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Abstract 

A new, simple and non-destructive method is proposed to measure directly soil ma
tric flux potential as a function of water content. Soil water diffusivity is then found 
by differentiation of the measured curve. The steady-state method is based on a 
two-parameter expression for matric flux potential and requires few observations, 
obtained by standard equipment. Specific advantages are the method's applicabili
ty to the hydraulic characterisation of thin, brittle or hard samples. Experimental 
examples are presented and a theoretical analysis of errors due to gravity and non-
stationarity is included. Where interest is in the integral characteristic matric flux 
potential, direct assessment of this function is expected to be more accurate than in
tegration of a measured diffusivity curve. The method requires little labour but is 
relatively slow. 

Introduction 

The idea of combining a transport coefficient with a force-field potential into a flux 
potential was first introduced by Kirchhoff (1894), in the context of non-linear heat 
flow problems. This concept was adopted in the description of soil water transport 
by Klute (1952). The new flux potential was called 'matric flux potential' (Raats, 
1970) to indicate that the associated gradient vector field is the flux field as gov
erned by matric forces only. Although traditionally we are mainly dealing with po
tentials in force fields, it is fully legitimate to define potentials for any lamellar vec
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tor field, such as the matric flux field considered here (Truesdell & Toupin, 1960). 
The use of the matric flux potential concept has been connected with the formula

tion of analytical solutions of the flow equation through the choice of an exponen
tial relation for k{p), the hydraulic conductivity as a function of soil water pressure 
p (Gardner, 1958). Especially steady, multidimensional flows have been solved by 
combining the formulation in terms of matric flux potential with the exponential de
pendence of k uponp (e.g. Philip, 1971; Warrick, 1974; Raats, 1977). 

Shaykewich & Stroosnijder (1977) applied the concept of matric flux potential in 
the numerical simulation of water flow in soils. They indicated several advantages 
of matric flux potential over the conventional formulation which typically evaluates 
the transport coefficient and the driving force for the matric flux separately. Among 
these advantages are the avoidance of numerical overshoot, especially in the sim
ulation of situations involving strong gradients (e.g. Vauclin et al., 1979) and the re
duction of computation time. Finally, as a soil characteristic the matric flux poten
tial curve is more accessible to interpretation in terms of fluxes than the soil water 
diffusivity or hydraulic conductivity function. 

The integrated nature of a flux potential offers unique possibilities to the mea
surement of soil hydraulic properties, since at steady state the course of such a po
tential along the space coordinate in one-dimensional flow is known irrespective of 
the gradients in moisture content and pressure. This contribution proposes a very 
simple measurement procedure to assess directly the curve of matric flux potential 
0 versus moisture content 6 for undisturbed core samples. Since differentiation of 
0(0) with respect to 0 yields the soil water diffusivity D{8), the method described 
here may be viewed as an alternative to existing methods for the determination of 
D(9) .  

Theory 

The Kirchhoff transformation of the flux density equation implies substitution of 
the product kdp by the differential d0. For the case of one-dimensional vertical 
flow with the space coordinate z positive upward, we may then write the flux den
sity q as: 

q  =  - ^ ~ - k  ( L T ' 1 )  ( 1 )  
dz 

If we assign a pressure p 0  or a moisture content 0O to a chosen reference condition, 
the matric flux potential at any pressure or moisture content may be defined with 
respect to this reference state as 

PO E0  

0 - - J  k(p)dp= - J  D(0)dd (L2T_1) (2) 
p o 

provided the diffusivity be finite over the relevant 0-domain. Raats and Gardner 
(1971) indicated that for realistic k(p) functions this integral should converge. This 
was indeed found also on the basis of experimental data. Ten Berge (1986) ana-
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Fig. 1. Characteristic shape of the matric flux potential curve. 

Table 1. Hydraulic properties of soils, based on data listed by Mualem & Dagan (1976). A and B values 
were obtained after numerical integration of reported D(6) curves, with moisture content at saturation 
as the reference value 0O. 

Soil ks A B 
10~2 m/d 10"2 m2/d 

Rideau clay 29.6 5.52 0.0899 
Yolo light clay 0.86 0.32 0.1250 
Buffalo silty clay 6.82 0.45 0.0088 
Glendale clay loam 94.2 4.41 0.0965 
Avondale loam 24.0 5.55 0.0402 
Guelph loam 26.3 15.7 0.0595 
Gilat loam 18.7 6.56 0.0208 
Grenville silt loam 5.53 4.29 0.0242 
Columbia silt loam 5.05 2.73 0.0736 
Ida silt loam 7.97 3.07 0.0248 
Mont Cenis silt loam 1.22 1.30 0.1670 
Yolo fine sandy loam 1.28 1.73 0.0726 
Vernal sandy loam 19.1 4.20 0.1100 
Bet Dagan I loamy sand 552 141 0.0404 
Panoche soil 38.3 113 0.0230 
Gravelly sand G.E.-9 23.7 11.8 0.0450 
Hygiene sandstone 108 107 0.0090 
River sand 193 33.2 0.0135 
Sable S2 354 4.07 0.0046 
Lakefield fine sand 3 457 125 0.0328 
Lakefield fine sand 1 401 105 0.0254 
Uplands sand 158 18.7 0.0605 
Nahal Sanaï sand 298 95.4 0.0182 
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lysed 0(0) relations as calculated from k(d)  and p(d)  data listed by Mualem & Da-
gan (1976) for a wide variety of soils. All soils showed a characteristic shape of the 
0(0) curve (Fig. 1), which appears to be well described by a simple rational expres
s ion,  making use  of  a  scale  fac tor  A (L 2 T _ 1 )  and a  dimensionless  shape fac tor  B: 

0(0) 
X +  D 

with 

J c - 1 - 0 / 0 0  ( - )  ( 4 )  

Table 1 shows A and B values calculated for some soils from reported k(6)  and p(d)  
data given by Mualem & Dagan. It may be noted that differentiation of Eq. 3 
directly gives a diffusivity function of the form used by Knight & Philip (1974): 
£)(0) = a(b - 0)~2, where a and b are constants. 

The proposed experimental procedure makes use of two relations based on Eq. 3 
that may be combined to yield the parameters A and B. For a soil core of finite 
length L, the initial and boundary conditions required to obtain our two relations 
are: 

0 = 0O t = 0 0 sS 2 ^ L (5a) 
0 = 0O 0 z = 0 (bottom) (5b) 
0 = 0 t> t c  z  = L (surface) (5c) 

where fc is a critical time required to approach sufficiently near to a steady state. 
When gravity is neglected, both the flux at steady state and the total water loss that 
accompanies the shift from the initial to the final (steady) state, can be expressed in 
terms of A, B and 0O. Since both the final flux and the total water loss can be as
sessed experimentally in a simple and non-destructive manner, the adoption of the 
above assumptions becomes very attractive. The flux density at steady flow is ex
pressed as 

which specializes under the conditions of Eqs. 5b and 5c to give the maximum attai
nable steady flux through a soil column of length L: 

»--ÏÏTbü ^ <7) 

Clearly, this flux is only met when the demand at z  = L,  i.e. the imposed potential 
evaporation rate, surpasses a critical minimum value equal to </max. The profile of 
matric flux potential 0(z) then follows from integration of Eq. 1, again neglecting 
gravity: 
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•M --W (8) 

Combination of Eq. 3 and Eq. 8 yields the 'complementary moisture content' pro
file: 

<"» <9) 

with x defined as in Eq. 4. The total amount of water lost from the soil column dur
ing the transition from initial to final state is then found directly as a function of the 
shape factor B by integration of Eq. 9: 

L 

x(z)dz = -5L/(l + fl)ln|TA_) + l} = Lf(5) (L) (10) 

0 

or in terms of total mass change AW: 

A W =  V Q l 6 0 B\( l  + 8)1X1^-^-]+l \  (M) (11) 

where V and £>j are the sample volume and the specific density of water, respective
ly. With measured A W and 0O, Eq. 11 is solved for B by iteration, for instance by a 
Newton-Raphson procedure. The scale factor A is then obtained subsequently 
from Eq. 7 with the measured steady-flux value, qmax. 

Fig. 2. Experimental set-up and graphical representation of 6(z) and <P(z) at various time values. £fin is 
the final stationary evaporation rate. 
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Experimental procedure 

Fig. 2 illustrates the experimental set-up. The soil sample is connected to a water 
reservoir (burette) through a porous plate or cloth, in which the water pressure is 
maintained at the reference value p0 by a mariotte arrangement. Initially the soil 
surface is covered and 0(z) and 6(z ) are supposedly constant throughout the sam
ple, as indicated graphically in Fig. 2. The initial sample weight is measured. 

After removal of the surface cover, an upward flux is induced by evaporation, en
hanced by the use of a hair-dryer. At first, evaporation is constant and d0/dz at the 
surface is fixed, being equal to the evaporative demand. As the surface dries be
yond some limit (i.e. the moisture content where the relative humidity of soil air 
drops below 1), evaporation decreases. An essential condition is that the evapora
tive demand is larger than the maximum steady-state flux that the sample can sup
port according to Eq. 7. Gradually the slopes d0/dz at the surface and at the bottom 
of the sample will approach the final value associated with the stationary flux <7max. 
When the bottom flux as read from the burette becomes constant, the final weight 
of the core sample and the oven-dry weight are determined, thus completing the 
measurements required to assess the parameters A and B through Eqs. 7 and 11. 

Some experimental examples 

The above procedure was applied to three soil materials: a very fine sand (packed), 
a sandy loam (packed), and a humous coarse sand (undisturbed field samples). 
Acrylate rings of 50 mm length and diameter were used. Values of pt) were chosen 
at -8, -5 and -5 kPa for the three soils, respectively. 

The measured 0(0) curves according to Eqs. 7 and 11 are shown in Fig. 3. There 
appears to be some variation among the individual samples within one texture 
group, possibly associated with differences in dry bulk density for the field samples 
(humous coarse sand) and with packing irregularities in the artificial samples (very 
fine sand and sandy loam). The graphs clearly reflect the differences in shape factor 
B and scale factor A between the three soils. 

As a check on the procedure, samples were mechanically sliced after determina
tion of the final weight in order to assess independently the 6(z) profile by gravime-
try. Combination of this profile with 0(z) as obtained from 0 = -qz allows for a 
comparison between the two resulting 0(0) curves: the one based on gravimetric 
sampling, the other based on Eqs. 3, 7 and 11. Fig. 4 compares one of the curves for 
each soil to 0(0) as obtained by sectioning. Some inconsistency as to the shapes of 
the curves found by the two methods is observed. An inflection point in the 0(0) 
curve would indicate a maximum in D(0). The supposed relation in Eq. 3 is not in 
accordance with the occurrence of such a maximum. It seems likely, however, that 
here the observed S-shape reflected by the data points is due to redistribution dur
ing gravimetric sampling, because the discrepancy between the curves and data 
points occurs in the same manner for all three soils. Also, all analysed literature 
data (Table 1) support the validity of Eq. 3. The problem of redistribution during 
sampling was addressed extensively by van Grinsven et al. (1985) in their discussion 
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cm2 d"1 

e/e0 

Fig. 3. Matric flux potential curves obtained by the proposed method for three different soil materials. 
Corresponding dry bulk densities for individual samples of each texture group in Mg m~3, from top to 
bottom: very fine sand 0.924, 0.911, 0.934, 0.938, 0.923; sandy loam 1.038,1.049, 1.081,1.047; humous 
sand 1.552,1.595,1.308. 

-§ cm2 d 1 

Fig. 4. Matric flux potential curves obtained by the proposed method (lines) compared to <P(ff) based 
on gravimetric sampling (symbols). 
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on the hot air method introduced by Arya et al. (1975). 
In some instances a correction on AVK had to be applied to account for a non-neg

ligible resistance of the porous plate if 0 in the sampled bottom slice did not equal 
the initial moisture content. 

Evaluation of inherent errors 

Various error sources associated with the application of Eqs. 7 and 11 are to be 
identified. We can safely state that direct measurement errors in AW and qmax will 
generally be small as compared to errors arising from failure to meet the assump
tions inherent to the method. The relative magnitude of errors in AW and qm!lx - and 
hence in f(ß) and AI (I + B), respectively - will be analysed for the cases of (a) a 
non-negligible gravity term in Eq. 1, and (b) assessment of (AW, <7max) under condi
tions too far from steady state. Furthermore, errors due to the presence of transport 
mechanisms other than isothermal vapour diffusion and isothermal liquid flow will 
be discussed briefly. 

Errors  due  to  gravi ty  
Taking into account the effect of gravity, the integrated form of Eq. 1 becomes 

^min L L 
ƒ d0 = -qz  ] - ƒ k{z)àz  (L2T~') (12) 
o 0 0 

with 0min the minimum value that the (negative) matric flux potential can attain. 
The absolute error in the term A/( 1 + B) due to gravity is equal to the second term 
in the right-hand side of Eq. 12. In order to delimit the method's applicability, it is 
worth trying to quantify this term in relation to the parameters A, B, L and k0, the 
latter being the conductivity at 0O. To this purpose we should seek a link between 
k(d) and D(0), which need be approximately correct for high 0 values only, since 
the sharp decrease of k with 0 renders the drier part of the k(6) curve irrelevant to 
the integral in Eq. 12. Such a link was provided by Philip (1969) and was applied by 
Talsma & Parlange (1972) in their paper on infiltration as 

J (0-0,)0(0)d0 
(0-0,)D(0) 9, 

dkld0 1\dk/d6)de 

(L) (13) 

where the subscript i in their context referred to the initial status (prior to infiltra
tion) and the subscript 1 to the surface condition after starting infiltration. Later, 
the relation was used over the full range of 0 at several instances (e.g. Parlange & 
Smith, 1976; Smith & Parlange, 1978; Giraldez & Sposito, 1985). With these au
thors we suppose here that the proportionality expressed in Eq. 13 is valid over the 
full 0 range for soils with a strong dependency of k upon 0. For soils with slowly va
rying k(9) in the wet range, an empirical parameter a is introduced following Par-
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lange et al. (1982) and Giraldez & Sposito (1985). This parameter then varies be
tween 0 (for constant k{d)) and 1 (for soils behaving according to Eq. 13). On the 
basis of the above assumptions we may then write the relative hydraulic conductivi
ty as 

k ( 0 )  , 
~T" 1~a~% H (14) 

*°  J e  D(9)d6 

The subscript 0 in Eq. 14 refers to the condition at the lower boundary of the sam
ple. Thus introduction of a gives a generalization of Eq. 13 to cover soils between 
two extremes. The D{6) function required in Eq. 14 is obtained as an expression in 
A, B and x by differentiation of Eq. 3, yielding 

D ( x ) =  —  T  ( L 2 T _ 1 )  ( 1 5 )  y  '  0 0 (x  + B) 2  K > v  J  

Combination of Eq. 14, Eq. 15 and the 'gravity-free' moisture profile (Eq. 9) gives 
after some manipulation an upper estimate of the gravity error term in Eq. 12, 
which is here presented as a relative error in Al (I + B): 

d(A/(l + B)) =_ViF( (16) 

Al{ \  + B)  A  y )  y  J  

The function F(a, B) - see Appendix - may be identified as a scaled relative error; 
the dimensionless factor S = k0L/A is then interpreted as a scaling coefficient, the 
'gravity flux' and the 'matric flux' being linear functions of k0 and AIL, respectively. 
This scaled relative error is shown as a function of B in Fig. 5 for selected values of 
a. From the graphs in this figure it can be inferred that a scaling coefficient 5 of 0.1 
reduces the relative gravity error in Al(l + B) to 5-10 % (for high to low a respec
tively). 

The gravity error in AVK and hence in f(ß) may be estimated on the basis of S and 
F(a, B). Recalling that the weight loss AW was associated with the shape of the 
moisture profile at stationarity, it follows that in order to take gravity into account 
the moisture profile in Eq. 9 should be replaced by the profile implied in the exact 
relation 

Ax qz  = k(z)dz  (L/T"1) (17) 
x  + B 

0 

If we accept a gross overestimation of the gravity error, Eq. 17 may be simplified to 

k(z)dz  (L2T-:) (18) 

L 

Ax Az  .  L-z  
x  + B (1  + t f )L  L> 

ü 

which can be combined with Eq. 10 and Eq. 11 to give AW, employing F(a, B) to 
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Fig. 5. Left-hand axis and solid lines: relative error in f(B) as a function of B for various values of the 
scaling coefficient k0LIA and two values of a. Right-hand axis and broken lines: scaled relative error in 
A!(\ + B) for three values of a. 

express the integral in Eq. 18. The gravity errors thus calculated for f(B) are also 
plotted in Fig. 5. It follows from these curves that a scaling coefficient smaller than 
0.1 brings the relative error in i(B) down to below 10 %. 

In view of the natural variability in soil hydraulic properties, we consider errors 
up to 10 % in f(B) and in Al(\ + B) as acceptable. To stay below this limit, the scal
ing coefficient should be adjusted experimentally to a value below 0.1 by choosing 
suitable values for L and 0Q. For standard core rings (L = 50 mm), application of a 
small negative pressure of -1 to -5 kPa at the base of the sample is sufficient for 
most soils to make gravity errors negligible. Analysis of the data by Mualem & Da-
gan (1976) mentioned before showed that if 60 is chosen such that k(00) = 1 mm/d, 
the values of A range between 0.5 x 10"3 and 5.0 x 10~3 m2 d"1. Corresponding B 
values are then between 0.05 and 0.5 for most soils. 

Errors due to non-stationarity 
Measurement under conditions too far from stationarity also causes errors that in
validate Eq. 7 and Eq. 11. Description of the drying process for a soil column of 
given B under the supposed conditions can be normalized by the introduction of a 
characteristic parameter G and a scaled time r, both of which are non-dimensional: 

G = (£potL)M, (-) (19) 

r-(f£pot)/(LÖ0) (-) (20) 
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AW 

ÛWfin 

'na* 

Fig. 6. Relative weight loss AW and relative base flux </(0) versus scaled time for two values of B. Solid 
lines: G = 1, broken lines: G = 10. 

E t in these expressions is the evaporative demand at the soil surface, and t is the 
time. The course of the two relative errors (as defined below) in scaled time are 
then unique functions of G and B. 

In order to estimate errors due to non-stationarity, we may inspect again the be
haviour of AW and the base flux <7(0) in time. The relative errors in Al(l + B) and 
KB) are (</(()) - qmax)lqmax and (AW- AWfin)/AW(in, respectively, where A Wfin is the 
final value of AW to be reached at steady state. The course of these errors in time 
can be read from Fig. 6 where <?(0)/<7max and A W/A Wfin, obtained by numerical sim
ulation, are plotted versus r. (To perform the numerical calculations, the fourth-or
der Runge-Kutta predictor-corrector scheme was used.) The figure shows the re
sults for two extreme values of B and two values of G. It is concluded that the time 
required to reduce the errors in f(B) and in Al{\ + B) to 5-10 % strongly depends 
on the values of B and G. Samples of a well sorted material ('narrow' particle size 
distribution) can be expected to have a low B value and hence require relatively 
little time to yield accurate estimates of A/( 1 + B). Silty materials are supposed to 
have relatively high A values (so low G), and therefore would show a <7(0) that ap
proaches relatively fast to gmax. Clearly it appears from the definitions of G and r 
that a simultaneous increase of E t and decrease of L very effectively reduces the 
actual time t to reach a preset error level. A typical case of A = 5 x 10"3 m2 d"1, B = 
0.03, £ t = 0.1md"1, 0o = O.3 and L = 0.05 m would require one hour to reach the 
5 % error level in Al(\ + B) but almost 3 hours to pass the same error level in f(B). 

Errors due to transport other than isothermal diffusion 
The occurrence of transport mechanisms other than isothermal vapour diffusion 
and isothermal liquid flow is the third error source. Problems may arise due to tem-
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perature gradients, inducing liquid and vapour fluxes not related to moisture con
tent gradients. Van Grinsven et al. (1985) analysed the errors due to thermal liquid 
and vapour fluxes and to viscosity changes as encountered by the 'hot air method', 
and concluded that errors are probably small due to various compensation mecha
nisms. The similarity of our method to the hot air method suggests that their conclu
sions are also valid in this case. 

Vapour transport by forced convection in the top of the sample, however, is like
ly to be a more severe problem under some circumstances. It may cause the devel
opment of a dry layer where 0 is constant, as indicated in Fig. 2. This would require 
a correction for L and A Win Eq. 7 and Eq. 11. Forced convection due to air turbu
lence at the surface depends on soil characteristics and on amplitude and frequency 
of the pressure fluctuations (Scotter & Raats, 1969). The data presented by those 
authors indicate that forced convection in media with particle sizes smaller than 1 
mm is probably negligible. The problem might occur in coarser materials and can be 
reduced by choosing a proper distance between sample and the source of the air 
stream employed to enhance evaporation. 

Conclusions 

The measurement of matric flux potential on the basis of the assumed two-param
eter expression for <P(9) represents a useful alternative to existing methods of mea
suring soil water diffusivity. Some disadvantages however must be recognized. The 
method is slow, being based on steady state flow. Also, the neglect of gravity will 
usually require the application of a negative pressure at the base of the sample, 
which implies that only the drier part of the <P(0) curve is measured. This reduces 
the method's range of applicability. 

Some advantages, on the other hand, make the new method attractive as com
pared to alternatives. The procedure is very simple and labour extensive: only one 
flux, initial and final weight, and oven-dry weight of the entire sample are to be 
measured. The method is non-destructive and can be applied to all sample sizes, 
since there are no limitations set by slicing, tensiometer installation etc. This ren
ders the procedure especially promising to measurements on thin crusts, thin im
peding layers, or on hard or brittle materials. As yet, however, it has not been ap
plied to such samples and still needs to be worked out further. Finally, if one is inter
ested in the integral characteristic <P(d), direct measurement of this curve sup
posedly gives much more accurate results than measurement of D{6) or k(6) and 
p(8) relations followed by mathematical integration. The methods to determine the 
latter characteristics are usually accurate only over a narrow range of 6. 
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Appendix. Derivation of F(a,B) 

Substitution of Eq. 15 in Eq. 14 gives upon integration: 

(Al) 
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with ß = ln(ß/(l + B)) + IIB 
The slope of the moisture profile follows from Eq. 9 as 

dx_ (x + B)2 

dz B{ 1 + B)L 

The integral in Eq. 12 is written as 

and solved by combining Eq. Al with Eq. A2 and subsequent integration. Division 
through A!(l + B) then gives Eq. 16 where 

L 1 
J k(z)dz = J k(x) (dz/dx)dx (A3) 
0 0 

(A4) 

and 

y' =ßB-a(l + B\nB- B/2) (A5) 
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