The effect of pH on copper toxicity to hydroponically grown maize

Th. M. Lexmond and P. D. J. van der Vorm

Department of Soil Science and Plant Nutrition, Agricultural University, Wageningen, the Netherlands

Accepted: 16 July 1981

Key-words: copper toxicity, cupric ion activity, hydrogen ion activity, Zea mays, mineral composition.

Summary

The effect of pH on copper toxicity to maize was studied in three solution culture experiments of different design. Raising the pH intensified the toxic effect of Cu, which presented itself first of all by a reduction in root growth and by a reduction in uptake of phosphate and iron. This result was explained from an enhanced association of Cu²⁺ ions with physiologically essential sites in the roots, when competition from protons was lowered.

Introduction

The toxic effect of copper to soil-grown plants is alleviated by raising the pH and, consequently, liming is usually considered the corrective treatment to be applied to Cu-polluted soils. It has been suggested that an increase in pH adds to the soil's power to bind Cu, thus reducing the concentration in solution of the Cu²⁺ ion, which is generally assumed to be the biologically active form of Cu. The development of Cu²⁺ specific electrodes carries with it the possibility to check the correctness of this hypothesis. Cavallaro & McBride (1980), McBride & Blasiak (1979) and Lexmond (1980) have confirmed the decrease in Cu²⁺ ion activity with increasing soil pH. Lexmond (1980), however, introduced a new aspect by showing that the decrease in Cu²⁺ ion activity exceeded the reduction in Cu toxicity to maize. Apparently, Cu²⁺ ions in solution became more toxic at higher pH.

Hunter (1975) studied the effect of pH on Cu toxicity to maize roots by exposing the roots for 1 hour to nutrient solutions containing 126 μ M Cu at varying pH and measuring subsequent growth in a water-saturated atmosphere during 24 hours. Increasing the pH of the treatment solution enhanced Cu uptake by the roots and decreased subsequent growth.

The experiments described here were designed to investigate a possible ef-

fect of pH on Cu toxicity to maize under conditions of a prolonged exposure to much lower concentrations, which are more likely to prevail in Cu-polluted soils.

Materials and methods

All experiments were done with Zea mays cv. Capella, also known as Caldera 535. Seeds were planted to quartz sand moistened with demineralized water and allowed to germinate in a greenhouse. Seedlings were selected for uniformity from at least twice the number required, before they were transferred to the nutrient solutions.

Experiment 1. Seven to eight days after sowing, seedlings were transplanted and grown for another ten days in 60-litre PVC containers with nutrient solutions of different Cu concentration and pH, with either NO₃ or NH₄ as the source of nitrogen. The composition of the solutions is given in Table 1. The solutions were continuously circulated by an electric waterpump and renewed every fourth day. pH was controlled by automatic titration with KOH or HNO₃ as required. Full details of the equipment used were given by Breteler (1973). Copper was added as a solution of CuSO₄ and measured at frequent intervals to check if the intended concentration levels were maintained. No attempt was made to inhibit nitrification in the NH₄ solutions. The experiment consisted of 4 trials. In each trial 2 treatments were compared, viz. a low (0.16 μ M) and a high (3.1 μ M) Cu concentration, using 40 seedlings per treatment. pH and N source varied between trials. The experiment was done in a growth cabinet kept at 20 °C (night and day), a relative humidity of ca. 80 %, a daylength of 16 h and a light intensity of 20 klx.

Experiment 2. Eight days after sowing, seedlings were transplanted and grown for sixteen days in polyethylene-lined, 6-litre pots which were continuously flushed with aerated nutrient solution at a rate of 20 litres per day. The pots and nutrient solution reservoirs were arranged on a ca. 40 m² rotating disk in an unconditioned greenhouse. The disk made 10 revolutions per hour. The

Table 1. Composition of the nutrient solutions used in Exp. 1.

NO ₃ solution	NH ₄ solution		
2.50 mM Ca(NO ₃) ₂	1.25 mM (NH ₄) ₂ SO ₄		
2.50 mM KNO ₃	1.67 m <i>M</i> KCl		
$0.25 \text{ m} M \text{ KH}_2 PO_4$	0 25 mM KH ₂ PO ₄		
$1.00 \text{ m} M \text{ MgSO}_4$	1.00 mM MgSO ₄		
5	1.67 m <i>M</i> CaCl ₂		

 $0.10 \text{ m}M \text{ Na}_2 \text{SiO}_3$; 0.20 mM HCl; $1 \mu M \text{ MnSO}_4$; $1 \mu M \text{ znCl}_2$; $10 \mu M \text{ H}_3 \text{BO}_3$; $0.1 \mu M \text{ (NH}_4)_6 \text{ Mo}_7 \text{O}_{24}$. Iron was supplied daily as FeSO₄ at a level of $10 \mu M$.

pots were placed along the edge of the disk to ensure uniform climatological conditions for all plants. The experiment comprised 9 treatments, 3 Cu and 3 pH levels in a factorial design, each in 3 replications carrying 7 plants. Copper was supplied at levels of 0.16, 1.6 and 3.1 μ M. pH was adjusted to 4.0, 4.8 and 5.8 by adding HNO₃ or KOH to the NO₃ solution used in Exp. 1. Moreover, (NH₄)₂SO₄ was added at rates of 5, 1 and 0 % of total N in order to maintain pH at the levels aimed at. The effectiveness of this method of pH control was checked by measuring pH every afternoon.

Experiment 3. Four days after sowing seedlings were transplanted and grown for another seven to ten days in polyethylene lined, 6-litre pots, continuously flushed with aerated nutrient solution at a rate of 30 litres per day. Each pot carried eighteen seedlings. The pots were arranged as in Exp. 2. Copper was varied at nine levels within each trial and there were no replications. pH was varied between trials by adding KOH or HCl to the NO₃ solution described in Table 1, but used at half strength and slightly modified. Metasilicate in combination with HCl was omitted in this experiment, KH_2PO_4 was supplied in a concentration of 50 μ M only and NaCl was included at the level of 50 μ M. Iron was not supplied as it was felt that the seed reserves would suffice in these short lasting trials with a low level of dry matter production. In this experiment seedlings were accommodated in the perforated covers in such a position that the seed was on top of the cover, thus preventing adventitious roots from growing into the solution. In this way the response of the primary roots was studied without interference of adventitious root growth.

At the termination of each experiment plants were separated into shoots (portion above the root crown), and roots. The seeds were discarded. Roots were washed thoroughly with demineralized water. Plant material was dried, weighed, ground if necessary, digested and analysed by the routine methods in use in the Department (Slangen & Hoogendijk, 1970). In Exp. 1 four plants per treatment were chosen at random for the determination of the root surface area. For this purpose roots were counted and their average length and diameter measured. The surface area was calculated under the assumption that roots behave like ideal cylinders.

Results

Experiment 1. The high Cu treatment brought about visible symptoms at pH 4.7, but not at pH 4.0, irrespective of the N source. Root morphology was modified and the leaves showed a chlorosis which resembled iron deficiency. Results of yield determinations, root measurements and chemical analyses have been listed in Table 2. Copper had no effect on root and shoot yield, but root surface area was reduced by 3.1 μ M Cu at pH 4.7. Both number and length of secondary and , more in particular, tertiary roots were reduced. The same treatment also lowered the PO₄ content of roots and shoots and the Fe content of the shoots, but had little effect on the levels of other nutrients (data not

TH M LEXMOND AND P D I VAN DER VORM

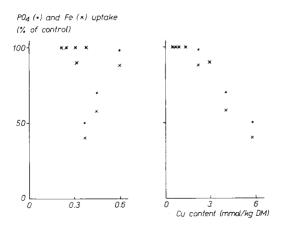


Fig. 1. Copper-induced reduction in PO₄ and Fe accumulation by maize shoots in relation to the Cu content of shoots (left) and roots (right). Experiment 1.

shown). The Cu content of both roots and shoots was increased by an increase in Cu supply, the effect on root Cu being more pronounced. The size of the reduction in PO₄ and Fe accumulation by the shoots appeared to be related to root Cu only (Fig. 1). The effects of Cu on PO₄ and Fe uptake and on the root Cu content were somewhat larger in the NO₃ solutions than in the NH₄ solutions, but the effect of N source was small in comparison to the effect of pH.

When carrying out this experiment, several disadvantages were recognized in the technique chosen. The limited availability of titration sets prohibited replication of the trials. The frequent renewal did not prevent the accumulation of organic compounds in the nutrient solutions. This was detected in the determination of Cu in the nutrient solution, since layer separation following the liquid/liquid extraction became more difficult with increasing age of the solution. Organic compounds may complex Cu and thus reduce Cu²⁺ ion activity.

Table 2. Effects of increased Cu supply on growth and chemical composition of shoots and roots of maize grown at varying pH and N source (Exp. 1).

Treatment			Yield (mg DM/plant) Root surface			Content (mmol/kg DM)					
N source	рН	Cu (μ M)	shoot root	root	area (cm ² /plant)	PO ₄		Fe		Cu	
						shoot	root	shoot	root	shoot	root
	4.0	0.16	264	161	236 ± 50	657	367	2.13	108	0.22	0.52
	4.0	3.1	272	167	232 ± 77	576	377	1.86	155	0.32	2.94
NO_3	4.7	0.16	357	203	245 ± 100	527	419	2.33	205	0.25	1.33
	4.7	3.1	334	209	103 ± 19	284	215	1.00	184	0.37	5.76
NH ₄	4.0	0.16	214	164	319 ± 26	737	478	2.06	103	0.31	0.68
	4.0	3.1	199	159	268 ± 71	776	474	1.95	127	0.60	2.20
	4.7	0.16	301	177	349 ± 78	683	432	2.61	99	0.38	0.91
		3.1	305	178	154 ± 84	469	256	1.50	81	0.45	4.00

220

Another problem was the disappearance of Cu from solution at higher pH levels tested (5.4 and 6.1), possibly as the result of coprecipitation with added Fe. Exp. 2 was designed to overcome these difficulties. Continuous renewal of the culture solution checks the build up of organic compounds which may affect Cu²⁺ ion activity and a higher solution/plant ratio reduces the changes in Cu concentration as the result of uptake and coprecipitation with Fe.

Experiment 2. Compared to Exp. 1 the technique used in this experiment has the inherent disadvantage of a less rigid control of pH, but measurements showed the actual deviations to be limited. With 5 % NH₄-N in the nutrient solution pH remained 4.0, but with 1 % NH₄-N it decreased slightly to 4.7 at all Cu levels. The 100 % NO₃-N solution showed the largest deviations: at 0.16 μ M Cu pH rose steadily to 6.1 and at 3.1 μ M Cu it fell to 5.6 after the plants had become chlorotic. At the intermediate Cu level pH remained essentially constant at 5.8.

Plates 1 and 2 show the plants on the day before harvest. Root morphology was affected by 3.1 μM Cu at the higher pH levels and by 1.6 μM Cu at the highest pH only. Chlorosis was severe in plants grown at the highest pH when supplied with 3.1 μM Cu and somewhat milder at 1.6 μM Cu. Plants grown at the intermediate pH level with 3.1 μM Cu showed incipient chlorosis. At low pH no visible effects of Cu toxicity became manifest.

Table 3. Main effects of Cu on yield and element accumulation by maize (Exp. 2). Figures represent the mean values for the two levels of increased Cu supply.

	% of control				
рН	4.0	4.7	5.6 - 6.1		
% NH ₄ -N	5	1	0		
Shoot					
yield	105.8	98.7	75.5		
Norg	106.9	92.7	64.7		
N _{org} NO ₃ -N	102.0	98.0	62.8		
PO ₄	102.3	85.3	46.2		
K	101.8	94.5	66.2		
Ca	106.7	106.5	87.9		
Mg	104.5	106.0	79.2		
Cl	109.8	126.0	89.2		
SO_4	109.3	121.6	108.0		
Fe	97.8	75.6	48.9		
Cu	233	189	100.7		
Root					
yield	103.5	89.2	82.1		
PO ₄	126.4	87.7	56,5		
Fe	126.3	75.1	43.7		
Cu	577	658	475		

TH, M. LEXMOND AND P. D. J. VAN DER VORM

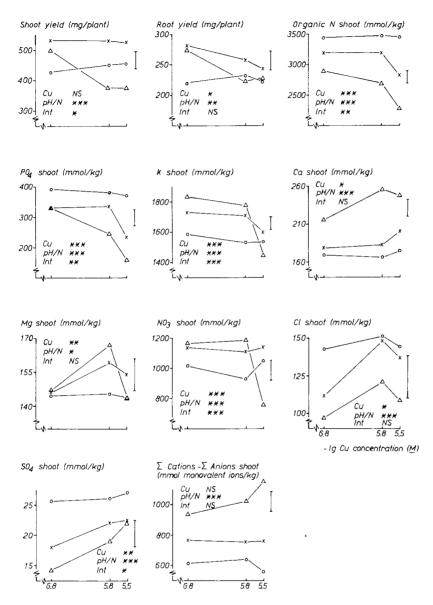
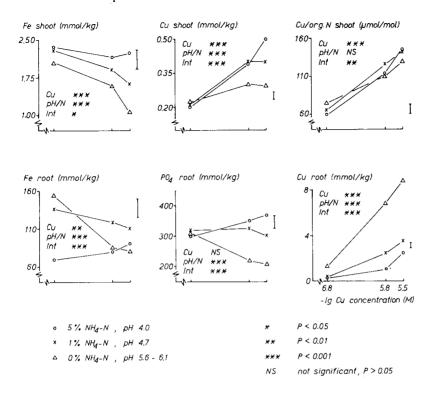



Fig. 2. Yield and composition of maize shoots and roots as affected by increasing Cu concentrations at three pH levels which were maintained by inclusion of varying quantities of NH₄-N in the nutrient solution. Experiment 2.

Asterisks indicate the degree of significance in the effects of copper (Cu), pH and N source (pH/N) and their interaction (Int). Bars indicate the least significant difference (P < 0.05) between individual treat-(Continued on opposite page.)

Data on yield and chemical composition are presented in Fig. 2, although the main effects of Cu are read more conveniently from Table 3. At pH 4.0 Cu did not affect yield or element accumulation in the shoots, except for an expected increase in Cu uptake. At pH 5.6-6.1 Cu reduced shoot yield and markedly inhibited uptake of PO₄ and Fe. Somewhat less pronounced, but still substantial, were the reduction in N and K uptake and the inhibition of the synthesis of organic nitrogen compounds. The uptake of Ca, Mg and Cl was affected less than the dry matter production. The PO₄, Fe, K and org. N contents of the shoot were decreased by 3.1 μ M Cu at pH 4.7, but 1.6 μ M Cu apparently had no effect.

Root yield was reduced by 3.1 μ M at the higher pH levels and by 1.6 μ M Cu at the highest pH level. Roots were analysed for PO₄, Fe and Cu only. At the highest pH level Cu depressed the PO₄ and Fe contents. At low pH there was a tendency for the PO₄ content of the roots to increase with increasing Cu.

The course of the shoot Cu content was remarkable: whereas it rose continuously at low pH, it flattened at the higher pH levels. The Cu/N ratio however increased continuously with increasing Cu supply (Fig. 2). The rate of increase in the Cu/N ratio was higher for plants grown in NH₄-containing nutrient solutions than for plants grown without NH₄. The linear regression of Cu/N (µmol/mol) on lg Cu in solution (M) yielded the following regression

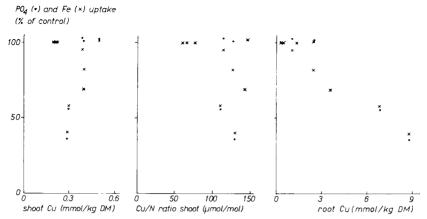


Fig. 3. Copper-induced reduction in PO₄ and Fe accumulation by maize shoots in relation to the Cu content of shoots (left) and roots (right) and to the Cu/N ratio of shoots (middle). Experiment 2.

coefficients and 95 % confidence intervals: 39.1 \pm 6.1 for no NH₄, 59.3 \pm 2.3 for 1 % NH₄-N and 62.7 \pm 4.7 for 5 % NH₄-N.

The Cu content of the roots behaved quite differently. At all Cu levels root Cu increased with increasing pH. As is shown in Fig. 3 the effect of Cu on PO₄ and Fe uptake seemed to be related to root Cu rather than to shoot Cu or to the Cu/N ratio in the shoots.

Experiment 3. The effect of Cu on root growth, which was clearly visible in Exp. 1 and 2, was not or only slightly reflected in root yield (Table 2, Fig. 2). Root surface area appeared to be a more sensitive parameter (Table 2), but unfortunately this parameter is not easily quantified. The growth of coarse adventitious roots, arising from the root crown, remained relatively unaffected compared with the growth of secondary and tertiary roots. These adventitious roots do not contribute much to root surface area, but they do so to root weight. It was thought, therefore, that prevention of adventitious root growth might allow use of the reduction in root yield as a sensitive and easily measurable parameter of Cu toxicity.

Fig. 4 shows the results of this experiment. Copper induced a very marked reduction in the root/shoot ratio, but the concentration at which this effect became apparent was strongly dependent on pH. The decrease in the root/shoot ratio resulted mainly from a decrease in root yield (Plate 2b), although there seemed to be a slight increase in shoot yield as well. Treatments bringing about less than 10 % change in the root/shoot ratio when compared to the treatment not receiving copper, resulted in a shoot yield of $102.2 \pm 4.0 \%$ of the control values. Treatments giving a 10 to 50 % reduction in root/shoot ratio had a shoot yield of $108.0 \pm 4.4 \%$. When treatments reduced the root/shoot ratio by more than 50 %, shoot yield was still at the high level of $98.1 \pm 6.3 \%$. These results leave no doubt that the toxic effect of Cu manifested itself

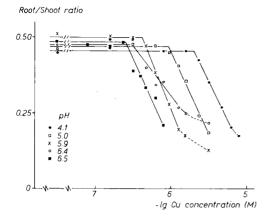


Fig. 4. Effect of Cu on the root/shoot ratio of maize at different pH levels. Experiment 3.

primarily by a reduction in root growth. The slope of the descending part of the curves was somewhat variable. This probably resulted from differences in the duration of the trials, as the trial at pH 6.4 lasted for 7 days only, whereas the other trials lasted for 9 or 10 days. Consequently, the shoot dry matter production at pH 6.4 was some 35 % lower than in the other trials (59 against 91 mg DM/plant). Copper also affected PO_4 uptake (Table 4). In some cases of severe toxicity the midribs on the underside of the leaves became purple (Plate 2b). Copper did not hasten the occurrence of Fe-deficiency chlorosis. When

Table 4. Effect of Cu on the PO₄ accumulation (μ mol/plant) by maize shoots grown in nutrient solutions of varying pH (Exp. 3).

Cu (μM)	pH 4.1	pH 5.0	pH 5.9	pH 6.4	pH 6.5
_	26.3	31.8	32.6	26.0	30.4
0.08					31.9
0.16	27.7	28.9	34.0	23.8	32.6
0.24					30.4
0.31		28.8	29.6	22.4	32.3
0.39					32.8
0.47			30.6	24.9	30.5
0.63		31.1	28.8	18.9	27.3
0.79	25.5			19.4	25.6
0.94		30.7	21.1		
1.3		31.9	17.8	14.2	
1.6	25.4	29.0	16.8	11.4	
2.4	23.7	24.1			
3.1	20.7*	17.3	15.4	10.8	
4.7	17.1				
6.3	15.1				
7.9	15.2				

^{*} Italicized values refer to treatments that reduced the root/shoot ratio by more than 10 %.

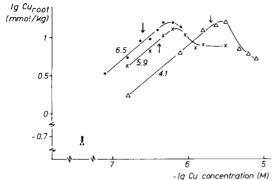
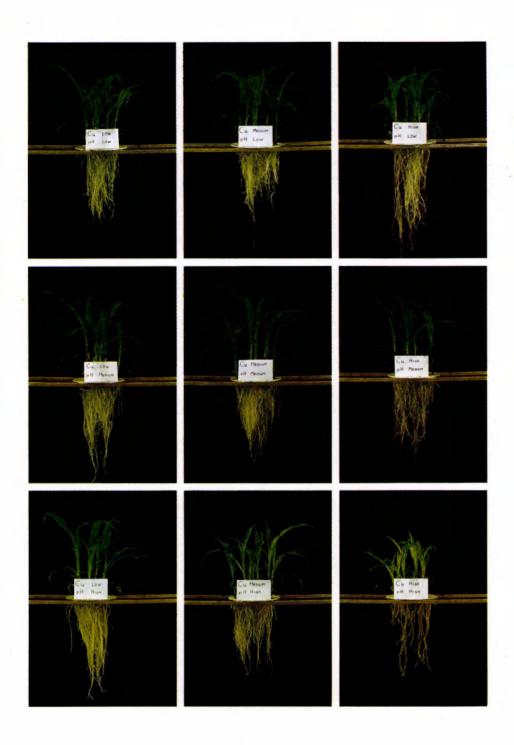


Fig. 5. Copper content of maize roots as a function of the Cu concentration at three pH levels. Experiment 3. Arrows correspond to the Cu concentration at which the root/shoot ratio begins to decrease (cf. Fig. 4).

plants were maintained on the solutions for some extra time, chlorosis developed first of all in the low Cu treatments.

The Cu content of the shoots was always higher in plants supplied with Cu than in plants grown without, but there was no clear relationship between shoot Cu and the level of Cu supply. The values averaged over the five experiments were 0.15 ± 0.04 mmol Cu/kg DM for the no Cu treatment and 0.38 ± 0.06 for all treatments receiving Cu.

The Cu content of the roots did not show a continuous increase with increasing Cu in solution as in Exp. 2, but rather followed a course in which three phases could be distinguished. As illustrated by Fig. 5, the rapid initial increase levelled off beyond the point where the root/shoot ratio was reduced and eventually turned into a decrease in treatments that were severly toxic.


Discussion

Copper toxicity to maize

The immediate effect of an increased supply of Cu is an inhibition of root growth (Exp. 3). The growth of secondary and tertiary roots appears to be more sensitive to excess Cu than the growth of coarse adventitious roots. Copper toxicity, therefore, results in a coarser root system with a reduced surface area, but not necessarily with a reduced weight. The use of dry matter production as the measure of root growth can thus obscure an inhibition of growth. In Exp. 1 Cu brought about a considerable decrease in root surface area, without affecting yield (Table 2). In particular for soil-grown plants, the capacity of the root system to take up nutrients with a relatively low mobility (PO₄, Fe) can be expected to vary more directly with its surface area than with its weight.

The inhibition of shoot growth lags behind the effect on the roots (Exp. 3) and can therefore be considered an indirect effect of Cu toxicity. When roots

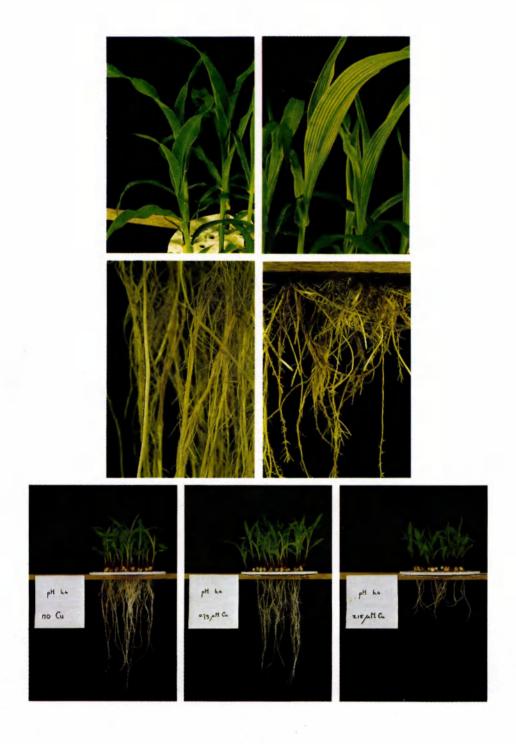
Plate 1. Maize grown in nutrient solutions with varying amounts of Cu at three pH levels maintained by varying NH₄/NO₃ ratios. Experiment 2.

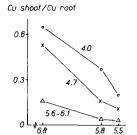
have been affected to the extent that nutrient absorption and translocation to the shoots are inhibited, imbalances may arise in the metabolism of the shoots, which eventually may lead to a reduced rate of growth. Some shoot growth must occur however, before such reductions in growth rate can become apparent. In short-lasting experiments shoot growth still depends on nutrient supply from the seed reserves and it remains essentially constant when root growth is already inhibited. Consequently, the root/shoot ratio decreases (Exp. 3). When such experiments are continued, shoot growth will become dependent on the functioning of the roots. The variation in the root/shoot ratio can, therefore, be expected to decrease with time and eventually to disappear completely.

Copper appears to interfere first of all with the uptake of iron and phosphate (Table 2, Fig. 2). Iron deficiency chlorosis is a generally observed symptom of Cu toxicity in solution culture experiments (Reuther & Labanauskas, 1966), although its occurrence in soil-grown plants is considerably less consistent. The results of Exp. 1 and 2 indicate that the Fe-deficiency is directly caused by an insufficient supply of Fe to the shoots, which agrees with the early observations of Smith & Specht (1953). Lingle et al. (1963) demonstrated that Cu interferes with Fe absorption and translocation in short term uptake experiments.

Far less attention has been given to the effect of Cu on PO₄ uptake in solution culture experiments. Adriano et al. (1971) observed that increasing the Cu concentration from 0.5 to 5.0 μ M at pH 5.0 reduced the PO₄ and Fe content of maize shoots by circa 50 and 30 % respectively, without having substantial effects on shoot or root yield. Dragun et al. (1976), also using maize, found a decrease of over 50 % in the PO₄ content of the shoots when the Cu concentration was increased from 1.3 to 2.5 μ M (solution pH not given). At the latter Cu level root and shoot growth were mildly depressed and the plants exhibited PO₄ deficiency symptoms. Dragun et al. (1976) used a split root system, in which part of the roots was growing in a small volume of soil supplied with Fe-EDTA. Iron could therefore be absorbed by roots that were unaffected by Cu. Under those conditions shoot growth was more depressed than Fe uptake and the Fe content of the shoots increased to high levels. Apparently, it depends on the experimental conditions what nutrient first becomes growth-limiting in the shoots.

The results regarding PO₄ uptake obtained in solution culture experiments can by no means be explained from precipitation of copper phosphates. The quantity of PO₄ in solution exceeds the amount of Cu by far and, therefore, Cu cannot exert any appreciable effect on the availability of PO₄. The possibility of copper phosphates being precipitated on or in the roots causing translocation to be impeded can be rejected on the principle that toxic Cu concentrations reduced the PO₄ content of the roots (Exp. 1 and 2). The capacity of plants to take up PO₄ from soil is related to the root surface area, but is does not seem likely that the Cu-induced reduction in root surface area by itself has specifically limited PO₄ uptake in the well mixed solutions used in the present


experiments. It seems more likely that Cu has impaired the mechanism that is responsible for PO₄ uptake, just like the effect Cu has on Fe uptake (Lingle et al., 1963). Both PO₄ and Fe are taken up actively by the roots. In connection with the theory of carrier-mediated uptake one may visualize such an effect of Cu as the result of an association with some component of the carrier system, leading to partial or complete inactivation.


Other changes in mineral composition brought about by Cu are less outspoken and the possibility cannot be excluded that they are only an indirect result of Cu toxicity, related to the Cu-induced Fe deficiency. Considering the results of Exp. 2 obtained with the 100 % NO₃-N solution, it becomes evident that Cu has a significant effect on the pattern of ion uptake. The difference between inorganic cation and anion contents of the shoot (Σ C- Σ A, Fig. 2) increases, but since the content of org. N derived from NO₃ taken up decreases, the real difference between the effects Cu has on cation and on anion uptake is quite marked. A larger reduction in anion uptake than in cation uptake, a decrease in org. N production without accumulation of free NO₃, a shift in cation uptake in favour of divalent ions and a lowering of the pH of the nutrient solution have all been associated with iron stress (van Egmond & Aktas, 1977).

Distribution of copper within the plant

An increase in Cu supply affects the Cu content of shoots and roots in dissimilar ways. The distribution coefficient (defined as the ratio of the shoot and root Cu content) decreases with increasing Cu concentration (Exp. 1 and 2), showing all with all a 20-fold variation (Fig. 6). At toxic levels of Cu a further increase in supply does not lead to a higher rate of translocation, since no further rise in shoot Cu is observed (Fig. 2). This result cannot be taken to mean that the plants are actively excluding Cu from their shoots. It rather seems to reflect an impairment of the translocation mechanism. Copper does not move within the plant in the free cationic form, but in a complexed anionic form (Tiffin, 1972). Recent work of Goodman & Linehan (1979) and Goodman et al. (1979) has reinforced earlier suggestions that amino acids be involved in the translocation of Cu. One may therefore expect this process to be dependent on the availability of amino acids for the sequestration of Cu. As toxic Cu treatments inhibit the synthesis of organic N compounds (Fig. 2), the availability of amino acids may be reduced and Cu may thus have affected its own mobility in the plant.

From results obtained under field conditions, Lexmond (1980) concluded that the level of organic N has a significant effect on shoot Cu values in maize. Following a suggestion by Beyme (1971), he therefore used the Cu/N ratio rather than the Cu content in the dry matter to evaluate the effects of soil treatments on Cu accumulation in the shoot. The present results appear to stress the advantages of this approach (Fig. 2), but nevertheless it is evident from Fig. 3 that no relation exists between the occurrence of toxicity and Cu/N ratios in the shoot. One can therefore not count upon critical values to

la Cu concentration (M)

Fig. 6. The ratio of the shoot Cu content to the root Cu content as affected by the Cu concentration at three levels of pH/N source. Experiment 2.

be established for the Cu/N ratio in shoots.

Copper accumulated in roots is essentially non-exchangeable, as Ca^{2+} , Mg^{2+} and Ba^{2+} ions are ineffective in replacing the bulk of the Cu taken up (Larsen, 1966; Harrison et al., 1979). One would expect so, because if Cu were bound by purely electrostatic forces, the binding would be non-preferential and Ca^{2+} and Cu^{2+} would have to be present in the roots in approximately the same proportion as in solution. From the results of an experiment comparable to Exp. 2 the Ca content to maize roots can be estimated at 140 mmol/kg DM. The results of Exp. 2 show that the Cu content of the root is circa 5 mmol/kg (average value) at a Cu concentration of 3.1 μ M and a Ca concentration of 2.50 mM. Even if it is assumed that Ca in the roots is completely exchangeable, exchangeable Cu cannot account for more than 3-4 % of total Cu in the roots.

Lead ions, however, are quite effective in replacing Cu from roots (Larsen, 1966; Harrison et al., 1979) and in preventing Cu from associating with roots (Goren & Wanner, 1971). Other heavy metals are intermediate in their ability to displace Cu (Larsen, 1966); Harrison et al., 1979). These observations suggest that the bonding of Cu in the roots is covalent by nature. Protons can therefore be expected to have a strong effect on the association of Cu with the roots. Brams & Fiskell (1971) observed that 0.1 M HCl rapidly removed 95 % of the Cu taken up by citrus roots. The observation by Hunter (1975) and the results of the present study (Table 2, Fig. 2, Fig. 5) which show Cu uptake by the roots of maize to increase with increasing pH, can be accounted for by the covalent character of the association. Accordingly, one would also expect uptake by roots of other heavy metals to be pH dependent. The results of Rasmussen & Henry (1963) show this to be the case for Pb uptake by citrus roots, but few studies appear to have been made on this subject.

Plate 2a. Typical symptoms of Cu toxicity to maize in solution culture are Fe deficiency chlorosis in the leaves and a profound change in root morphology (right). Plants low in Cu are shown to the left. Experiment 2.

Plate 2b. Copper toxicity results in a reduced root growth before the growth of shoots is affected. Consequently the root/shoot ratio decreases, in this trial from from 0.48 (left) via 0.34 (centre) to 0.22 (right). Experiment 3.

Veltrup (1976) has made a detailed study of Cu uptake by root tips of barley as a function of the Cu concentration in solution. He obtained linear double logarithmic plots over a wide range of concentrations (1.6-79 μ M) in short-term experiments lasting up to 24 h. The results of Exp. 3 (Fig. 5), however, show marked deviations from linearity at lower Cu concentrations than used by Veltrup. In this connection it is of interest that Cu has been found to accumulate primarily in the tips of roots (Hunter, 1975). Since the growth of roots is reduced considerably by toxic Cu treatments, the proportion of root tips in the root dry matter is decreased and this may explain the relationship between root Cu and Cu in solution presented in Fig. 5.

A comparison of the root Cu levels obtained in the different experiments at approximately equal Cu concentrations and pH values (Table 2, Figs 2 and 5), shows higher root Cu values for Exp. 3 than for Exps. 1 and 2. Several factors might be responsible for this result. The withholding of Fe from the nutrient solution used in Exp. 3 could have enabled Cu to occupy sites which otherwise would have been occupied by Fe. It is also possible that the roots in Exp. 3 had a higher capacity per unit weight to retain Cu, because of the absence of relatively inactive adventitious roots or because of the presence of a greater portion of root tips.

Effects of nitrogen source on the toxicity of copper

The results of Exp. 1 (Table 2) show the effect of N source on Cu toxicity to be small in comparison to the effect of pH. Still there appears to be a somewhat stronger effect of Cu on PO₄ and Fe uptake and on the Cu content of the roots in the NO₃ solutions. This difference could not be accounted for by the higher SO₄ concentration in the NH₄ solution although it allowed a more extensive formation of the CuSO₄⁰ complex and thus slightly reduced the Cu²⁺ ion activity. The difference may, however, be related to changes in pH rather than be the direct result of variation in N source. Maize supplied with NO₃ increases the solution pH, whereas NH₄-supplied plants bring about a decrease in pH. It is conceivable that, due to these differential patterns of ion uptake, pH close to the roots and in the root free space is higher in the NO₃ treatments, although the bulk pH of the solution is kept at the same level. As an increase in pH is accompanied by an increase in toxicity, this would explain the somewhat larger effects of Cu observed in the NO₃ solutions.

The direct effect of N source on Cu toxicity can be considered limited. This is in agreement with the results of Smith & Specht (1953), but at variance with results of Moore et al. (1957), who compared the effect of increasing Cu concentrations on the growth of lettuce in a NO₃ solution and a solution containing 25 % NH₄-N and 75 % NO₃-N. High Cu concentrations reduced yield and the Fe content of the plant tops in both solutions, but the effects were most pronounced in the NO₃ solution. Moore et al. (1957) did not present any information concerning the pH values of their treatment solutions, and probably did not control pH. The inclusion of NH₄-N can be expected to have lowered the pH by inducing a shift in the pattern of ion uptake by the lettuce. In view

of the results of the present study the results obtained by Moore et al. can be readily explained from such differences in pH.

Effects of pH on copper toxicity

The results obtained in the present study prove Cu to be more toxic to maize at higher pH levels and thus confirm the results of Hunter (1975), but under conditions of prolonged exposure to relatively low concentrations, more likely to prevail in soil. Before discussing this effect, it is of interest to note that the dependency on pH appears to be a general feature of Cu toxicity, since it has been observed in an array of organisms. Increased toxicity of Cu at higher pH (or, vice versa, increased tolerance at low pH) has been detected in algae (Chlorella pyrenoidosa; Steemann Nielsen et al., 1969) and Hormidium rivulare (Hargreaves & Whitton, 1976)), fungi (Aureobasidium pullulans (Gadd & Griffiths, 1980) and Scytalidium sp. (Starkey, 1973)), fungal spores (Alternaria tenuis; Biedermann & Müller, 1952), crustaceans (Daphnia magna; Andrew et al., 1977) and fishes (Salmo gairdneri; Howarth & Sprague, 1978), suggesting similarities in the mechanism of the toxicity.

Hunter (1975) made a detailed study of Cu toxicity to roots of maize after short exposure to very high Cu concentrations. He could distinguish between two phases: a first phase of several hours during which toxicity was reversible and a second phase during which irreversible changes took place. The initial phase during and immediately following uptake of Cu was characterized by inhibition of growth, loss of K in amounts which could not be accounted for by regular ion exchange with Cu, and an inhibition of cell division, although cells dividing at the beginning of the Cu treatment completed the process. Rinsing the roots with EDTA and histidine solutions for ½ to 1 h during this phase removed a major part of the Cu taken up and allowed the roots to resume normal growth. The second phase was characterized by continued growth inhibition, browning of the roots and initiation of lateral root primordia. Rinsing with EDTA during this phase did not reverse the toxicity.

The characteristics of the first phase suggest that Cu can inhibit the growth of roots when it has not yet penetrated into the symplasm. The release of cell K points at an association of Cu with the plasmalemma, resulting in a change in retentive properties. The inhibition of cell division does not necessarily imply that Cu has penetrated into the cell and has directly affected the cell nucleus. An interaction of Cu with the cell membrane which leads to an inhibition of growth might indirectly control cell division.

The most plausible inference from Hunter's work is that Cu acts upon the plasmalemma, thereby altering its retentive properties and inhibiting cell growth. Results obtained by Wainwright & Woolhouse (1977) regarding the effect of Cu on root cell elongation and K leakage in *Agrostis tenuis* agree with this hypothetical mechanism.

Uptake of Cu increases proportionally to the increase in external pH, not only in maize roots, but also in algae (Steeman Nielsen et al., 1969; Mierle & Stokes, 1976) and fungi (Gadd & Griffiths, 1980). The extent to which Cu as-

sociates with physiological essential sites in the plasmalemma can accordingly be expected to increase with increasing pH. Such a pH dependent association of Cu with biological membranes might explain the similar effect of pH on Cu toxicity to widely different organisms.

Up till now the chemical form of Cu which is actually toxic has been left undiscussed. The effect of pH on Cu toxicity might be explained from a competition between Cu²⁺ and H⁺ ions, but also from toxicity of one of the hydrolysis products of Cu, which increase in activity when pH increases, due to the reactions:

Most work on toxicity of Cu in relation to its aquatic chemistry has been carried out with freshwater organisms. These studies are quite complicated because of extensive hydrolysis of Cu²⁺ and complexation by carbonate ions at the high pH and alkalinity levels common to freshwater systems. A number of studies aimed at the identification of the chemical species that is actually toxic. The approach followed therein is based on the assumption that if anyone of the species is responsible for the toxicity, its critical concentrations should be nearly constant in different conditions. Pagenkopf et al. (1974) concluded from chemical equilibrium calculations on data obtained from bioassays with fishes (Salmo gairdneri and Pimephales promelas) that Cu²⁺ is the major toxic species, but that CuOH+ might also be toxic. The did not, however, allow for the protective effect of increasing hardness (Ca and Mg concentrations), which has been firmly established (for a recent review see Hodson et al., 1979). When the differences in hardness are taken into account, the critical concentrations of Cu²⁺ and CuOH⁺ appear to decrease considerably when pH increases from 7.2 to 8.2. Andrew et al. (1977) investigated Cu toxicity to the crustacea Daphnia magna at constant hardness. They demonstrated conclusively that complexing by carbonate ions reduced toxicity. Toxicity was related only to the Cu²⁺, CuOH⁺ and Cu₂(OH)₂²⁺ ion activities. As pH was maintained constant within each test, the relative toxicities of these ions were not directly determined. A comparison of the different experiments, however, showed that increasing pH from 7.4 to 8.0 decreased the critical concentrations of Cu²⁺ and CuOH+. Further work with Salmo gairdneri was described by Howarth & Sprague (1978), who measured Cu lethality in an experiment in which hardness and pH were varied systematically. Cu²⁺, CuOH⁺ and Cu₂(OH),²⁺ were considered the toxic species since they yielded the smoothest response surface with the best fit to the observed median lethal concentrations. At each level of hardness the critical Cu²⁺ concentration decreased with increasing pH. The critical concentrations of CuOH+ and Cu₂(OH)₂²⁺ increased when pH rose from 5.0 to 7.0, but decreased upon a further increase in pH to 9.0. The critical concentration of Cu(OH)₂⁰, which was considered a toxic species by Chakou-

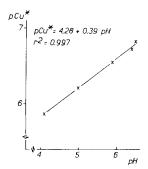


Fig. 7. The critical Cu²⁺ ion activity (pCu*) as a function of pH. Experiment 3.

makos et al. (1979) and Wagemann & Barica (1979), increased when pH increased from 5.0 to 8.0, but decreased when pH increased from 8.0 to 9.0.

It is evident from this discussion that the results obtained cannot be explained straightforwardly from toxicity of one chemical species only. If one of the hydrolysis products were the active species, its toxicity would have to be extremely high at low pH levels, where Cu^{2+} dominates and hydroxides are nearly absent, and at very high levels, where $Cu(CO_3)_2^{2-}$ is the dominant species. In the intermediate range, where the hydroxides are present in substantial amounts their toxicity would have to be relatively small. Such a relationship is difficult to imagine. If Cu^{2+} were the active species, its toxicity would have to increase steadily with increasing pH. The effect of pH might in that case be visualized as the result of a competition between Cu^{2+} and H^+ ions: the higher pH, the smaller the power of protons to keep Cu^{2+} ions from associating with physiologically essential sites.

The size of the effect of pH on Cu toxicity to maize can be estimated directly from the results of Exp. 3. In Fig. 7 the critical values of pCu have been plotted as a function of pH. These pCu* values were obtained from the Cu concentrations at which the root/shoot ratio began to decrease (cf. Fig. 4), by

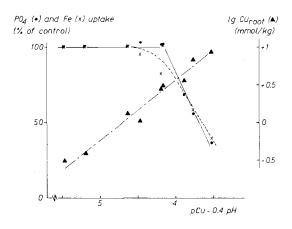


Fig. 8. Copper-induced reduction in PO₄ and Fe uptake by maize shoots and the Cu content of maize roots as a function of pCu and pH. Experiment 2.

Neth. J. agric. Sci. 29 (1981)

calculating the speciation of Cu with the computer program MINEQL (Westall et al., 1976) and converting concentrations to activities. Equilibrium constants were taken from Lindsay (1979) and Mattigod & Sposito (1977). In the pH range of the experiment (4.1 to 6.5), Cu²⁺ is the dominating species, accounting for 95-90 % of total Cu in solution. The slope of the graph obtained implies that the critical Cu²⁺ ion activity decreases by a factor 2.5 when pH increases by 1 unit. This is slightly less than the factor 3.5 estimated by Lexmond (1980) from the results of a field experiment. Fig. 8 demonstrates that the results of Exp. 2 fit quite well to a linear combination of pCu and pH, which may therefore serve as an index of the stress imposed by excess Cu.

Acknowledgements

We are indebted to Ir L. J. M. Boumans for calculating the speciation of Cu, to Prof. Dr Ir F. A. M. de Haan and Dr Ir W. G. Keltjens for helpful comments and to the Commission of the European Communities for financial support.

References

- Adriano, D. C., G. M. Paulsen & L. S. Murphy, 1971. Phosphorus-iron and phosphorus-zinc relationships in corn (*Zea mays* L.) seedlings as affected by mineral nutrition *Agron. J.* 63: 36-39.
- Andrew, R. W., K. E. Biesinger & G. E. Glass, 1977. Effects of inorganic complexing on the toxicity of copper to *Daphnia magna*. *Water Res.* 11: 309-315.
- Beyme, B., 1971. Beziehungen zwischen Zink- und Kupfergehalt in Haferpflanzen und Böden. Z. PflErnähr. Bodenkd. 130: 256-270.
- Biedermann, W. & E. Müller, 1952. Die Inaktivierung des gelösten Kupfers (II) in Fungiziden. *Phytopathol. Z.* 18: 307-338.
- Brams, E. A. & J. G. A. Fiskell, 1971. Copper accumulation in citrus roots and desorption with acid. Soil Sci. Soc. Am. Proc. 35: 772-775.
- Breteler, H., 1973. A comparison between ammonium and nitrate nutrition of young sugar-beet plants grown in nutrient solutions at constant acidity. I. Production of dry matter, ionic balance and chemical composition. *Neth. J. agric. Sci.* 21: 227-244.
- Cavallarao, N. & M. B. McBride, 1980: Activities of Cu²⁺ and Cd²⁺ in soil solutions as affected by pH. Soil Sci. Soc. Am. J. 44: 729-732.
- Chakoumakos, C., R. C. Russo & R. V. Thurston, 1979. Toxicity of copper to cutthroat trout (Salmo clarki) under different conditions of alkalinity, pH and hardness. Environ. Sci. Technol. 13: 213-219.
- Dragun, J., D. E. Baker & M. L. Risius, 1976. Growth and element accumulation by two single-cross corn hydrids as affected by copper in solution. *Agron. J.* 68: 466-470.
- Egmond, F. van & M. Aktas, 1977. Iron-nutritional aspects of the ionic balance of plants. *Plants Soil* 48: 685-703.
- Gadd, G. M. & A. J. Griffiths, 1980. Influence of pH on toxicity and uptake of copper in *Aureobasi-dium pullulans. Trans. Br. mycol. Soc.* 75: 91-96.
- Goodman, B. A. & D. J. Linehan, 1979. An electron paramagnetic resonance study of the uptake of Mn (II) and Cu (II) by wheat roots. In: J. L. Harley & R. Scott Russell (Eds.), The soil-root interface, pp. 67-82. Academic Press, London.
- Goodman, B. A., D. J. Linehan & H. K. J. Powel, 1979. An electron paramagnetic resonance study of the uptake of copper (II) by wheat roots. In: J. Agget, T. Kjellström & D. Crowe (Eds.), *Proc. 2nd N.Z. Semin. Trace Elem. Health*, pp. 63-70. Department of Community Health, Auckland University, Auckland, New Zealand.

- Goren, A. & H. Wanner, 1971. Die Absorption von Blei und Kupfer durch Wurzeln von Hordeum vulgare. Ber. Schweiz. bot. Ges. 80: 334-339.
- Hargreaves, J. W. & B. A. Whitton, 1976. Effect of pH on tolerance of *Hormidium rivulare* to zinc and copper. *Oecologia (Berlin)* 26: 235-243.
- Harrison, S. J., N. W. Lepp & D. A. Phipps, 1979. Uptake of copper by excised roots II. Copper desorption from the free space. Z. PflPhysiol. 94: 27-34.
- Hodson, P. V., U. Borgmann & H. Shear, 1979. Toxicity of copper to aquatic biota. In: J. O. Nriagu (Ed.), Copper in the environment. Part 2: Health effects, pp. 307-372. John Wiley & Sons, New York.
- Howarth, R. S. & J. B. Sprague, 1978. Copper lethality to rainbow trout in water of various hardness and pH. *Water Res.* 12: 455-462.
- Hunter, R. B., 1975. Copper toxicity to roots of corn (Zea mays). Ph. D. thesis, Utah State University, Logan, Utah, USA, 102 pp.
- Larsen, S., 1966. The sorption, desorption and translocation of copper by plants. *Agrochimica* 10: 190-196.
- Lexmond, Th. M., 1980. The effect of soil pH on copper toxicity to forage maize grown under field conditions. *Neth. J. agric. Sci.* 28: 164-184.
- Lindsay, W. L., 1979. Chemical equilibria in soils. John Wiley & Sons, New York, 449 pp.
- Lingle, J. C., L. O. Tiffin & J. C. Brown, 1963. Iron uptake-transport of soybeans as influenced by other cations. *Plant Physiol.* 38: 71-76.
- Mattigod, S. V. & G. Sposito, 1977. Estimated association constants for some complexes of trace metals with inorganic ligands. *Soil Sci. Soc. Am. J.* 41: 1092-1097.
- McBride, M. B. & J. J. Blasiak, 1979. Zinc and copper solubility as a function of pH in an acid soil Soil Sci. Soc. Am. J. 43: 866-870.
- Mierle, G. & P. M. Stokes, 1976. Heavy metal tolerance and metal accumulation by planktonic algae. In: D. D. Hemphill (Ed.), Trace substances in environmental health-X, pp. 113-122. University of Missouri, Columbia, Missouri, USA.
- Moore, D. P., M. E. Harward, D. D. Mason, R. J. Hader, W. L. Loth & W. A. Jackson, 1957. An investigation of some of the relationships between copper, iron, and molybdenum in the growth and nutrition of lettuce: II. Response surfaces of growth and accumulation of Cu and Fe. Soil Sci. Soc. Am. Proc. 21: 65-74.
- Pagenkopf, G. K., R. C. Russo & R. V. Thurston, 1974. Effect of complexation on toxicity of copper to fishes. *J. Fish. Res. Bd. Can.* 31:462-465.
- Rasmussen, G. K. & W. H. Henry, 1963. Effects of lead on the growth of sweet orange seedlings in nutrient solution cultures. *Proc. Soil Crop Sci. Soc. Fla.* 23: 70-74.
- Reuther, W. & C. K. Labanauskas, 1966. Copper. In: H. D. Chapman (Ed.), Diagnostic criteria for plants and soils, pp. 157-179. University of California, Division of Agricultural Sciences, Riverside, California, USA.
- Slangen, J. H. G. & A. W. Hoogendijk, 1970. Voorschriften voor chemische analyse van gewasmonsters. Department of Soil Science and Plant Nutrition, Agricultural University, Wageningen. (In Dutch.)
- Smith, P. F. & A. W. Specht, 1953. Heavy-metal nutrition and iron chlorosis of citrus seedlings. *Plant Physiol.* 28: 371-382.
- Starkey, R. L., 1973. Effect of pH on toxicity of copper to *Scytalidium* sp., a copper-tolerant fungus, and some other fungi. *J. gen. Microbiol.* 78: 217-225.
- Steemann Nielsen, E., L. Kamp-Nielsen & S. Wium-Andersen, 1969. The effect of deleterious concentrations of copper on the photosythesis of *Chlorella pyrenoidosa*. *Physiologia Pl.* 22: 1121-1133.
- Tiffin, L. O., 1972. Translocation of micronutrients in plants. In: J. J. Mortvedt, P. M. Giordano & W. L. Lindsay (Eds.), Micronutrients in agriculture, pp. 199-229. Soil Science Society of America, Madison, Wisconsin, USA.
- Veltrup, W., 1976. Concentration dependent uptake of copper by barley roots. *Physiologia Pl.* 36: 217-220.
- Wagemann, R. & J. Barica, 1979. Speciation and rate of loss of copper from lakewater with implications to toxicity. *Water Res.* 13: 515-523.

TH. M. LEXMOND AND P. D. J. VAN DER VORM

Wainwright, S. J. & H. W. Woolhouse, 1977. Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth.: cell elongation and membrane damage. J. exp. Bot. 23: 1029-1036.
Westall, J. C., J. L. Zachary & F. M. M. Morel, 1976. MINEQL: a computer program for the calculation of chemical equilibrium composition of aqueous systems. Technical note No 18, Department of Civil Engineering, Massachusets Institute of Technology, Cambridge, Massachusets, USA.