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Abstract 

Routine prediction of feeding value of feeds by in vitro methods is time-consuming and ex­
pensive. Recently, near infrared spectroscopy (NIR) measurements are used to predict the 
feeding value. NIR instruments measure absorbance of near infrared light of a sample at 
several wavelengths. The spectrum of absorbance measurements contains indirect, non­
specific information about the feeding value of the sample and can be used to predict this 
value. To this end a linear calibration model was estimated from experimental data. The 
model was used to predict unknown in vitro values with measured spectra in future samples. 
Multicollinearity in the NIR measurements occurs frequently. Inclusion of all absorbances in 
a calibration model gives overparameterisation and large prediction errors. To overcome 
multicollinearity several methods were proposed. The methods were described and employed 
to data in which in vitro digestibility of organic matter of maize for cattle was predicted by 
means of absorbances measured at 351 wavelengths. Comparison of methods showed that for 
these data Partial Least Squares is the best method. Multiplicative scatter correction of the 
spectra prior to estimation gave better predictions for all methods. 

Keywords: calibration, near infrared spectroscopy, digestible organic matter, multiple linear 
regression, principal components regression, partial least squares, generalized least squares, 
best linear prediction 

Introduction 

For adequate feeding of livestock, farmers need information about the feeding value 
of available feedstuffs. Knowledge of the content of digestible organic matter 
(dOM) is very important for energy evaluation of feeds, in particular for forages. 
Accordingly there is great practical interest in a rapid, accurate and cheap method 
to predict dOM for forages. This interest is evidenced by the over 80 000 samples of 
forages a year that are analysed by the Routine Laboratories for Forage Estimation 
in the Netherlands. 
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Until recently the chemical composition (crude fibre, crude protein, crude ash) of 
these samples was routinely determined by classical chemical methods and this com­
position was used to predict dOM. This method relies on pre-established relation­
ships between dOM and chemical composition. Criticism of this method focused on 
using crude fibre as a predictor (van Es, 1986). An alternative method to estimate 
dOM was developed by Tilly & Terry (1963) who used an in vitro method with ru­
men fluid and pepsin. This method can be impractical as it requires regular supply 
of rumen fluid. Therefore replacement of rumen fluid by commercially available en­
zymes was studied, resulting in a new in vitro method which uses cellulase (van der 
Meer, 1988). However, both in vitro methods are laborious and are considered too 
slow to be used for routine analysis of large numbers of forage samples. 

Almost parallel to the new in vitro methods a physically based method for deter­
mining chemical composition was introduced. This method is based on absorption 
of near infrared light (NIR) at wavelengths in the region 1100-2500 nm. Since chemi­
cal composition determines the amount of absorbed near infrared light, a NIR spec­
trum contains information on this composition. The information in a NIR spectrum 
is however non-selective because of interference of strongly overlapping constituents 
and because of light scatter variation. Interpretation of differences in spectra is 
therefore not straightforward. Hence, calibration of a NIR instrument has to be 
done indirectly. Calibration equations are derived by relating spectral information 
to chemical information for a large number of samples. In most cases the statistical 
technique that is used to derive prediction equations, is some form of variable selec­
tion in which a few absorbances are selected to predict the parameter of interest. 
There are however a number of statistical methods which employ all of the informa­
tion in the spectrum. 

The object of this study is to compare statistical methods for prediction of dOM 

of forage maize for ruminants feeding by means of NIR spectroscopy. This study 
was part of a larger scientific program, carried out at the Research Institute of 
Livestock Feeding and Nutrition, which resulted in the introduction in 1989 of NIR 
spectroscopy as a means for routinely predicting dOM of forage maize in the 
Netherlands. 

Material and methods 

Samples 

A total of 125 samples of maize products was selected from a large group of sam­
ples, gathered at different locations in different years and consisting of whole maize 
plants (fresh or ensiled), as well as parts of maize plants (ears or stems). The selec­
tion was done in such a way that almost all variation in age, dry matter, ash, crude 
protein and crude fibre was represented. The samples were thus not randomly drawn 
from some well defined population. The set of 125 samples was used to derive 
calibration equations and will be referred to as the calibration set. A wide calibra­
tion set is important because it results in a general prediction equation with small 
bias. Very wide calibration sets can however increase the standard error of predic­
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tion (Wetherill & Murray, 1987). 
Furthermore, a set of 96 forage maize samples was collected at random in 1987. 

This set was used to evaluate the calibration equations and will be referred to as the 
evaluation set. The evaluation set was less diverse than the calibration set since the 
evaluation set was drawn at random and the calibration set was specifically selected 
to cover a wide range of variation. 

Chemical analysis 

The content of digestible organic matter was estimated by an in vitro method which 
uses cellulase. Samples were ground and 0.5 gram was incubated in a pepsin-HCl 
solution at 39 °C for 24 hours and then placed in a waterbath at 80 °C during 30 
minutes. After washing and filtering they were incubated in a cellulase-amylase 
buffer solution, again at 39 °C for 24 hours. After filtration samples were dried and 
incinerated. Digestible organic matter was calculated as the dry matter loss after in­
cineration, expressed as a percentage of the initial dry matter. Together with each 
series of samples a number of standard samples of similar material with known in 
vitro d0M values was analysed. From the results of these samples a regression for­
mula was calculated which was used to predict dOM for the unknown samples. The 
method has been described fully by van der Meer (1988). 

The results of the chemical analyses are given in Table 1. 

NIR measurements 

NIR spectra of samples were recorded with a Technicon InfraAlyzer 500C spec­
trophotometer between 1100 and 2500 nm, at 4 nm intervals. So, absorbances (spec-

Table 1. Crude protein, crude ash, crude fibre and in vitro digestible organic matter of forage maize 
samples. 

Component Range Mean Standard 
deviation 

Calibration samples (n = 125) 

Crude ash (g kg-') 13 -239 69 34 
Crude protein (g kg ') 57 -119 86 13 
Crude fibre (g kg1) 54 -347 214 54 
Digestible organic matter (%) 45.7- 78.1 59.1 6.3 

Evaluation samples (n = 90) 

Crude ash (g kg ') 30 - 77 49 7 
Crude protein (g kg-1) 71 -101 86 5 
Crude fibre (g kg-') 170 -263 213 20 
Digestible organic matter (%) 57.9- 67.6 63.1 2.1 
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tral log(l/R) values) measured at 351 wavelengths were available for every sample. 
Each spectrum was obtained by a single scan. 

With 351 variables some of the calibration methods can not be used due to com­
putational problems. This is especially so for the method of all combinations search 
multiple linear regression. Other methods require large amounts of computing time 
with 351 variables or give very poor numerical results due to rounding errors. There­
fore 18 wavelengths, covering the whole range between 1100 and 2500 nm, were 
selected to compare all calibration methods. Some of these 18 wavelengths were 
selected because it was known from prior work that they were informative. The 
selection was thus done on a rather ad-hoc basis. Some methods were also compared 
for 351 wavelengths. 

Transformations 

It is well known that specular reflection, particle size and structure of a sample can 
cause an overall shift in a spectrum unrelated to chemical composition. Consequent­
ly, variation in spectra due to differences in chemical composition can be snowed 
under by variation due to differences in structure. To eliminate these effects a Mul­
tiplicative Scatter Correction (MSC), as proposed by Geladi et al. (1985), was em­
ployed. For every sample a linear regression of the spectrum upon the average spec­
trum in the calibration set was calculated according to the model: 

yj = a  +  ß X j  + ej 

in which yj is the absorption of the individual sample and Xj is the average absorp­
tion in the calibration set, both measured at wavelength j. In this model chemical 
information is in the residuals ej and information on light scatter effects, particle 
size and structure is in the parameters a and ß. The latter information is eliminated 
by the transformation: 

Z j  =  ( y j  -  a ) / ß  

in which Zj is the transformed spectrum and a and ß are replaced by estimates. 
This correction is successfully used by Naes et al. (1986). A similar transformation 
is used by Robert et al. (1986). 

After the MSC, spectral data were centered and scaled. Centering is convenient 
but not essential. For most calibration techniques, non-scaled data would increase 
the relative importance of absorbances having a large variance. In order to give ev­
ery absorbance an equal weight, spectral data were scaled. 

Statistical methods for multivariate calibration 

The major difficulty with multivariate calibration of NIR instruments is the 
problem of multicollinearity which occurs because of very high intercorrelation be­
tween absorbances. This causes very large variances of estimated regression coeffi­
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cients, leading to unstable estimation of the regression equation. To overcome this 
problem, various approaches have been proposed, all of which try to reduce the 
number of parameters to be estimated. Usually the data are described better by in­
cluding more parameters in a model to minimize model errors. However, at the 
same time, the precision with which parameters are estimated decreases and so esti­
mation errors increase. The error of prediction depends both on model errors and 
estimation errors and these have to be balanced against each other. This is illustrated 
in Figure 1. 

All proposed methods are based on linear regression, see e.g. Montgomery & 
Peck (1982). So called inverse calibration methods are based on regressing d0M 

upon a few absorbances or upon a few variables derived from the absorbances. In 
this paper three inverse calibration methods are used: All combinations search mul­
tiple linear regression (ALL), Principal Components Regression (PCR) and Partial 
Least Squares (PLS). So called classical calibration methods are based on multivari­
ate regression of absorbances upon dOM. Both classical methods that are used in 
this paper employ an approximation of the residual variance-covariance matrix of 

ERROR OF PREDICTION 

ESTIMATION ERRORS MODEL ERRORS 

NUMBER OF PARAMETERS 
Fig. 1. Dependence of the error of prediction on both model errors and estimation errors. 
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the absorbances. In their original form, without this approximation, these methods 
are known as Generalized Least Squares (GLS) and Best Linear Prediction (BLP). 

In this paper the description of the methods is mainly intuitive. References can 
be consulted for precise formulation of statistical models and for computational 
techniques. 

All combinations search multiple linear regression 
All combinations search multiple linear regression (ALL) essentially fits all possible 
models that can be obtained from the full model (with all absorbances) by deleting 
one or more absorbances. With 18 absorbances 262144 different models can be fit­
ted, although intelligent numerical procedures only fit a fraction of this number. 
Which of these models is the 'best' is not very clear cut. Most criteria that are pro­
posed, see e.g. Draper & Smith (1981), have in common that with a fixed number 
of variables in the model, a model is better when its residual variance is smaller or, 
equivalently, its coefficient of determination R2 is larger. Here for every fixed 
number of absorbances in the model the three models with the largest R2 are select­
ed. 

Other variable selection methods such as forward selection or backward elimina­
tion can be used as well. Berk (1978) constructed an artificial example with 4 varia­
bles, in which forward selection and backward elimination selected the same subset 
of 2 variables, missing a subset of the same size which gave a residual variance equal 
to l/90th of that for the selected subset. These methods can thus fail to find the 
best model and therefore ALL is the preferred method. 

The use of any selection method which uses the data, implies that the standard 
least squares properties are not applicable because they only hold if the subset of 
variables has been selected without reference to the data. Hence, the residual vari­
ance will be underestimated by the residual mean square of the selected regression. 
It is therefore important to test the regression equation on an independent set of 
data. 

Principal components regression 
Principal Components Regression (PCR) uses most of the available information in 
the spectra by deriving new variables from the absorbances. Then dOM is regressed 
on these new variables, which are called principal components. The principal com­
ponents are linear combinations of the absorbances. The first principal component 
is that linear combination that describes most of the variation in the spectra. The 
second linear combination, constrained to be orthogonal to the first, describes most 
of the remaining variation and so on. It is hoped that all the relevant information 
in the spectra is represented in the first few principal components. 

Since the first principal components contain most of the variation in the spectra 
it seems appropriate to regress dOM on the first components. However, as noted by 
Jolliffe (1982), the first components are not necessarily good predictors. Therefore 
two approaches were followed here. One in which the first components were used 
and one in which method ALL was applied to the first 10 components. For com­
putational methods and related techniques see Jolliffe (1986). 
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Partial least squares 
PCR is essentially a two-stage method in which the data compression stage is done 
independently of the regression stage, such that the principal components account 
for most of the variation in the NIR spectra alone. In Partial Least Squares (PLS) 
these two stages are combined. PLS forms linear combinations that potentially have 
high covariance with dOM and thus have large predictive power. The first PLS-
component is a linear combination of absorbances in which every absorbance is 
weighted by its covariance with dOM. So absorbances with high covariance with 
d0M play an important role in the first PLS-component and absorbances with low 
covariance play a small role. In the next step a regression is performed of dOM on 
the first PLS-component which gives residuals of non-explained variation in d0M. 
The second PLS-component again is a sum of absorbances, but now weighted by 
the covariances between residuals and absorbances. Regression of residuals on the 
second component gives new residuals and in a analogous way new components are 
formed. In this way the variation in dOM is peeled off by regressing on successively 
new components, formed to have high covariance with d0M. 

PLS is computationally much simpler than PCR. There are a number of equiva­
lent algorithms for PLS. Naes et al. (1986) give two algorithms, one with, the other 
without orthogonal components. Wold et al. (1984) show that PLS essentially is a 
conjugant gradient algorithm for linear least squares problems and such algorithms 
are reviewed by Paige & Saunders (1982). Here the algorithm from Naes et al. (1986) 
with orthogonal components is used. Theoretical properties of PLS can be found 
in Höskuldsson (1988). 

Generalized least squares 
Generalized Least Squares (GLS) performs a multivariate regression of the spectrum 
on dOM (Naes, 1985a). This corresponds to simple univariate regressions of each 
absorbance on dOM. Along with the regression coefficients, the inverse of the 
variance-covariance matrix of the residuals of the univariate regressions also enters 
the prediction equation. The covariance matrix is however nearly singular for NIR 
measurements, leading to unstable predictions. Naes (1985b) proposes a linear fac­
tor model in order to give a parsimonious description of the covariance matrix, the 
rationale being that the number of independent variation sources in the spectrum 
is smaller than the number of absorbances. Naes (1985b) claims that the prediction 
error benefits from the linear factor model. 

Best linear prediction 
Best linear prediction (BLP) is based on the same model as GLS with the same ap­
proximation of the residual variance-covariance matrix. The only difference is that, 
in order to improve the predictor, prior information about the variable which needs 
to be predicted is incorporated. If it is known that a sample is drawn at random 
from a population with known distribution of dOM, than the GLS predictor can be 
improved (Naes, 1985b). This clearly needs an accurate definition of the population 
under consideration and knowledge of the distribution of dOM within the popula­
tion. Often the calibration set is considered as a random sample from the population 
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and the mean and variance of dOM in the population are estimated from this sam­
ple. This procedure was also followed here, although it is clear that the calibration 
set was in fact not a random sample. 

Results 

Calibration methods were compared in two ways. Firstly methods were compared 
in the way they describe the calibration set. Secondly the resulting prediction equa­
tions were employed for the 96 samples in the evaluation set and the predicted dOM 

was compared with the measured d0M for these samples. The criterion that was 
used in both comparisons was the Root Mean Squared Error (RMSE) with 

RÏV1SE- ^ (^OMpredicted ^OMmeasured)^ 

where n is the number of samples in the set. A rough prediction interval for every 
individual sample is given by dOMpredicted ± 2 x RMSE, where RMSE is calculated 
in the evaluation set. 

A dimension has to be selected for every method. For ALL the number of varia­
bles, for PCR and PLS the number of components and for GLS and BLP the num­
ber of independent sources of variation has to be chosen. In this study the dimension 
was varied systematically. In practice it would be selected on the basis of the RMSE 
in an appropriate evaluation set because that is the most straightforward validation 
of a prediction equation. 

Most calculations were done with the statistical package Genstat 5, Payne et al. 
(1987). 

Description of the calibration set 

The RMSE in the calibration set for each of the methods and for dimensions up to 
10 is given in Table 2. In this table, ALL-1, ALL-2 and ALL-3 are the best, the se­
cond best and the third best subset respectively, for every dimension. PCR-1 is based 
on regressing dOM on the first principal components, while PCR-A selects the best 
components out of the first 10. The other methods are as described above. 

From Table 2 it appears that ALL describes the calibration set best. From dimen­
sion 4 onwards there are very small differences between the 3 models selected by 
ALL. As expected, PLS describes the data better than both PCR methods, the 
PCR-A method being better than the PCR-1 method. For higher dimensions PLS 
and PCR-A are approximately equivalent to ALL with respect to RMSE. The classi­
cal calibration methods GLS and BLP describe the calibration set less well, especial­
ly for higher dimensions. 

Prediction of the evaluation set 

The RMSE in the evaluation set is given in Table 3. From Table 3 it appears that, 
although the ALL models with the same number of variables describe the calibra-
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Table 2. Root Mean Squared Error (RMSE) for samples in the calibration set for the different calibration 
methods and for dimensions up to 10; RMSE is calculated for the percentage of digestible organic matter 
of forage maize, using 18 wavelengths. 

Dim. ALL-1 ALL-2 ALL-3 PCR-1 PCR-A PLS GLS BLP 

1 3.95 4.09 4.28 4.60 4.60 4.21 5.20 4.80 
2 2.97 3.12 3.65 4.40 3.83 3.66 4.00 3.67 
3 2.79 2.86 2.86 3.59 3.54 3.37 3.77 3.33 
4 2.54 2.59 2.66 3.58 3.26 2.86 3.23 2.97 
5 2.41 2.46 2.49 3.39 2.98 2.75 3.50 3.24 
6 2.25 2.28 2.33 3.10 2.75 2.53 3.01 2.80 
7 2.21 2.22 2.22 2.93 2.55 2.40 2.95 2.76 
8 2.13 2.15 2.16 2.76 2.36 2.24 2.93 2.77 
9 2.11 2.12 2.12 2.76 2.35 2.17 2.75 2.60 

10 2.10 2.10 2.10 2.34 2.34 2.09 2.76 2.59 

Dim.: Number of variables in the model or dimension of linear factor model. 
ALL-1: Best subset by all combinations search multiple regression. 
ALL-2: Second best subset by all combinations search multiple regression. 
ALL-3: Third best subset by all combinations search multiple regression. 
PCR-1: Principal components regression with first components. 
PCR-A: Principal components regression with best components out of first 10. 
PLS: Partial least squares. 
GLS: Generalized least squares with a linear factor model. 
BLP: Best linear prediction with a linear factor model. 

Table 3. Root Mean Squared Error (RMSE) for samples in the evaluation set for the different calibration 
methods and for dimensions up to 10; RMSE is calculated for the percentage of digestible organic matter 
of forage maize, using 18 wavelengths. The smallest RMSE is bold in every column. 

Dim. ALL-1 ALL-2 ALL-3 PCR-1 PCR-A PLS GLS BLP 

1 2.18 2.95 1.72 3.87 3.87 2.94 4.60 4.02 
2 1.70 1.75 1.52 2.75 3.23 2.00 2.30 2.09 
3 1.79 1.71 1.82 2.04 3.63 1.89 2.98 2.12 
4 1.50 1.85 1.67 1.94 3.94 1.50 1.88 1.77 
5 1.60 1.90 1.80 1.75 2.64 1.72 1.97 1.88 
6 1.84 1.97 2.15 1.85 2.47 1.47 2.18 1.82 
7 1.84 2.09 2.07 1.64 2.19 1.57 3.01 2.56 
8 2.04 2.02 2.09 1.53 1.83 1.88 2.99 2.64 
9 2.06 2.08 2.12 1.52 1.84 1.93 2.85 2.70 

10 2.04 2.09 2.07 1.81 1.81 2.05 3.17 3.08 

Dim.: Number of variables in the model or dimension of linear factor model. 
ALL-1 
ALL-2 
ALL-3 
PCR-1 

Best subset by all combinations search multiple regression. 
Second best subset by all combinations search multiple regression. 
Third best subset by all combinations search multiple regression. 
Principal components regression with first components. 

PCR-A: Principal components regression with best components out of first 10. 
PLS 
GLS 
BLP 

Partial least squares. 
Generalized least squares with a linear factor model. 
Best linear prediction with a linear factor model. 
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tion set equally well, there is quite some variation in the RMSE for ALL models in 
the evaluation set, most prominently so for dimensions 5 and 6. This can be ex­
plained by the fact that ALL chooses among a large number of models and can thus 
accidentally choose a model with less predictive ability in the evaluation set. Accord­
ingly, ALL is a data dependent technique and thus not very robust. 

Furthermore, although PCR-A describes the calibration set better than PCR-1, 
the latter predicts the evaluation set better. 

PLS seems to be preferable compared to PCR because it needs less components 
to reach a smaller RMSE. Compared to ALL however, PLS needs more variables 
in the model to reach a slightly lower RMSE. 

The classical regression methods GLS and BLP both give larger RMSE than the 
inverse methods. For this set of data the inverse methods are clearly superior to the 
classical methods. 

PLS and PCR with all wavelengths 

Application of both PCR and PLS with all wavelengths is relatively easy. The 
RMSE in the evaluation set, using all 351 wavelengths, are given in Table 4. Also 
in Table 4 PLS with 18 wavelengths with and without Multiplicative Scatter Correc­
tion can be compared. The latter comparison shows that Multiplicative Scatter Cor­
rection improves the predictions considerably. This is not only true for MSC in com­
bination with PLS, but also in combination with the other methods. Using MSC 
gives models with fewer parameters giving better predictions. 

Table 4. Root Mean Squared Error (RMSE) for samples in the evaluation set for PLS with and without 
Multiplicative Scatter Correction (MSC) using 18 wavelengths, and for PCR and PLS using all 351 
wavelengths; RMSE is calculated for the percentage of digestible organic matter of forage maize. The 
smallest RMSE is bold in every column. 

Dimension 18 Wavelengths 351 Wavelengths 

PLS, no MSC PLS, MSC PCR-1, MSC PCR-A, MSC PLS, MSC 

1 4.43 2.94 3.49 3.49 2.89 
2 3.35 2.00 2.72 2.46 2.05 
3 2.11 1.89 1.95 2.00 1.83 
4 1.93 1.50 2.00 2.19 1.65 
5 1.95 1.72 1.65 1.76 1.50 
6 2.01 1.47 1.78 2.21 1.67 
7 1.83 1.57 1.61 2.11 1.82 
8 1.70 1.88 1.61 1.71 1.91 
9 1.64 1.93 1.57 1.73 2.02 

10 1.74 2.05 1.75 1.75 1.88 

Dimension: Number of variables in the model. 
PCR-1: Principal components regression with first components. 
PCR-A: Principal components regression with best components out of first 10. 
PLS: Partial least squares. 
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With 351 wavelengths PLS is better than either form of PCR. Also with 351 
wavelengths the path of the RMSE is very smooth for PLS, indicating robustness. 
Furthermore, there are hardly any differences between PLS with 18 and with 351 
wavelengths. The 18 selected wavelengths are apparently representative. 

Discussion 

For NIR applications subset selection is compared with PCR-1 by Robert et al. 
(1986), Bertrand et al. (1987) and Downey et al. (1987). They found that prediction 
equations based on principal components are as accurate as conventional multiple 
regression methods (among which ALL and forward selection). They also found 
that the choice of number of components does not seem to be very critical. Further­
more, the principal components can be used to identify samples which contribute 
significantly to each component. Also with PCR a single calibration equation can 
be generated in relatively short time. 

Naes et al. (1986) compare PCR-1 with PLS for NIR calibration with only 6 
wavelengths. They found that PLS is a serious competitor to PCR and they highly 
recommended PLS for practical use in NIR. They also noted that PLS lacks a firm 
theoretical basis. 

For the set of data at hand, PLS gives better predictions with fewer components 
than PCR. PLS thus compresses the information in the spectra more successfully 
than PCR. Moreover, PLS is computationally simpler than PCR. Classical calibra­
tion methods GLS and BLP perform less well. ALL gives good prediction results 
with 18 wavelengths. With 351 wavelengths ALL is practically impossible and a pri­
or selection of wavelengths has to be made. This requires knowledge of the problem 
at hand and it is always doubtful whether the right selection has been made. Further­
more, ALL is not very robust as it can find a model which accidentally describes 
the calibration set best, but is a bad predictor. 

Partial Least Squares seems to be the method of choice. However, this conclusion 
is based on one set of data only. Currently calibration methods are compared for 
other material. Partial Least Squares is now used for routine prediction of DOM 
of forage maize in the Netherlands. 
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