mathematically transformed 
into ‘Mitscherlich’ by an exponential transformation of the independent co-ordinate of 
‘M–M’ (Goudriaan, 1979). 

Co-limitation and interaction by two nutrients

We shall now extend the theory for limitation by one nutrient to the simultaneous 
limitation by two nutrients, nitrogen and phosphorus. The Mitscherlich function can 
be extended for describing co-limitation by two nutrients, simply by multiplying the 
expression by another negative exponential factor for the second nutrient:

  r = rmax ∑ [1 – exp (–αN ∑ Nsol / rmax)] ∑ [1 – exp (–αP ∑ Psol / rmax)] (19)

 The graphic representation of Equation 19 is given in Figure 5B – here again for 
three constant levels of soil phosphorus concentration. The part rmax ∑ [1 – exp(–αP 

Figure 4. Representation of the ‘M–M basic pro-

duction function’ as a non-rectangular hyperbola 

– the nutrient supply rate and the production 

rate being normalized at reference value 1, and 

the model parameters being summarized in one 

dimensionless parameter ϕN. The parameter ϕN 

equals αN × n / λN. Note: The production rate is 

50% of its maximum, at reference value x = 1, 

for ϕN approaching zero (in this figure the curve 

for ϕN = 0.0001). 
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∑ Psol / rmax)] will act as a maximum in the response function to nitrogen. For small 
values of both nutrients the equation approaches a multiplication of their effects, 
resulting in αN ∑ αP ∑ Nsol ∑ Psol / rmax. This explains why the Mitscherlich function 
is often identified with multiplicative interaction of the effects of the different limiting 
factors, more so than the other production functions. However, the following equation 
shows that there is no reason why the interaction between two limiting nutrients could 
not be formulated with the M–M function:

  r = rmax ∑ [Nsol / (rmax / αN + Nsol)] ∑ [Psol / (rmax / αP + Psol)] (20)

 In its reciprocal form this equation will read as follows:

  1 / r = 1 / rmax + 1 / (αN ∑ Nsol) +      (21)
  1 / (αP ∑ Psol) + rmax / (αN ∑ αP ∑ Nsol ∑ Psol)

 This shows that the reciprocal of r consists of the sum of four terms of which the 
fourth one contains the product of the two nutrients. Generalizing the strength of the 
interaction to a dimensionless parameter αNP, we may rewrite Equation 21 as:

  1 / r = 1/rmax + 1/(αN ∑ Nsol) + 1/(αP ∑ Psol) + 1/(αNP × Nsol × Psol)  (22)

where αNP is a measure for the extra response of production to the combination of 

Figure 5. 

A: The Mitscherlich production function compared with the Michaelis–Menten and the Liebig functions 

with nitrogen as the only limiting nutrient. Parameter values: rmax = 20; αN = 50. The nutrient factor 

on the X-axis is Nsol for the Mitscherlich function (and for the M–M function) and SN for the Liebig 

function. The scale for Liebig’s function’(r against SN) may be transformed into the scale for the other 

variants (r against Nsol) by dividing the Liebig scale by a factor αN × n.

B: The Mitscherlich production function for three steps of soil-P concentration. Parameter values: rmax = 

20; αN = 50; Psol step 1 = 0.0075; Psol step 2 = 0.015; Psol step 3 = 0.03.
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nitrogen and phosphorus – apart from the separate responses αN and αP to these 
nutrients. Equations 21 and 22 – for being identical – require the parameter αNP to be 
equal to αN ∑ αP / rmax. The variant is represented in Figure 5B. For only an increase in 
the nitrogen supply rate (other nutrients constant) the feature of ‘diminishing marginal 
returns’ applies. This means that each subsequent unit of supply yields less. For an 
increase in both nitrogen supply rate and other nutrients in proportion, the marginal 
returns first increase and then decrease: starting at 0 each subsequent unit yields more 
until a certain rate from where each subsequent unit yields less.

Responsive ‘plant nutrient content’

In this paper we have assumed constant ‘plant nutrient contents’, n and p. In reality 
plants are able to adapt their nutrient content to the nutrient supply, and a range of 
a factor 4 between minimum and maximum nutrient content is not uncommon. For 
instance, the minimum and maximum nitrogen contents might well be 1% and 4%, 
respectively, instead of the constant value of 2%, and similarly, the phosphorus content 
could vary between 0.1% and 0.4%, respectively, instead of being constant at 0.2%. It 
is possible to model this adaptation by multiplying the nutrient affinities by minimum 
and maximum ‘plant nutrient content’, ensuring that nutrient content responds 
such that a minimum nutrient content occurs at very low nutrient supply rates, and a 
maximum content at very high nutrient supply rates according to the following equations:

  1/rN = 1/ (nmax × rmax) + 1/(αN ∑ nmin × Nsol) + 1/(αP × nmax × Psol) + (23)
  1/(αNP × nmin × Nsol × Psol )     
  
  1/rP = 1/(Pmax×rmax) + 1 /(αP×Pmin×Psol) + 1/(αN×Pmax×Nsol) + (24)
  1/(αNP × Pmin × Psol × Nsol)     

 In this way the dry matter production rate is still the same as in Equation 22, but 
the nutrient uptake rates (Equations 23 and 24) at low nutrient supply are lower and 
at high nutrient supply higher than before. Note that the uptake equation for nitrogen 
when phosphorus is non-limiting is given by the following equation:

  1 / rN = 1 / (nmax ∑ rmax) + 1 / (αN ∑ nmin ∑ Nsol)  (25)

 Introducing the mechanism of responsive ‘plant nutrient content’ makes the linear 
slopes of a ‘Liebig variant’ non-linear, comparable to the model of Paris (1992). 

Implementation as a system dynamics simulation model

The differential equation for soil nutrient concentration

Let us consider both nitrogen uptake by roots as well as subsequent plant production 
as if they were chemical reactions originally described by the M–M function (Equation 
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5). The amount of nitrogen in the soil solution, Nsol, is a systems state variable. On the 
one hand it decreases by losses to the environment, λN ∑ Nsol, and by nitrogen uptake, 
rN. On the other hand it increases with nitrogen supply, SN, (fertilization) or from an 
external stock, Next (mineralization and the like). The net change rate of nitrogen in the 
soil solution, dNsol / dt, is given by the following equation, i.e., no longer assuming that 
the rates are in balance:
 
  dNsol / dt = SN – rN – λN ∑ Nsol     (26) 

 Equation 26 shows that the loss parameter, λN, must have the dimension of the 
inverse of time. We may interpret this parameter as the fraction of the dissolved 
nitrogen in the soil solution lost to the environment per unit of time. Expressed in 
terms of the local soil nitrogen concentration, Nsol, the production function is still 
in the form of the M–M function (Equation 5). As we showed in the foregoing, the 
transition to the Liebig function can only occur at the response of production rate to 
supply rate, rather than at the response to soil nitrogen concentration. If the losses to 
the environment are almost nil, all of the nutrient will be taken up (linear response of 
production rate to supply rate) or the nitrogen supply will be in excess of demand and 
the remainder will accumulate in the soil (maximum production rate). At the transition 
point of the ‘broken stick’ the supply rate precisely meets the demand (Figures 2A and 
2B). It is, however, possible to rewrite Equation 26 into a form that has an external 
concentration at the input side, rather than a supply rate. We define a virtual external 
concentration, Next, and an apparent diffusion rate, εN, such that the supply rate is 
equal to (Next – Nsol) ∑ εN. Equation 26 can then be written as:

  dNsol / dt = (Next – Nsol) ∑ εN – rN – λN ∑ Nsol   (27)

 The merit of this equation is that it provides a mechanism for the transition 
between the different response curves, close to the original idea of De Wit (unpublished 
manuscript). He envisioned a replenishment rate of a ‘reaction vessel’ with an inflow 
of solute with nutrients and an outflow with unused nutrients and synthesized product. 
Now the term (Next – Nsol) ∑ εN  stands for the daily replenishment rate. The losses 
from the whole system are given by the product λN ∑ Nsol. Whether SN or Next are 
considered as independent variables or not, all transitions between the M–M and the 
Liebig functions that we presented in the foregoing remain possible.
 However, we used two parameters (Next and εN ) to replace a single one, SN, which 
means that one is redundant. As far as the dimensionless parameter ϕN = (αN ∑ n) / λN 
(Equation 10) is concerned, εN should be added to λN to establish their combined effect 
on the ‘abruptness of the bending’. So it is best to omit the return flow Nsol ∑ εN, and 
rewrite Equation 27 as:

  dNsol / dt = λN ∑ Next – rN – λN ∑ Nsol    (28)

 It is immaterial whether the disappearing nutrient flows to the infinite sink of 
the environment or back to the also infinite source of the soil nutrient stock. In both 
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cases the nutrient has left the rooting zone and its environment, and has no relevance 
to the model behaviour. Which of the Equations 26 and 28 is to be preferred depends 
on whether the supply is formulated in terms of concentration of the external source 
(Equation 28) or in terms of an imposed supply rate (Equation 26). 

Simulation techniques

Different methods may be used to implement the equations presented in the foregoing. 
As long as only one or two nutrients are involved it is possible to implement the 
model as an analytical mathematical model. But with three or more nutrients or when 
the model becomes otherwise more complicated, implementation as a numerical 
simulation model is the only possibility left. Which simulation method is best will also 
depend on the previous training and experience of the user. Popular simulation tools 
are available in Fortran, CSMP, DYNAMO, FST, MATHLAB, but also Excel can be 
used. For the methodology of simulation with system dynamic models we refer to De 
Wit & Goudriaan (1978) and Richardson & Pugh (1981).
 Rather than finding the model behaviour over time, our aim of this simulation 
was to find the relations between the variables at any time at which the model is in 
equilibrium. The relations between the equilibrium values of the variables can be found 
by numerical integration over a period of time long enough to reach equilibrium. The 
response to a varying soil stock, Next, or supply rate, SN, may be found by applying 
a very slow and gradual increase, slow enough to maintain a quasi-steady state. The 
uptake rate may then be plotted as a function of the nitrogen supply rate instead of 
a function of the soil nitrogen concentration. For this procedure the state variable 
approach of the FST simulation language was used.

Variants of the ‘integrated model’

Reproduction of the ‘basic functions’ from the ‘integrated model’

Simulation runs with the ‘integrated model’ were done to reproduce the ‘Full model’, 
the ‘Greenwood variant’, the ‘De Wit variant’ and the ‘Liebig variant’, as well as variants 
between these ideal-types. The results are graphically presented in the Figures 6A, 6B, 
6C and 6D. Depending on the relative value of the parameters αN, αP, and αNP, and on 
rmax, various functions can be obtained from the ‘basic production function’. 
 If αNP is equal to αN ∑ αP / rmax, Equation 21 is a purely multiplicative M–M 
function (Figure 6A). In this case a change in one nutrient (N) does not affect the M–M 
constant of the other (P). This function is the ‘Full model variant of the M–M function’ 
(Figure 6A), which obviously has features in common with the following ideal-types 
derived from it. 
 If αNP is larger than αN ∑ αP / rmax, the result is a less than multiplicative M–M 
function. For very large values of αNP the multiplicative term totally disappears and the 
‘Greenwood variant’ is obtained. For this function see Equation 6 and Figure 3B. 
 On the other hand, if αNP is smaller than αN ∑ αP / rmax, the interaction between 
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the nutrients nitrogen and phosphorus is stronger than in the ‘Full model variant’. 
Eventually, when αN and αP become very much larger than αNP the function 1 / r 
= 1/ rmax + 1 / (αNP ∑ Nsol ∑ Psol) results. If rmax is extremely large as well, only the 
multiplicative term remains, and ‘De Wit’s multiplicative variant’ of the ‘basic M–M 
function’ is obtained: 1 / r = 1 / (αNP ∑ Nsol ∑ Psol). For this multiplicative M–M variant 
see Equation 29 and Figure 5B.
 Up to this point the functions ‘Greenwood’, ‘De Wit’, and ‘Full model’ could 
be explained as variants of the ‘basic production function’ only. For explaining the 
emergence of the ‘Liebig variant’, however, system dynamics features of the complete 
‘integrated model’ are required. To understand this, it is appropriate to make a clear 
distinction between two definitions of the term ‘production function’: (1) the ‘basic 
production function’, which gives the relation between soil nutrient concentration and 
production rate at the root level, and (2) the apparent relation between nutrient supply 
rate and production rate, at the production system level in the integrated model. This 
integrated model not only consists of the ‘basic production function’, but also of a 
‘basic nutrient loss function’. The feedbacks between these processes are part of it. 
The diffusion barriers between the nutrient supply, via the soil nutrient concentration, 
and the nutrient uptake process (directly accessible nutrients in the soil solution) 
conceptually connect the two definitions of the term ‘production function’ (1) and (2). 
 Whether the ideal-typical variants of the ‘basic production function’ (Figures 3B and 
5B) emerge or whether they are shifted more or less into the direction of the ‘Liebig 
variant’ depends on the ratio between the affinity coefficients on the one hand and the 
relative loss rates on the other. For low affinities and/or high relative loss rates (small ϕN) 
the Greenwood variant is approached (Figure 6B) and for large ϕN the ‘Liebig variant’ 
(Figure 6D). It may be noted that the curve for the highest phosphorus supply step, 
however, has an imperfect Liebig form. 
 On the basis of the aforementioned theory the Figures 6D, 6B and 6C are expected 
to be quite similar in form to the illustrations of the corresponding ‘basic production 
functions’ in the Figures 2B, 3B and 5B, respectively. The difference is that the Figures 
2B, 3B and 5B are images of the ‘basic production function’ only, whereas the Figures 
6D, 6B and 6C are simulated with the complete ‘integrated model’ with an extended 
set of parameters and variables – the added ones being the relative loss rates, λN 
and λP. Moreover, the independent variables in the plots are not the soil nutrient 
concentrations, Nsol and Psol, but the nutrient supply rates, SN and SP. 
 Because of the additional parameters, and different parameter values, the simulated 
curves differ slightly from the images of the corresponding ‘basic production functions’. 
In particular the value of parameter λN in the simulation run of Figure 6D has a value 
0.01 instead of 0, as required for the ‘Liebig ideal-type’. The run of Figure 6B has a 
value of 1 instead of infinity, as required for ‘Greenwood’s ideal-type’. The shape of the 
‘Negative exponential Mitscherlich function’ of Figure 5B also differs somewhat from 
‘De Wit’s multiplicative variant’ in Figure 6C. However, the overall patterns in the 
figures are similar, and since the relatively large differences in parameter values (αN = 
20 or 200; αP = 200 or 500) only give small differences in output, it may become clear 
that the sensitivity of the model to changes in parameters is still an important subject 
for further studies. 

G.O. Nijland, J. Schouls and J. Goudriaan



NJAS 55-2, 2008 215

Figure 6. 

A: Variant of the integrated model with main terms, interaction term, low values of affinity coefficients 

and high values of the relative loss rates, as an approximation of the ‘Full model’ ideal-type. Parameter values: 

rmax = 20; nmax = nmin = 0.02; pmax = pmin = 0.002; λN = λP = 0.50; αN = 20; αP = 200; αNP = 200; SP step 1 = 

0.06; SP step 2 = 0.21; SP step 3 = 0.78; SP curve 4 (proportional inputs, SP = SN / 10).

B: Variant of the integrated model with only active main terms and low values of affinity coefficients and 

high values of the relative loss rates, as an approximation of the ‘Greenwood ideal-type’ (M–M without 

multiplicative term). Parameter values: rmax = 20; nmax = nmin = 0.02; pmax = pmin = 0.002; λN = λP = 1; 

αN = 2; αP = 20; αNP = 999999; SP step 1 = 0.6; SP step 2 = 2.1; SP step 3 = 7.8; SP curve 4 (proportional 

inputs, SP = SN / 10).

C: Variant of the integrated model with only an active multiplicative interaction term and low value of the 

interaction coefficient, as an approximation of ‘De Wit’s multiplicative ideal-type’. Parameter values: rmax 

= 20; nmax = nmin = 0.02; pmax = pmin = 0.002; λN = λP = 0.01; αN = 999999; αP = 9999999; αNP = 1; SP 

step 1 = 0.006; SP step 2 = 0.021; SP step 3 = 0.078; SP curve 4 (proportional inputs, SP = SN / 10).

D: Variant of the integrated model with high values of affinity coefficients and low values of relative loss 

rates, as an approximation of the Liebig ideal-type. Parameter values: rmax = 20; nmax = nmin = 0.02; pmax 

= pmin = 0.002; λN = λP = 0.01; αN = 20; αP = 200; αNP = 999999; SP step 1 = 0.6; SP step 2 = 2.1; SP 

step 3 = 7.8; SP curve 4 (proportional inputs, SP = SN / 10).
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Apart from production, also nutrient loss is an important criterion. In our model the 
nutrient losses are necessarily equal to the difference between the supply rate and the 
uptake rate by the crop. So the nutrient loss curve has ‘mirror properties’ with respect to 
the production function. This means that the losses will rise more than proportionally 
beyond the transition point defined by the scaling factor for supply rate, n ∑ rmax ∑ (1 
+ 1 / ϕN) (see also Equation 14 and Figure 4). The closer the system is to ‘Liebig’, the 
smaller the losses will be, but the faster they will rise beyond the transition point. The 
relative loss per unit of production plotted against proportional supply rate is expected 
to yield a curve that increases more than proportionally. In the ‘De Wit’ and ‘Liebscher’ 
variants with a sigmoid curve (case of proportional N- and P-supply rates), the same 
‘mirror features’ imply that the losses sequentially show a gradual increase, a decline 
and a strong increase with increasing input (Figure 6C). The local maximum in the 
loss curve corresponds with the ‘increasing upward slope trajectory’ of the production 
function and the local minimum with the ‘decreasing upward slope trajectory’ (Figure 
6C). ‘Nutrient loss per unit of production’ plotted against proportional supply rates is 
expected (contrary to ‘Liebig’ and ‘M–M’) to yield a curve that gradually descends, until 
a minimum, beyond which the curve rises again. This agrees with inferences from the 
same production functions by Nijland & Schouls (1979). So for ‘resource use efficiency 
discussions’ it seems relevant whether production functions with, or without (effective) 
multiplicative terms are applicable. 

Increasing or decreasing marginal returns

Rational farmers aim at increasing their fertilizer application rates for different 
nutrients together in a constant ratio. ‘Increasing marginal returns’ may result from 
this.
 These ‘increasing marginal returns’ cannot be expected with the production 
functions of Liebig and Greenwood, because of the absence of interaction terms. This 
is clearly illustrated in Figure 6D for the ‘Liebig variant’ of the ‘integrated model’, 
and in Figure 6B for that of Michaelis–Menten. The curves of the production rate 
plotted against N-supply (with proportional P-supply) are linear for ‘Liebig’ and show a 
saturation curve for ‘Greenwood’, just like the curves of production rate plotted against 
nitrogen supply (with constant phosphorus supply) in the same figures. 
 For the variants with a multiplicative interaction term, however, ‘increasing 
marginal returns’ are possible. The curve of the production rate plotted against 
nitrogen supply (with proportional phosphorus supply) then becomes a sigmoid with 
an inflexion point at a relatively low nitrogen supply (Equation 29 and Figure 6C). 
The sigmoid can approximately be described by the simple function y = x2 / (x2 + 1), 
in which y represents the normalized production rate, r / rmax, and x represents the 
normalized nitrogen supply rate, Nsol ∑ sqrt [αNP ∑ (p / n) / rmax]. The parameter αNP is 
called the NP interaction affinity coefficient, defined as the degree of increase per unit 
of P of the production rate per unit of N, for very small N and P. It has the unit of (gDM 
m–2 d–1 gN–1 gP–1). 
 So ‘increasing marginal returns’ are possible only for variants of the M–M model 
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with at least some influence of the multiplicative term. Obviously, this effect is 
stronger for the ‘De Wit variant’ (multiplicative term only) (Figure 6C) than for the 
‘Full model variant’ (with multiplicative and main terms) (Figure 6A). In Figure 7 
we have zoomed in on the feature of ‘increasing marginal returns’ for the ‘De Wit 
variant’. We shall explain from the model how such ‘increasing marginal returns’ 
come about, and under which conditions they disappear. For very small values of the 
soil nutrient concentrations, Nsol and Psol, and the parameter αNP, the dependent 
variable 1 / r in Equation 22 will be mainly determined by the second order term, 
1 / (αNP ∑ Nsol ∑ Psol). Compared with this term the values of the first three terms 
1 / rmax, 1 / (αN ∑ Nsol) and 1 / (αP ∑ Psol) may be neglected. Under this condition, 
Equation 22 simplifies into:

  1 / r = 1 / (αNP ∑ Nsol ∑ Psol)     (29)

 This term is exactly the chemical analogue in De Wit’s unpublished manuscript of 
1992, because we may rewrite Equation 29 as:

  r = αNP ∑ Nsol ∑ Psol     (30)

 De Wit envisaged two dissolved substances that react and form one new product. 
If the interaction affinity parameter, αNP, is very small, the reaction in the crop system 
(De Wit’s reaction vessel) proceeds so slowly that the nutrient concentrations, Nsol and 
Psol, in the crop system as well as the production rate, r, become almost proportional 
to the supply rates, SN and SP. At relatively low values of nitrogen supply the marginal 
production rate increases quadratically with the increase in the nitrogen supply rate, SN, 
and the resulting production curve is concave (Figures 6C and 7). These figures show 
that at higher nitrogen supply rates concavity changes into convexity. If the interaction 
affinity constant is large (and/or the relative loss rates small), the uptake rate will be 
limited by the supply rate just as in the case of a single nutrient.
 Let us now consider the effect of two nutrients supplied simultaneously in exactly 

Figure 7. Variant of the integrated model with 

only one active multiplicative interaction term 

and low value of the interaction coefficient, as an 

approximation of ‘De Wit’s multiplicative ideal-

type’. Parameter values: rmax = 20; nmax = nmin 

= 0.02; pmax = pmin = 0.002; λN = λP = 0.01; αN 

= 999999; αP = 9999999; αNP = 1; SP step 1 = 

0.0006; SP step 2 = 0.0021; SP step 3 = 0.0078; 

SP curve 4 (proportional inputs, SP = SN / 10).
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the required proportion of plant nutrient content, n : p = 10 : 1. Equation 29 may then 
be rewritten as follows:

  1 / r = [1 /(αNP ∑ 0.1)] ∑ (1 / Nsol)    (31)

 A proportional combination of the nutrient supply rates implies that one nutrient can 
never become more limiting than the other. Because of this coupling, the combination 
may be regarded as the supply of one ‘compound nutrient’, NP, proportional to the 
corresponding supply rate, SN (also proportional to Nsol, in the case of equilibrium). 
 From Equation 31 one would expect a quadratic response of r to Nsol. As r is 
proportional to both uptake rates (because of the constant nutrient contents), the 
soil nitrogen concentration is proportional to the square root of the uptake rate rN. 
Furthermore, because the nutrient loss rates are 0, and the system is in steady state, 
the supply rate, SN, equals the uptake rate, rN. All this implies that the soil nitrogen 
concentration, Nsol, increases proportionally with the square root of the supply rate, SN, 
and both Nsol and r increase linearly with SN. It becomes clear that if the supply rates, 
SN and SP, are in exactly required proportion, the resulting equilibrium concentrations, 
Nsol and Psol, will be in the same proportion. So if both nutrients happen to be supplied 
in precisely the required proportion, the outcome is that the concentration of each of 
the coupled nutrients rises as the square root of its supply rate! This phenomenon 
explains why at higher values of the interaction affinity coefficient, αNP, the resulting 
response function tends to become linear over almost its entire range – even in the case 
of exactly proportional supply rates (compare Figures 6C and 6D). 
 A high interaction affinity, αNP, is not the only condition for the phenomenon of 
‘increasing marginal returns’ to disappear. Small relative loss rates, λN and λP, have 
the same effect. Equation 10 for the ‘abruptness of the bending’, ϕN =  (αN ∑ n) / λN, 
shows that a higher value of αN has the same effect as a lower value of λN. Nutrients 
that disappear due to losses strengthen the phenomenon of ‘increasing marginal 
returns’, whereas nutrients that disappear as a result of plant uptake weaken it. The 
occurrence of ‘increasing marginal returns’ is also weakened by an increase in spatial 
soil variability. Finally, the phenomenon weakens accordingly as the proportionality 
between both nutrients departs more from the harmonious ratio n / p.
 The conclusion of this chapter is that the phenomenon of ‘increasing marginal 
returns’ is theoretically possible indeed, but only if the affinity constant, αNP, is 
small (and/or the loss parameters, λN and λP, are large, and in right proportion too) 
– situations that occur under severely production-limiting conditions, but these are rare 
in highly productive agriculture. Under such conditions the effects of the multiplicative 
interactions vanish. In fact, no production function – irrespective of its mathematical 
form – can ever surpass the linear asymptotic limits imposed by the supply rates, the 
‘plant nutrient contents’ and the relative loss rates. 

Illustration of the ‘integrated model’ with empirical data

Only a few suitable datasets were found for comparisons with the ‘integrated model’. 
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Especially data for situations with a low nutrient supply and low production are scarce. 
Moreover, the model has a complex structure that consists of linear and non-linear 
relations, with feedbacks. Fitting such models to incomplete datasets with unknown 
distribution probabilities is problematic. Another problem is the large number of 
parameters involved in the ‘integrated model’. Apart from the parameters of our 
‘integrated model’ we could not do without some additional parameters representing 
the supply rates of nutrients from internal sources. 
 For the comparison of our model with empirical data we therefore proceeded in a 
practical way. We do not claim that this procedure provides an empirical validation of 
the model. We only aim at an illustration of our model. No least square optimization 
method was used. Instead, we did trial and error experiments with the simulation 
model, trying to reproduce some datasets.
 Our simplification implied that the interaction terms between nutrients were 
omitted from the model. Furthermore, we started with some imposed a priori known 
parameter values such as rmax (20 g m–2 d–1), and also imposed reasonable ranges for 
‘plant nutrient contents’ (see the captions of Figures 8A, 8B, 8C and 8D). We tried out 
simulations with reasonable values for the nutrient affinities and the relative loss rates. 
The datasets used were from Greenwood et al. (1971), Van Heemst et al. (1978) and 
Penning De Vries & Djiteye (1982). 
 In the Figures 8A, 8B, 8C and 8D the simulated curves are plotted together with 
the data. In the figures the empirical data are labelled (emp) and the simulated data are 
labelled (mod). From the figures we conclude that a rather good fit of the model to the 
data was obtained. Apparently no interaction terms are needed to describe the empirical 
data. This is in accordance with a statement by Greenwood et al. (1971) – citing different 
other authors – that when using the M–M model in its form of additive combination of 
reciprocal terms (Equation 22), the main terms suffice to describe the interaction of the 
nutrients.
 The conclusion is that the ‘integrated model’, without multiplicative interaction 
terms, suffices to describe these data reasonably well. The implication of the model 
is that in these data no ‘increasing marginal returns’ on proportional supply can be 
demonstrated. The conclusion corroborates earlier observations regarding these data by 
Nijland & Schouls (1997). 

Final discussion and summary

In this paper we have shown that some of the best-known production functions can 
be theoretically derived from a single ‘integrated model’. In this ‘integrated model’ 
the Michaelis–Menten function (M–M function) is the ‘basic production function’ 
(Equation 6). 
 The other derived functions may be considered as special cases of the ‘basic M–M 
function’. They can be obtained by just changing one or more parameter values. 
Transformations can be done by varying: (1) the relative dominance of main terms 
versus interaction terms in the model, (2) the magnitude and mutual proportions of 
affinity parameters and relative loss rate parameters of the nutrients, and (3) the degree 
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of responsiveness of the ‘plant nutrient content’ itself.
 For the description of the ‘integrated model’ we started with the M–M function for a 
single nutrient, nitrogen. This function was compared with the Liebig function, which 
has the same slope in the origin and the same maximum. The Liebig function, however, 
has an abrupt bending (broken stick form), whereas the M–M function has a gradual 
bending. Most empirical production functions are situated between these two and have 
an intermediate ‘abruptness of the bending’. The abruptness depends on the relative 
loss rate, λN, the affinity coefficient of the nutrient, αN, and the ‘plant nutrient content’, 
n. It may be expressed by a function of these three: ϕN = (αN ∑ n) / λN, in which ϕN is a 
dimensionless parameter.
 Next, the ‘basic M–M function’ was generalized for two nutrients, nitrogen (N) 
and phosphorus (P), and extended with a multiplicative interaction term (Equation 
22). Depending on the ratios among the affinity parameters αN, αP and αNP, the 
‘basic M–M function’ (being the relation between production rate, r, and soil nitrogen 
concentration, Nsol) gets the shape of three different production functions known from 
the literature: (1) that of Greenwood, (2) that proposed by De Wit in his unpublished 

Figure 8. 

A: Comparison of the complete model (three nutrients, N, P and K) with empirical data of Greenwood et 

al. (1971). Production rate against external nitrogen supply rate for different constant rates of potassium 

and phosphorus supply. Crop is French bean (fresh weight); Parameter values: nmin = 0.006; nmax = 

0.030; pmin = 0.0005; pmax = 0.0025; kmin = 0.0015; kmax = 0.0030; λN = 0.005; λP = 0.001; λK = 0.003; 

rmax = 30; αN = 500; αP = 1000; αK = 500; αNP = αNK = αPK = αNPK = 9999999; SN-ext = 0.075; SP-ext 
= 0.015; SK-ext = 0.025; SN steps = 0.0001 / 0.045 / 0.090 / 0.180 / 0.360; SP steps = 0.0001 / 0.039 / 

0.078 / 0.145 / 0.290; SK steps = 0.0001 / 0.084 / 0.168 / 0.335 / 0.670. Assuming a growing season of 

100 days, 1 g m–2 d–1 equals 1 ton ha–1 year–1.

B: Comparison of the model with empirical data of Greenwood et al. (1971). Production rate against 

external potassium supply rate for different constant rates of nitrogen supply and phosphorus supply 

(continuation). For parameter values see Figure 8A.
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Figure 8 (cont'd).

C: Comparison of the complete model (two nutrients, N and P) with empirical data of Penning De Vries 

et al. (1982). Production rate against external nitrogen supply rate for different constant rates of phospho-

rus supply. Crop is grass. Parameter values: nmin = 0.004; nmax = 0.024; pmin = 0.0005; pmax = 0.0030; 

λN = 0.05; λP = 0.005; rmax = 8; αN = 30; αP = 400; αNP = 600; SN-ext = 0.01; SP-ext = 0.001; SN steps = 0 

/ 0.015 / 0.05; SP steps = 0 / 0.005 / 0.015. Assumption: the growing season for grass is 200 days; so 1 g 

m–2 d–1 = 2 tons ha–1 year–1.

D:  Comparison of the complete model (nutrient N and 2 moisture levels) with empirical data of Van 

Heemst et al. (1978). Production rate against external nitrogen supply rate for different constant levels 

of soil moisture. Crop is grass. Parameter values: nmin = 0.03; nmax = 0.03; h2omin = 0.17; h2omax = 0.19; 

λN = 0.90; λH2O = 0.009; rmax = 10; αN = 999999; αH2O = 0.0008; αN-H2O = 0.02; SN-ext = 0.09; 

SH2O-ext = 0; SN steps = 0.01 / 0.03 / 0.06 / 0.10 / 0.15 / 0.21 / 0.28; SH2O steps = 250 / 1000. Assuming 

a product with a water content varying between 0.17 and 0.19 (let us say hay with 18% DM). The model 

permits to regard water as a ‘nutrient’. In our concept water only differs from nutrients in parameter 

values, which have another order of magnitude. Assuming a growing season of 200 days, 1 g m–2 d–1 

equals 2 tons ha–1 year–1.

manuscript, and (3) that of the complete M–M model with a multiplicative term. 
 The feature of shift between ideal-types of the ‘integrated model’ is explained 
by describing an important extension of the ‘basic production function’ – that of 
distinction between the concepts soil nutrient stock and nutrient supply rate. The soil 
nutrient stock connects three processes of the model, nutrient supply, nutrient loss and 
nutrient uptake, in a dynamic equilibrium (Equation 26). 
 If we plot the production rate as a function of the nitrogen supply rate while keeping 
the phosphorus supply rate (and other production factors) constant, depending on the 
parameter values αNP, αN and λN, the following variants emerge: 
1. The ‘Full model variant’, which is obtained for a ‘basic production function’ with 
 main terms as well as an interaction term. Conditions: αNP equals exactly 
 αN ∑ αP / rmax for this variant.
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2. The ‘Greenwood variant’, which results if αNP is large, αN is small (and/or λN is 
 large), and rmax is sufficiently large.
3. The ‘De Wit variant’, which is obtained if αNP is small compared with αN, and/or λN 
 is large, and rmax is sufficiently large.
4. The variants 1, 2 and 3, all of which are saturation curves, shift towards the ‘Liebig 
 variant’ under the following conditions: (i) an extremely large value of αN and a 
 moderately large value of αNP (and/or the relative loss rate, λN, is small), and (ii) an 
 extremely large value of αNP and a moderately large value of αN (and/or the relative 
 loss rate, λN, is small).
5. The ‘Liebscher variant’, which is obtained for parameter values somewhere in 
 between those of the ‘Greenwood variant’, the ‘De Wit variant’ and the ‘Liebig 
 variant’. For a high ratio αN / λN the ‘Liebscher variant’ also shifts into the 
 direction of the ‘Liebig variant’.
 Most functions mentioned in this paper have ‘decreasing marginal returns’ 
(‘Greenwood’) or constant (followed by 0) marginal returns (‘Liebig’). Only variants 
with a substantial influence of the multiplicative interaction term have the potential of 
giving ‘increasing marginal returns’. This feature can be obtained in the multiplicative 
variant of the M–M model by raising the supply of multiple nutrients in required 
proportions – instead of raising the supply of a single nutrient only and keeping the 
other ones constant.
 Several conditions may reduce the manifestation of ‘increasing marginal returns’: 
this can hardly be realized by the ’integrated model’ presented in the foregoing, 
mainly because of the linearizing effect of the uptake resistance in the soil. Even with 
multiplicative effects at the root level, the Liebig behaviour arises at the supply level. 
The process is further reinforced by some other conditions. ‘Increasing marginal 
returns’ can hardly be expected in situations of highly productive systems in which 
the production rates are close to the asymptotic maximum of the supply rate. Let us 
summarize the conditions that preclude or weaken the manifestation of ‘increasing 
marginal returns’: (1) high supply rates, (2) large soil nutrient stocks, (3) large affinity 
parameters for the nutrients, (3) low relative loss rates of the nutrients, (4) a low 
maximum production rate, (5) spatial and/or temporal variability of the soil, and (6) 
imperfect proportionality of nutrient availability.
 In practice, ‘increasing marginal returns’ can be expected mainly in two situations. 
The first situation is that of nutrient-poor sandy soils where leaching losses are large. If 
in that situation the plants respond to both nitrogen and phosphorus by root expansion, 
some super-proportional effect can be found at low supply rates. Because of the 
presence of the multiplicative interaction term, such a situation is within the scope of 
our model. But – as explained in the foregoing – this effect is not likely to occur under 
conditions of large nutrient supplies as used in high productive agriculture. 
 The second situation arises when passing a nutrient availability threshold. For 
example, if phosphate is applied in a very phosphorus-poor situation, first a threshold 
level has to be satisfied before any response on production is found. This is due to 
chemical fixation, rendering the phosphorus unavailable to the plant. Not until this 
demand has been satisfied, phosphorus will be available to the plant. This is a situation 
that is actually beyond the concepts of our model.
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From a comparison of our model with empirical data it appeared that a simplified 
variant of the ‘integrated model’ with the main terms only, i.e., a variant without 
‘increasing marginal returns’ (the ‘Greenwood variant’), sufficed to describe a number 
of empirical production curves found in the literature (Greenwood et al., 1971; Van 
Heemst et al.1978; Penning De Vries & Djiteye, 1982). 
 With the relatively large nutrient supply rates used in the Netherlands and the rest 
of Western Europe, ‘increasing marginal returns’ for nutrients can hardly be expected, 
not even in the case of exactly proportional supply rates – no matter what form the 
‘basic production function’ has. 
 Further research may include a sensitivity analysis of the model, empirical 
validation with other datasets, and the addition of nutrient input prices, product prices 
and nutrient loss abatement prices to support input optimization studies.
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