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Summary

The distribution of dry matter over shoots and roots of vegetative plants in depend-
ence on various environmental conditions and experimental interventions is dis-
cussed.

Since it is rather difficult to maintain conditions at a sufficiently constant level for
some time, functional equilibria are not likely to exist during prolonged periods of
time.

From the responses occurring after transferring plants from one condition to an-
other or after disturbance of existing relationships, it is demonstrated once more
that nutritional control, i.e. functional control, of the distribution is still the most
reasonable interpretation of the observed reaction patterns.

Introduction

The differences between roots and shoots, regarding their morphological, anatom-
ical and physiological features, are so large that they can be considered as two sys-
tems within the intact plant. Their functions are complementary, since the shoot
collects resources as a basis for energy supply and organic compounds whereas the
roots absorb mineral nutrients, nitrogen and water. Both have to meet the supply of
the whole plant; this makes the two organs dependent upon each other. In the intact
plant their functions are combined to an integrated system. We are as yet far from a
complete understanding of the functioning of this system. What we do know is that
shoots and roots are growing in strict harmony with one another and that the ratio
between them is highly predictable under a great variety of external conditions.

The relation between shoot and root growth can be demonstrated by plotting
shoot weight against root weight, both obtained by successive harvests during the
life cycle. In annuals with a determinate development various phases can be distin-
guished, each of which is recognizable by its own distinct distribution pattern. Dur-
ing the germination stage before emergence root growth is favoured; instanta-
neously after emergence shoot weight increases relatively fast, whereas during the
subsequent vegetative growth another, but constant, distribution is maintained for
some time. After flowering shoot growth dominates, particularly fruit growth; root
weight may even decrease during this phase.
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Research on the underlying mechanisms has concentrated on either the vegeta-
tive stage (Troughton, 1977) or on the generative phase (Michael, 1980). The pres-
ent paper deals with regulation of the distribution patterns during vegetative devel-
opment. The results obtained so far have shown that the distribution pattern de-
pends on the species or ecotype; within each species on the stage of development,
and within a particular stage on external conditions. Since the distribution patterns
reflect growth rates of the various parts, it is evident that these growth rates are un-
der mutual control. There has been and still is considerable disagreement on the un-
derlying physiological mechanisms (Troughton, 1977; Wareing, 1979; Lambers,
1979). This discussion centers around the following observations.

a) When growth is limited by an essential substance to be absorbed by the roots,
root growth is relatively favoured; when the limiting factor has to be absorbed by
the shoot, growth of above-ground parts is relatively favoured.

b) Disturbance of the shoot/root ratio that exists in any condition, either by root
cutting or by defoliation, leads to such changes in the growth pattern that the origi-
nal ratio is restored rapidly.

¢) Transfer of plants from one condition to another gives rise to changes in the dis-
tribution pattern so that the ratio characteristic of the new situation is reached in
due time.

The interpretation of these responses can be kept rather simple by assuming that
during undisturbed development roots and shoots are competing for carbohydrates
and minerals, and that the organ that will be most successful in obtaining its re-
quirements is the one that is nearest to the source. Reduction of overall carbohy-
drate supply (lower light intensity, defoliation) accentuates the competition, which
is more harmful to root growth than to shoot growth. Reduction of root-bound sup-
ply (nitrogen withholding, water shortage, root pruning) intensifies the competition
too, and strikes shoot growth more than root growth. Such reasoning is based on the
mutual influence of the various organs via nutrient supply. However, it is well
known that the shoot and the root are supplying each other with growth regulators
(hormones) as well. A discussion of the feedback mechanisms of the mutual control
should consider the possible mediation by both nutrients and hormones. However,
hormonal aspects are not treated at large in the present paper.

Experimental approach

The most relevant answers to the questions raised above may be expected from ex-
periments in which the time course of as many processes as possible has been anal-
ysed before and after a change in growing conditions or suigery. Unfortunately the
majority of experiments reported in literature is dealing with only a few aspects.
Hence one has to build up the evidence by fitting the pieces together. In the present
chapter a number of experiments will be presented which are considered to be rele-
vant to the problem.

A few aspects of plant performance
Plants respond to external conditions by variation in both size and number of build-
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ing elements. During development the number of established elements (leaves,
root axes) steadily increases. The duration of growth of each element is limited.
Whereas some elements grow out, other elements remain in a meristematic state
(axillary buds, part of the root primordia). Since these meristematic elements are
potentially able to grow, their presence makes a higher plant very flexible in its re-
sponses to improving conditions or to disturbance. In many cases growth rate is
strongly correlated with the outgrowth of new elements. Sometimes a growth re-
sponse cannot be obtained to the maximum extent before a sufficient number of
new leaves or axes is initiated.

Another rather striking phenomenon is that, being part of a whole, no single el-
ement reaches the size it could obtain without interference from similar elements of
the same individual (Loomis, 1953; Brouwer & Locher, 1965).

Defoliation and root pruning

The interpretation of the overall course of these responses is rather simple. Com-
plete or partial leaf excision leads to a drastic reduction of carbohydrate synthesis.
Thanks to the ample availability of water and minerals, existing leaf primordia are
able to grow vigorously, consuming the concomitant production of carbohydrates
and part of the reserves (Alberda, 1966). In the meanwhile root growth is checked
completely (Alberda, 1966; Ennik, 1976; Davidson & Milthorpe, 1966). One or
two days after clipping carbohydrate levels in the root become critical, with a con-
current reduction of mineral absorption and respiration (Davidson & Milthorpe,
1966). Afterwards the increasing green area takes care of a gradual recovery of the
original situation (Ennik, 1976). This behaviour supports — or at least it is not in-
compatible with — the hypothesis of a regulation of the growth rate of shoots and
roots via a combined competition for the shoot-born carbohydrates and the root-
born mineral supply (functional control).

When part of the roots is cut off, water and mineral absorption is hampered.
Since the transpiration is determined mainly by leaf area and stomatal width, par-
tial root pruning does not readily affect the amount of water transported through
the plant, but the waterpotential gradient will increase. Generally this will lead to a
reduced leaf extension rate and — as a consequence of the reduced use of carbohy-
drates — to an increase in the concentration of reserve carbohydrates. In this way
the increased relative growth rate of the roots left on the plants can be explained.
When nitrate absorption becomes the limiting factor, mutatis mutandis, a similar
reasoning can be followed.

Again the overall response fits rather well in the hypothesis of a functional bal-
ance.

Cutting down the number of crown roots of developing grass plants gave compa-
rable results (Brouwer & Kleinendorst, 1965). In Fig. 1 a comparison is made be-
tween the growth of tillers limited to the first two crown roots (R) and tillers grow-
ing undisturbed (A). At first shoot growth of the ‘2-root’ plants was a little faster,
presumably due to a reduced competition comparable with similar effects reported
by Kny (1894) during the germination of wheat. During subsequent growth (Fig. 1)
the undisturbed plants got far ahead of the treated plants, notwithstanding the com-
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Fig. 1. Top: relation between root fresh weight and shoot fresh weight of perennial ryegrass plants devel-
oping from a single tiller. A. Plants undisturbed, all roots left on the plant. R. Number of roots reduced
by cutting all developing roots before they had reached a length of 1 cm, with the exception of the two
first-appearing roots. Root excision was stopped at harvest time 2, 4 or 6 in different treatments. Num-
bers in the graphs indicate successive weekly harvests. Bottom: changes in the shoot/root ratios at the
treatments.

pensatory growth in the system with two roots only. After some time the latter root
system stopped growing completely. The shoot weight still increased, as wel as the
number of tillers (Brouwer & Kleinendorst, 1965), although at a low rate. After
termination of the cutting treatment a very rapid root growth reduced the abnor-
mally high shoot/root ratio to a normal level in 7-10 days, consuming the reserve
carbohydrates which had been accumulated during the treatment.

These treatments show clearly that enforced limitations of root growth give rise
to a gradually increasing reduction in shoot growth. During the treatment reserve
carbohydrates accumulate, which are used in root growth after alleviation of the
limitation. The accumulation of reserve carbohydrates in the leaves may reach very
high levels of up to 5070 % of the dry matter. The results also indicate that the
larger the content of reserves the faster the root growth.

Changes in external conditions

Nitrogen nutrition. The level of the nitrogen nutrition has been found to influence
strongly the ratio between shoot growth rate and root growth rate. In most cases re-
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ferred to in literature the responses are effects of amounts of nitrate or ammonium
supplied rather than of concentrations. Even at very low concentrations the absorp-
tion rate is rather high, especially in nutrient solution (Freysen, 1983; Nevoa &
Loomis, 1981). Only when sufficient precautions are taken to keep the quantities in
pace with plant development (Ingestadt, 1974, 1977, 1979 a, b, c; Corré, 1983) ex-
ponential growth can be maintained for some time. In such cases transitions from
one ratio to another can be obtained easily.

At low daily doses of NO;- dry matter percentage and soluble sugar or starch con-
centrations (as a percentage of dry weight) tend to be higher than at higher daily
doses (Alberda, 1965; Deinum, 1966). These responses fit very well in the concept
that competition for carbohydrates and nitrogenous compounds are regulating the
ratio between growth rates of shoots and roots. Transferring plants from a solution
without nitrate to a nitrate-containing nutrient solution leads to a rapid change from
a large share of the root in the total plant weight to a high shoot/root ratio. The re-
sponse is achieved by a very fast shoot growth (Spek, 1983) of short duration and a
concomitantly retarded root growth. The relatively large root system at the tran-
sition, supported by the high concentration of reserve carbohydrates (Louwerse,
1967), results in a rapid increase in nitrate and organic-N content (Spek, 1983) in
the shoots, which favours leaf appearance, leaf elongation and photosynthesis to a
level well above that in the plus nitrate control plants (overshooting).

Varying the nitrogen supply from a high level to zero results in a non-equilibrium
situation. The distribution pattern does not change much as long as free nitrate is
available in the tissue. However, when the internal nitrate content approaches
zero, the redistribution of organic-N compounds is going to determine growth
(Spek, 1983). In that condition root growth gradually takes the lead over shoot
growth, as expected on the basis of the considerations put forward in a former sec-
tion. In the meanwhile dry matter content and soluble sugar content are increasing
(Brouwer et al., 1963; Spek, 1980, 1983). Ultimately, when all the nitrogen com-
pounds are redistributed, growth activity of the meristems becomes very low. Dur-
ing prolonged N starvation not only growth rate but also responsiveness to renewed
supply of nitrogen nutrition decreases (Brouwer, 1967), indicating that the state of
the meristems in the growing point is important for the reaction of plants to chang-
ing conditions. This might be the reason why plants from infertile habitats are less
responsive to high fertilisation levels (Chapin, 1980). In our experiments the re-
sponse to improved nitrogen nutrition in Plantago lanceolata, which readily ger.er-
ates new leaves and axillary sprouts, was approximately the same as in maize, and
much faster than the response of the slowly developing Carex flacca (Fig. 2). In
maize, well supplied with nitrate, cooling of the shoot meristem strongly reduced
leaf growth and leaf appearance and shifted the dry matter distribution in favour of
root growth.

It is clear this general picture that data as obtained by Deinum (1966), in experi-
ments with a combination of light levels and nitrogen nutrition levels are at least
qualitatively understood, as far as the C-N relation of the plant is concerned.

To come from this general scheme to the actual distribution of dry matter over
the various plant parts, the central role of transpiring, photosynthesizing, importing
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Fig. 2. Relation between root fresh weight and shoot fresh weight in Zea mays (Zm), Plantago lanceolata
(P1) and Carex flacca (Cf) during development (increasing weight indicates subsequent harvests). Treat-
ments: @ ® continuously well supplied with nitrate; © - - - © nutrient solution without nitrate;
0 —— O transferred from low to high nitrate concentration, at the stages indicated by ‘arrow’ > N.
For part of the maize plants well supplied with nitrate the growing point of shoots was cooled to 14 °C
from the stage indicated by TGP (temperature growing point) 14° ‘arrow’ onwards.

and exporting full-grown leaves has to be emphasized.

Such a leaf imports nitrate and amino-acids via the xylem tracks. The nitrate
transported to the leaf in the transpiration stream is accumulated in a vacuolar pool.
In a steady state condition the NO,~ pool will have a more or less constant concen-
tration since the reduction to amino acids will equal the amount that is imported.
The amino acids produced are mixing in a pool with amino acids resulting from the
turn-over of proteins. In a steady state the net gain in amino acids will be exported
in the phloem to the sink regions in both the shoot and the root. How much flows to
each of them depends on the local rate of unloading (growth conditions at the sinks)
and distance (resistance).

Some sinks, such as growing regions that are not transpiring, depend completely
on the more or less ideal composition of the phloem sap for their initial supply.
Other sinks, such as the roots, have the opportunity to absorb additional nutrients
(NO;") from their environment.

Based on the high protein content of leaf tissue it may be assumed that at favou-
rable N supply the phloem sap is very suitable for leaf growth, and due to priority
(distance and structure of the pathway) a great part of it flows to leaf primordia. If
the phloem sap continues to be of good quality and high quantity, the meristematic
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regions of the leaves may enlarge and relative growth rates of the meristematic re-
gions remaining high, absolute growth rates are increasing (Kemp, 1981). The
phloem sap, having a suitable C-N ratio for leaf growth, will not be unsuitable for
root growth, but under these conditions roots will get very little of the sap, due to
the priority of the leaf primordia mentioned before.

As to the level of nitrogenous compounds in the various compartments, literature
indicates a lower NO;~ concentration at higher light intensities. The organic-N con-
tent is less dependent on the light intensity, at least when considered on the basis of
structural dry weight. The concentrations in the roots are only about one half to
two-thirds of those in the shoots. Differences may occur between species and within
a species between stages of development.

Reduction of the nitrate supply to the roots leads to a rapid exhaustion of the in-
ternal NO; concentration in roots and leaves. This means that the net gain in amino
acids gradually decreases in both roots and shoots. The loading of the phloem with
amino acids decreases and the C/N ratio increases. In the extreme case when the ni-
trate supply to the leaves is checked completely, phloem loading with amino acids
depends on the amino acids released from the protein turn-over. In fact, a kind of
competition for amino acids may be assumed between the phloem loading process
and the rebuilding of protein. The reduced cytokinin supply to the transpiring leav-
es as a consequence of reduced cytokinin production in nitrogen-starving roots
{(Wagner & Michael, 1971) diminishes the rebuilding capacity (protein synthesis)
and leads to exhaustion of nitrogenous compounds in the leaves (senescence). Ku-
layeva (1969) showed that lack of cytokinin is involved since local application re-
sulted in green spots on leaves of N starved maize plants, but according to Leopold
(1961) auxin might be involved in this self-destruction (‘Erschopfungstod’) as well.
It is quite logical that at the end of the starvation process proteins are still involved
in the phloem loading and transport. The transport will slow down, but as long as
there is still transport activity the transported material will contain some N com-
pounds besides the carbohydrates.

Changes that reduce root growth

At root temperatures of 10 °C and of 35 °C root growth of bean plants ceased al-
most completely (Fig. 3). Dependent on the effect of temperature on root function
(Brouwer & Hoogland, 1964) shoot growth rate is initially increased (at 35 °C) or
decreased (at 10 °C), but rather soon shoot growth stops as the non-growing roots
stop functioning. Ultimately the leaves are senescing and the plants die.

Cooling the roots of maize plants from 20 °C to 10 °C or 15 °C results in an imme-
diate reduction of leaf extension (Grobbelaar, 1963). During the first and second
day following the beginning of the treatment dry matter content and concentration
of soluble carbohydrates in the shoots rise rapidly, coinciding with a strong reduc-
tion of the investment of dry matter in the roots. Repeating this experiment a num-
ber of times revealed that after one day of treatment the total dry weight of the
shoots was higher in the treated plants than in the control plants. Heating of the
root system tot 40 °C, which also stopped root growth, was even more effective and
for a longer time (3 days).
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Fig. 3. The relation between root fresh weight and leaf fresh weight of developing bean plants grown on
Hoagland nutrient solution. Air temperature 20-24 °C. Light intensity 80 W m-2, during 16 h per day.
Plants were harvested twice a week. Numbers indicate successive harvests. Treatments: Black dots: root
zone temperature 25 °C throughout; Circles: root zone temperature changed to 35 °C at harvest 2 (ar-
row); Triangles: root zone temperature changed tot 10 °C at harvest 2 (arrow); Squares: root zone tem-
perature 25 °C throughout; shoot growing-points appearing after unfolding of the primary leaves con-
stantly removed.

Waterlogging of the soil is known to stop root growth of many plants. Shoot
growth responds to waterlogging in almost the same way as to root-cooling by a re-
duced extension growth and an accumulation of dry matter (Brouwer, 1977;
Trought & Drew, 1980). Although total dry matter production during prolonged
treatment follows leaf area rather closely, during the first and second day the dry
weight of the shoots of the treated plants tends to be higher than that of the control
plants, indicating again that in the well-aerated situation shoots and roots are com-
peting for carbohydrates.

Changes that reduced leaf growth

Reducing growth capacity of the shoot by excision of growing points leads to a shift
in the shoot/root ratio by continuing root growth (Fig. 3, squares). This response
can go on for a prolonged time leading to enormous root systems on a relatively
small shoot mass (cf. Humphries, 1958).

Cooling the growing region of the leaves reduces leaf elongation in maize instan-
taneously (Brouwer et al., 1973; Kleinendorst & Brouwer, 1970). At the same time
carbohydrates are accumulating, whereas root growth relative to shoot growth is
promoted. The low temperature of the leaf bases (cooling of the growing point of
maize includes cooling of the leaf sheaths surrounding it) might affect translocation.
However, initially the overall transport of dry matter to the roots exceeds that of
the controls. This means that root growth profits from carbohydrates not being used
in shoot growth, indicating that at the very moment of the start of the treatment
root growth and shoot growth were competing for carbohydrates (Fig. 2).

Split-root systems
Thanks to the presence of a great number of growing points root systems are very
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Fig. 4. Shoot and root growth of maize plants pre-grown on Hoagland solution. During the pre-treat-
ment all roots except 4 crown roots of the first whorl were removed. At the beginning of the experiment
the plants were transferred to a split-root set-up; each of two vessels contained 2 roots and either a com-
plete Hoagland nutrient solution (+N) or a Hoagland solution in which N was replaced by Cl- (-N). Har-
vests were made at zero time and subsequently 3, 6 and 9 days later.

flexible in their response to the local environment. It has been shown that local vari-
ations in soil water content result in root growth at places where the combination of
oxygen and water availability is optimal (El Nadi et al., 1969; Scott Russell, 1977).
By varying the relative gas exchange rate for two ‘halves’ of a crown root system
of maize the ratio of the growth rates can be changed at will (Brouwer, 1981). The
data show that one half of the root system is able to sustain normal shoot growth by
compensatory growth. Even better known are the effects of local concentrations on
root growth in the most fertile regions of the soil (Gliemeroth, 1955; Drew, 1975).
These observations show that various parts of the root system are attracting carbo-
hydrates from the shoots in accordance with the favourability of their environment.
This type of response and the readiness by which it occurs, make a set-up with split-
root systems very suitable for the study of shoot-root relationships. Good examples
are the early experiments of Gile & Carrero (1917) and of Goedewaagen (1955).
The latter showed that phosphorus applied at a limiting level to one half of the root
environment of oat plants stimulated root growth in that part considerably, at the
expense of root growth in the unfertilized half of the container. Since under these
conditions above-ground development and total root growth were the same, these
experiments indicate that, notwithstanding the differences in distribution, the rela-
tive investment of dry matter in the root system was not affected. At higher P dress-
ings the differences in root development between the fertilized and the unfertilized
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compartment gradually disappeared. It is tempting to assume that because of the
higher phosphorus content of the above-ground parts, the phloem sap provides suf-
ficient phosphorus to meet the requirement of the roots in the unfertilized compart-
ment, so that these roots could compete with the roots that had an additional supply
from the medium.

These results were confirmed in experiments in water culture by Brouwer &
Loen (1962), using local applications of nitrate. De Jager (1979; 1982) and De Ja-
ger & Posno (1980) extended this work, using local applications of all macronu-
trients (K, Mg, Ca, SO,, H,PO, or NO;). They supplied one-fourth of the roots of
maize plants with one of these nutrients whereas the other 3/4 part did not receive
this particular nutrient. This resulted in a local increase of both growth rate and ab-
sorption rate (cf. Goedewaagen, 1955; Gile & Carrero, 1917) so that shoot growth
rate was comparable with that of the fully supplied plant. During the first days the
enhanced growth of the supplied part of the root system took place at the cost of the
growth of the root part that was not supplied with one of the nutrient elements. Af-
ter some days, however, the roots that had no external supply started to grow faster
because of the internal supply of the nutrient by the phloem stream. This explana-
tion is the more evident since this recovery of the growth of the non-supplied roots
did not occur when calcium was locally applied.

All these results are in agreement with the assumption that in plants with a fast
growing shoot a limited amount of carbohydrates is available for root growth. The
partitioning within the root systems seems to be governed by the favourability of lo-
cal conditions and can be changed at will (Brouwer, 1981).

After reaching the equilibrium situation in all these cases the ratio shoot weight
over total root weight fits in a very narrow range, indicating that now some other
factor is determining the distribution over both organs. This factor might be water.

The relevance of the water balance

For the water status of a plant it is very important that consumption (transpiration
and water tied up in the tissues) and supply are tuned in to each other. Yet there are
continuous disturbances of the water balance. With optimal water supply during the
daily light period transpiration increases and decreases in proportion to evapora-
tion. Concomitantly plant water potential accompanied by changes in turgor poten-
tial decreases and increases. Since leaf extension depends directly on the turgor of
the elongating cells, daily patterns of leaf elongation rates are to be found that fol-
low evaporative conditions rather closely.

These patterns, observed in a greenhouse in plants grown in water culture, are
accentuated in soil culture even with optimal water supply, and they are intensified
when the water supply is reduced. As there are differences between species in the
extent of osmotic adjustment (Jones & Turner, 1978; Bradford & Hsiao, 1982),
there will be a quantitatieve difference in response depending on the species used.

However we may conclude that at optimalization of the nutrient supply the water
supply ultimately determines the amount of roots per gram shoot necessary to
maintain maximum growth rate (Huck et al., 1983; van Noordwijk, 1983).
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Concluding remarks

Validity of the interpretations

The phenomena as described above are common knowledge, but the question may
be raised and has been raised (Wareing, 1979; Lambers, 1979), whether we really
understand what is going on in physiological terms. The answer will be ‘no’, ‘insuffi-
ciently’ or ‘almost’, depending on the character, the discipline, and the interest of
the investigator. A number of important peculiarities of higher plants can be cred-
ited for the existing divergence of opinion.

In the first place there is the discrepancy between growth in dry matter (on which
most of the distribution diagrams are based) and growth in exposed area (which is
most likely the determining item with regard to the functioning of plant parts, at
least when the exchange with the environment is considered) (Brouwer et al. 1973).

In the second place it is often very difficult to distinguish between structural ma-
terial and non-structural ‘reserves’. ‘Reserves’ of carbohydrates, measured as solu-
ble carbohydrates, may yet be functional in an osmotic way. Similarly, the presence
of starch in a root tip may have a function in its geotropic reaction. On the other
hand it is quite clear that many constraints of growth lead to an accumulation of car-
bon compounds (van Dobben, 1961; Grobbelaar, 1963; Brouwen & Hoogland,
1962; Brouwer et al., 1963). A comparable question arises concerning the nitroge-
nous compounds. Besides the uncertainty whether amino acids and soluble proteins
are structural units or reserves, a large variation in internal nitrate concentration
will be easily considered to be a variation in N reserves, but it might still be func-
tional in cell enlargement (van de Dijk, 1982) or only so at low light intensities (Al-
berda, 1965; Deinum, 1966). It has been demonstrated sufficiently that nitrate ac-
cumulates in cells in cases where a poor energy supply acts as a constraint of growth
(low light intensity, high temperatures).

A third characteristic of importance for the time course of the reaction upon
changing conditions or upon disturbance of an existing distribution is the readiness
of the plants to respond. After a heavy cut regrowth is rather slow as a consequence
of reduction in number and/or quality of axillary buds. Heavy nitrogen starvation in
maize postpones the response to a more favourable nitrogen supply (Brouwer,
1967). Species from naturally infertile habitats may even lack the usual responsive-
ness to fertilization (Chapin, 1980).

The complications above mentioned (and there are certainly many more)
(Throughton, 1977) may cause apparent contradictions with regard to the evidence
of a regulatory mechanism based on nutritional factors. Some of these contradic-
tions can be explained by theories based on the actions of hormones, but as yet the
available knowlegde on hormone balances is of more use qualitatively than quanti-
tatively.

Use of simulation models
How far we have progressed with our understanding of growth responses can be
demonstrated by incorporating existing knowledge in simulation models.

A number of them are mimicking plant behaviour rather well (Reynolds &
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Thornley, 1982; de Wit et al., 1970; Seligman et al., 1975; Sinclair & de Wit, 1975;
1976). All these models have in common that they are using many causal relation-
ships. However, a number of aspects are still suppositions based on empirical data
only. These aspects have a bearing on the morphology of the plants (Brouwer & de
Wit, 1969), and the transport system within the plant (de Wit et al., 1970; Seligman
et al., 1975; Thornley, 1977). Obviously there are gaps in our knowledge regarding
these aspects.

The introduction of empirical data is often necessary to keep the model plant in
pace with the results of experiments. It is particularly difficult to reach and maintain
equilibrium situations, e.g. with regard to C/N ratios. Then these ratios have to be
prescribed to the model (Reynolds & Thornley, 1982). Obviously assumed feed-
back mechanisms fail to work adequately. This raises the question whether equilib-
rium situations are so common as indicated by experiments as shown in the former
sections. Throughton (1977) stated that ‘if there is a mechanism leading to the
maintenance of a fixed C/N ratio it is not perfect’. In many cases such imperfect reg-
ulations have been ascribed to ontogenetic drift (Troughton, 1977) but it might just
be that seemingly imperfect regulations can teach us a lot more of the physiology of
plant performance than equilibrium situations if there are any.

Non-equilibrium situations are normal in both the field situation and most labo-
ratory experiments.
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