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Summary

In soil science literature a number of equations have been used to describe the cation-
exchange equilibrium in soils and clays. The models of the exchange process under-
lying these equations are examined in detail. The assumptions inherent to these models
and the ensuing limitations of the resulting equations are discussed. Some suggestions
are given on the direction of future developments in this field.

Introduction

Since the development of synthetic ion-exchange resins numerous publications have
appeared in chemistry periodicals covering the exchange behavior of these and related
materials, culminating in rather complete works on the phenomenon of ion exchange
in general, as e.g. Helfferich’s Ion exchange (1962).

Prior to this period the interest in ion-exchange was largely confined to soil chemists,
who have been professionally involved in ion-exchange ever since J. T. Way around
1850 indicated that soils may adsorb substantial amounts of cations in an exchange-
able form. As a result the present day soil scientist is confronted with, on one hand,
an inheritance stemming from the work of his predecessors in soil chemistry, on the
other hand a description and formulation of the ion-exchange phenomena in physico-
chemical literature. The practical soil chemist, looking for equations of satisfactory
predictive value, thus sometimes finds himself in a situation of ‘embarras du choix’
which formulation should be preferred for his particular purpose. The situation is
then aggravated by the fact that most workers on the subject have used their own
preferred nomenclature and choice of symbols, and too often assumptions inherent
in a particular approach have either become lost in subsequent usage or were never
stipulated clearly.

It is for this reason that it will be attempted to present a review of ‘cation-exchange
equations’ as they are being used in soil science, pointing out the particular assump-
tions involved, elaborating on the existing relationships between them, and indicating
practical applicability, if possible. In doing so, one often finds that the interpretation
of a particular type of approach, in the light of present day knowledge, differs from
the standpoint of the original investigator. In this comparative discussion of the dif-
ferent formulations of cation-exchange in soils no weight was given to chrono-
logical order.
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Definition of quantities and symbols

Although in several instances the exchange reaction between cations and soil con-
stituents may be partly irreversible, and although often the ‘cation-exchange capacity’
of a soil depends, among others, on the pH value of the system, this is of no concern
for the comparison of the approaches to be made. Thus it will suffice to consider,
at least for the time being, systems containing an amount of exchanger with a con-
stant capacity to adsorb reversibly certain cations and unable to adsorb anions (although
these may be repelled due to the presence of an electrostatic field). Furthermore the
discussion will be limited to cation pairs, with an accent on the more interesting
heterovalent case, i.e. mono-di-valent exchange. Also, the anions being of minor con-
cern, these will be treated as if one species is present only.

Treating a system containing an amount of exchange material suspended in an aqueous
solution, one recognizes the following experimentally accessible quantities, once ex-
change equilibrium has been established between, say, mono- and divalent cations:

a) liquid content of the system, ¥, in ml per gram exchanger;

b) equilibrium concentrations (if necessary obtained from an equilibrium dialyzate),
cot, ¢t , ¢,—, in meq. per ml equilibrium solution;

c) total amounts present in the system of the different ions (obtained by a stripping
procedure or from the determination of the isotopically exchangeable pool of ions),
2(+), 2(++), 2(—), in meq. per gram exchanger.

With the help of these experimental quantities one may define unambiguously the
‘surface excess’ of the different ions with respect to the solvent, as:

y+(+) = 2(+) — Vet meq./g
yHE+4H) = I+ — Vet meq./ g ey
—yH=—) = Veom — 3(—)  {=r<()} meq/g’

in which y+(i) indicates the excess of ion i, which for anions, in the absence of
chemical adsorption of the latter, tends to be a negative number due to anion re-
pulsion. For this reason one often uses the surface deficit, y—(an) = — y+(an), which
is then positive.

Summation of the above quantities gives the definition of the cation-exchange capac-
ity in meq. per gram of exchanger, y, as:

7 = yHE) + rHED) + o) = ) + S0 — S &)
or in general:
y = Sum{y+(cat) + 7—(an)} = Sum {2’(cat) — E(an)}

Obviously, when y—(an) > 0, the excesses of the cations present do not sum up to
the cation-exchange capacity, thus:

+(cat
Sum Z(Ca)

<1
4

Inasfar as in soil science it appears convenient to define the amounts adsorbed of
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different cations present in such a manner that the sum total of these does yield the
cation-exchange capacity, one must introduce a convention for the partition of the
anion deficit over the different cations present. Such a convention always contains
a somewhat arbitrary element, since the system as a whole contains at least two spe-
cies of cations and two species of anionic charges (the exchanger charge and that
of the anions present) which are not coupled in any particular manner. Nevertheless
it appears convenient to apportion the total amount of anions present over the cations
present, proportionally to the equilibrium concentrations of the latter. Then one defines
the amounts of cations, present as salts, as the proportional parts of the total amount
of anions in the system. This also implies that now the anion deficit (in its totality,
if more than one species of anion is present) is divided over the cations concerned,
again proportionally to the equilibrium concentrations. Accordingly the ‘amount ad-
sorbed’, (cat),q; , constitutes the excess of that cation with respect to the amount of
its salt present in the system. Introducing finally the fractional amount adsorbed (or

the equivalent fraction adsorbed), N(cat) = (cat),s /7, one finds for the present
system:
A T SRV |y VI TS LA

- ‘(7 (ot +F o) ¥ Y ‘ (cot + ot ) ¥

ot

Nt+ = gw<++> + y(—~>§ Iy = 32(++> — LEH;# ®

(ot + et t)
1= N N =g () 9 () 77 () g/y =2+ 2<++>—2<—>§/y

The exchange equation is then a functional relationship between N+, N-++, ¢+
and ¢, ++ (at equilibrium).

Thermodynamic considerations

Prior to a consideration of the existing exchange equations, which all involve the
introduction of certain assumptions based on the model used for describing the ex-
change phenomenon, it appears interesting to follow the outcome of the application
of purely formal thermodynamic reasoning to the exchange reaction involved, If this
reaction is written, for the present case, as:

exch(++) + 2 salt(+) <= 2 exch(+) + salt(++)

in which one distinguishes four components which are reacting in pair to deliver the
other pair, one finds for two equivalents of exchanger, at equilibrium:

A(;P,T =0 = 2M(+)a + fu(++)o— fu'(++)a — 21“(‘*’)0

in which the subscripts, o and a, of the chemical potentials indicate the salt and the
exchanger, respectively.

Making use of the fact that four different components were recognized, one may
introduce convenient standard states for each of these, thus defining the activities
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of the components, a, and a, , respectively, according to 4 = #° 4+ RT In a. This
then yields:

AG°pr = 2 u°(4) — p°(++) — 2 () + #°(++)o
In _(a"‘+)2 at

@t (aot)?

= — RT = —RTIhK “

The standard Gibbs free energy of exchange is thus defined in terms of the equi-
librium values of the activities of reactants and products, its value clearly depending
upon the standard states chosen for the different dgomponents. As such equation 4 is
a pure formality, which does not involve any questionable assumption, but cannot be
applied without further specifications (cf. Babcock, 1963, p. 499).

In order to render this equation applicable to the interpretation of experimental data
on the exchange equilibrium between cations and e.g. clays, Gaines and Thomas (1953)
selected the following standard states. For the exchanger they chose the homoionic
state, in equilibrium with the solvent at unit activity (in effect amounting to homoionic
exchanger in equilibrium with an infinitely dilute solution of the salt of the cation),
whereas for the salts the conventional standard state in solution was accepted (amount-
ing to an ideal solution of the salt at unit molarity). In doing so, AG° represents
the change in Gibbs free energy if 2 moles of exch(+), in homoionic form in equi-
librium with an infinitely dilute solution of salt(+), are reacted reversibly with 1 mole
of salt(++) (at unit activity) to form 1 mole of exch(++4) and 2 moles of salt(+),
both in their respective standard states. By this (arbitrary) choice of the standard
state of the exchanger, /AG° becomes a measure of the relative affinity between the
exchanger and the two cations concerned, and thus lends itself to a comparison be-
tween different cation pairs (and the same exchanger) or between different exchangers
(and the same cation pair).

Applying the above choice of standard states it must then be attempted to relate
the value of K to experimentally measurable quantities. Gaines and Thomas introduce
to this purpose activity coefficients applying to the exchanger, which are defined as:

ﬂa+ = f+N+ and aa++ = f++N++ (5)

thus coupling the activity of the exchanger with a particular cation to the equivalent
fraction adsorbed of the latter. As no assumptions about the functional relationships
between f and N are made, no arbitrary element is introduced at this stage. One
introduces furthermore an experimentally accessible ‘corrected selectivity coefficient’,
Ky, ast:

(Nt)2 g, ++

NETT @ty ©®

i.e. a selectivity coefficient based on equivalent fractions adsorbed and activities in
solution (assuming that the activity coefficients on solution may be calculated from

t The ratio a, "+ /(a,™ )t in equation 6 and following equations, referring to the salts in solution,
may also be considered as the ratio of the cation activities in solution, as follows from dividing

numerator and denominator by (a—)2.
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the measured concentrations in solution). Accordingly the quantity K sought is now
defined as:

InK =1InKy+ 21Inft—Inft++ @)

Applying the Gibbs-Duhem equation to the exchanger, along a pathway running from
the standard state of e.g. exch(+) (at unit activity of the solvent) to the homoionic
clay at finite electrolyte concentration, from there at constant electrolyte concentra-
tion to the homoionic exch(4+) and on to the standard state of exch(+4 +), Gaines
and Thomas showed that for the particular system considered:

InK — 1 —}—flanN AN+ + [n dlna ®)

in which the last integral indicates the change in Gibbs' free energy of the solvent
adsorbed per unit exchanger, relative to RT (f# du, , with n, = moles of water
adsorbed per 2 equivalents of exchanger) when moving along the specified pathway.
The latter integral is rather difficult to determine, but Gaines and Thomas are of the
opinion that this term is usually negligible in comparison to the other terms (Gaines
and Thomas, 1955).

Accordingly, aside from the latter, probably reasonable, assumption, one may obtain
the value of K pertaining to the combination of a particular exchanger with a given
cation-pair from experimental data without invoking any particular model theory. At
the same time one may calculate the values of f* and f++ for any equilibrium situa-
tion by part integration of the Gibbs—Duhem equation (Gaines and Thomas, 1953).
Although the above approach appears practically free from arbitrary assumptions and
model considerations, it should be realized that it constitutes only a standardized
method of presentation of experimental data. It allows a comparison between different
systems, but does not permit an actual prediction of the exchange behavior of a
particular system, i.e. outside of situations which were analyzed experimentally before-
hand. An exception to this statement is the prediction of the value of K for a certain
ion pair, of which the K values with respect to a common third cation were deter-
mined experimentally. Then the equality:

should hold, as was proven to be true in certain cases (I.ewis and Thomas, 1963;
Martin and Laudelout, 1963).

If for a given system the tabulated values of K, f* and f++ are available, one may
calculate the amounts adsorbed from the solution composition, and vice versa. As this
calculation amounts to a reconstitution of K, from the tabulated data, it is under-
standable that for the purpose of practical applications the soil scientist often does
not go beyond experimental determination of K, as a function of the solution com-
position, limiting himself to the range of practical interest. It is also clear that, if
extrapolation from measured data to unknown systems is required, the introduction
of certain models — thus limiting the applicability of the ensuing relations to the
validity of the inherent assumptions — cannot be avoided,
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Exchange equations derived from model considerations

Monolayer models

In these models the exchanger-cations are considered to be present in a homogene-
ous phase, their relative concentrations being independent of their position in (or on)
the exchanger. Leaving exchange materials capable of ‘internal’ adsorption out of con-
sideration (as e.g. exchange resins), this situation is for layer silicates with external
adsorption best visualized as the existence of a monolayer of exchangeable cations
on the surface of the exchanger. Because the anions should be effectively excluded
from such a monolayer, it appears likely that the activities of the two forms of the
exchanger recognized, i.e. exch(+) and exch(++), are largely determined by their
respective equivalent or mole fractions.

The oldest forms of exchange equations based on this approach are those of Kerr
(1928) and Vanselow (1932). The first of these is of minor interest as it is limited
to homovalent exchange, the second one is still being used at present. Vanselow,
visualizing the monolayer as an ideal two-dimensional solid solution, assumes the ac-
tivities of the two exchanger components to be proportional to their respective mole
fractions, thus yielding for the standard states selected in equation 6 and 8:

M+ g ++
Ky = M*) g, — constant )
M++ (a0+)2

Clearly the above equation defines in general another corrected fractional selectivity
coefficient, K,; , which in contrast to K, above is expressed in mole fractions of
the adsorbed species. Vanselow’s model then suggests that this coefficient should be
a constant, Ky, . The relationship between Ky and the thermodynamic exchange con-
stant K is found by substituting K;; = 4Ky /(1 + NT) into equation 8 (omitting
the last term), which gives:

1 1
1+ f fn Ky dN+ = f In K, dN+ (10)
0o 0

So the assumptions of Vanselow, in conjunction with the standard states chosen in
equation 8, indicate that the thermodynamic exchange constant should equal:

1
In K :f In Ky dN+ = In Ky (11)
0

Obviously this result follows also directly from the substitution of mole fractions for
the activities of the exchanger components into equation 4.

A more refined approach was introduced by Davis (Davis, 1950; Davis and Rible,
1950) and applied to exchange on soil clays by Krishnamoorthy and Overstreet (1950).
Davis c.s. considered the probability of placement of cations with different valence
on a regular array of negative point-charges as supposed to be present on the ex-
changer surface. Although Davis indicates that his treatment should apply to a ‘mono-
layer’ in the widest sense of the word, i.e. each surface-charge being accompanied
by one countercharge only in the adsorbed layer, it appears that other assumptions
inherent in the treatment, as e.g. absence of anions, probability of placement being
based on a regular array of the positions available for the ions, are warranted only
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if one considers a monolayer in a narrow sense, i.e. a localized monolayer. Applying
the above principle, Davis c.s. show that the distribution of the cations on the sur-
face should be governed by the relationship:

(M+)2 /{M++ (gtM+ + q++M++)} = constant X (a,7)2/ a,*+ (12)

in which the mole fractions, M; = m; /2m; , have been substituted for the number
of moles, m; , adsorbed by the exchanger. The values of ¢ in this equation depend
on the assumed number of nearest neighbors, r, of the adsorbed ions (interactions with
other neighbors being neglected in the treatment), according to the relation g; =
(nz; — 2 z; + 2)/n, with z; = valence. For the mono-divalent case one thus finds:
gt = 1 and g+*+ = 2(n-1)/n.

Substituting equation 12 into equation 4 then yields a distribution equation of the
type:

M+)2 LT+
Kp = ( ; 1 a R constant (13)
(M++)‘M+ + (n=1) M+l @)
n
It is interesting to note, as pointed out by Davis, that for n = 2 (i.e. linear array

of surface charges), this gives:

Kp (n=2) = Gavy @ K (132)
L) (M + M) @by

= constant (= Ky)

the exchange equation thus reverting to Vanselow’s equation 9.

If, on the other hand, »n is taken to be a rather large number (which might be of
interest as an approximation to the situation arising in a diffuse cloud of counterions)
one finds:

(M+)? a,t+
Kp(n —» ) = (= 2Ky) (13b)
(M++) M+ + 2 M+T) (a,1)?

= constant (= 2 Kg)

in which the constant Kg , introduced by Eriksson (1952), replaces the coefficient Ky, .
Krishnamoorthy and Overstreet employed Davis’ equation with » = 4 (square array
of surface charges), yielding:

Kp(n=4) = (M) 4t (13¢)
M++) M+ + 2 pt+) @)
2

= constant (= Kpko)

Bloksma (1956) pointed out, that in calculating the number of modes of occupation
of sites adjacent to an occupied site, the above authors oversimplified the picture.
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Selecting a hexagonal array of surface charges one finds for a divalent ion 8 adjacent
sites, of which 2 sites give a value of g++ equal to 4/3 rather than 5/3 according to
Davis. Accordingly equation 13 could be written for the hexagonal array as:

M)y a,t+
Kp(n=6) = — constant (134d)
M++) M+ + 1.6 M++) (a,1)?

Taken together, the equations 13a—d could be considered as distribution equations,
relating the occupation of the exchange sites in terms of adjusted mole fractions to
the ratio of the activities of the salts (or cations) in the equilibrium solution via a
constant which must be determined empirically. This constant, which might be termed
a distribution constant, is not necessarily equal to the thermodynamic exchange con-
stant, K, as defined in equation 8, even if the term f#, d In a, is neglected. In that
case one finds in accordance with equation 10:

InK

Il

1 1
1+/ In Ky AN+ :f In K,, dN+

:flanDdN"‘ +flln

= In Kp + (n-1) In {n/(n—l)}-— In 2 (14)

2(n-1)

M+ + M++( AN+

n

Again, for n =2, one finds In K = In Kp = In Ky , as then Kp = Kv (= Ky)
= constant. Alternatively, for n —3» « , equation 14 gives In K = In Kp + 1 —
In2 =In Kg + 1 as then Kp = 2 Kg (= 2 Kp) = constant.

The distribution ‘constant’ Kp should thus lie between K, and 2 K, , its value
depending on the number chosen for n (between two and infinity), its actual con-
stancy probably depending on the nature of the exchange material and the spatial
arrangement of the adsorbed cations. It is of interest to note that various authors
(Bower, 1959; Bower and Hatcher, 1962 ; Kerr, 1928 ; Krishnamoorthy and Overstreet,
1950; Lagerwerff and Bolt, 1959 ; Magistad, 1944 ; Pratt and Grover, 1964 ; Pratt et al.,
1962; Turner, 1965; Vanselow, 1932) have made different claims as to the constancy
of the various forms of Kp , viz. Ky , Kg and Kpko . It appears safe to conclude
from these data that for layer silicates and the common ions Na, K, Ca and Mg, one
may expect that often acceptable constancy is obtained with one of the forms of Kp .
Inasfar as a constant value of any one of these allows one to describe the entire
exchange equilibrium with one parameter, one might actually consider to adjust n for
the particular system studied, thus specifying the exchange parameters Kp and n. Ap-
plication of equation 14 then also allows the calculation of AG® if needed. On the
other hand, if the required range and accuracy of prediction are limited, one might
prefer to use Ky or Kg . Certainly Ky is more convenient to handle than Kpko , the
composition of the exchanger usually being given in terms of equivalent percentages
or fractions of the cations present.

Although its derivation appears to be a bit strained, it seems worthwhile to mention
here the exchange equation of Gapon (1933) which may be written as:

Nt} a,t+
N++ gt

= constant = Kg a1s)
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-37

N

+ 0.5

Fig.1 Values of In Kayr (= In Ky/), In Ky and 2 In K¢ as a function of N calculated according

to the Gouy theory (equation 23) for I' = 3.16 X 10-7 meq./ecm2, at 10-2 N total electrolyte. Dashed
line: In K according to equation 8. Dotted line: 2 In K as used by U.S. Salinity Laboratory.

Comparing with the selectivity coefficients defined above, one finds:

2 Ky _ (14+ND
T (1I=N1)  4(1-N+)

K ”

Obviously, for N+ —» 0, constancy of the above three exchange parameters should
be roughly similar. In fact, over a limited range of N+ values (which are of para-
mount importance for the characterization of alkali soils) Kg may be as dependable
a characteristic as is Kg , Kpko or Ky . Moreover the estimation of the percentage
exchangeable Na-ions on soils is in practice more conveniently done with the Gapon
equation. Its dependability for this purpose has been substantiated by numerous data
published by the U.S. Salinity Laboratory 2. It should be mentioned, however, that
the usage of the Gapon equation in the range above 50 % exchangeable Na-ions ap-
pears not warranted (cf. also Fig. 1). It may finally be pointed out that for a con-

2 Cf. USDA, Agriculture Handbook No. 60, Washington 1954.
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stant value of Kg over the entire range of N+ (however unlikely) one would find
the exchange constant as In K = 2 In Kg.

Finally the use of the Langmuir adsorption equation should be mentioned. Applica-
tion of this equation to cation exchange in soils was initiated by Vageler (1932). The
original Langmuir equation is found directly from the application of the Mass Law
to an idealized adsorption equilibrium between a surface and a single adsorbate,
equating the product of rate constant in forward direction, concentration of adsorbate
and number of free places available on the adsorbent, with that of the rate constant
in backward direction and the number of places already occupied by the adsorbate,
Vageler’s equation appears to be an erroneous attempt to restate the Langmuir equa-
tion in terms of amounts of the cation added to the system rather than its concen-
tration at equilibrium. It may be shown that only when the ratio of the rate con-
stants is close to unity such a restatement is acceptable. In all other cases it appears
to be unsound.

Aside from Vageler’s equation, the original Langmuir equation is in its simplest form
useless for cation exchange, as it does not take into consideration the competition
between the cationic species. One may, however, introduce this competition effect
into the Langmuir equation rather simply by using Kerr’s and Gapon’s equations as
a starting point. For the homovalent and heterovalent exchange equilibrium one finds,
respectively (assuming ideal behavior in solution):

N+ o7 N o
AT ke S and D= g &
N++ Voot Ne cor

For biionic systems this gives:

N+ coT Ny Cot
= and =

N+ + N++ a fo+ + Vfo++/KG Nl + N? Col + COZ/KK

For a monovalent cation i, in competition with cation j (mono- or divalent) these
may be generalized in terms of a Langmuir equation, as:
Cu
Ny=—_"2_
Coi + f(Coi)

In this equation the constant appearing in the denominator of the classical Langmuir
equation has been replaced by a term which is a function of the concentration and
valence of the competing ion. Seen in this light a Langmuir formulation of cation-
exchange is certainly not in conflict with the simplest types of exchange equations
given above; at the same time it contributes nothing new.

Three-dimensional models

In the previous section the exchangeable cations were visualized to be situated in a
condensed layer on the exchanger surface, enabling one to recognize the exchanger
as a discrete component. In doing so the nature of the binding forces between ions
and exchanger was left out of consideration, except for the fact that a fixed value
of the exchange capacity was introduced. It is obvious, however, that electrostatic
forces play an important role in determining the distribution of ions of different
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valence between solution and exchanger. The simplest way to introduce the effects of
the electrostatic potential on the distribution of ions is the application of the Donnan
equation to a system consisting of two phases, one phase having acquired an electric
potential with respect to the other phase as a result of the presence of ‘constrained’
charges in it. Although the original Donnan equation was derived for two phases
separated by a membrane (impermeable to the ‘constrained’ charges, but permeable
to ions and solvent), this system does not lend itself for a direct application to the
exchange equilibrium on layer silicates, as this would imply that the cationic com-
position of the exchanger would vary grossly if a clay suspension were diluted with
its own equilibrium solution (cf. also Babcock, 1963, p. 458). For soils and clays it
thus appears necessary to limit the phase with constrained charge to a zone adjacent
to the exchanger surface. This model might be termed the ‘micro Donnan system’,
and has been used extensively by Mattson (1942), Mattson and Wiklander (1940) and
Wiklander (1955). Working out this model it appears that the standard states chosen
for the exchanger components recognized in the thermodynamic treatment are now
impractical in view of the recognition here of two solution phases over which cations
are distributed. In fact it seems logical to use similar standard states for the two
cations present in both phases, which upon introduction into equation 4 gives:

AG°p 7= 0
or:

(@nt)? a,t+
antt (a,t)?

=K =1 (16)

in which a, now indicates the activities of the cations in the ‘micellar’ phase, which
have no relation to the activities of the exchanger components used in the previous
sections. By itself this equation is of no interest, as the difference in affinity of the
exchanger for the two ions considered has disappeared from it. One may attempt to
reintroduce this aspect by relating a,, to the amount adsorbed. In doing so one may
first establish that the ratio of the micellar activities of the salts may be identified
with the micellar activity ratio of the cations, the activities of the accompanying
anions canceling each other. Next one may, as a first approximation, assume that the
ions in both phases behave ideally, their concentration distribution being governed
solely by the difference in electric potential between the phases. Such an attempt,
although incorrect, nevertheless serves the purpose of showing very clearly the inherent
weakness of the approach based on the Donnan equilibrium when applied to layer
silicates.

Introducing the concept of ideal behavior, equation 16 becomes:

(enh)? cott
mtt  (coh)?

=1 (162)

in which ¢, indicates the concentration in the equilibrium solution, in moles per liter.
The concentration in the micellar phase may now be related to the amount ‘adsorbed’
of the cations by the introduction of the micellar volume, V. , in ml per meq. of
exchanger. Thus if the electric potential difference between the phases is sufficiently
large to warrant neglect of the anions present in the micellar phase, one finds:
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N+t =Vyent and N++ = 2 Ve t+ a7

Introduced into equation 16a this gives an exchange equation of the type:

(N+)2 CO++ Vm

NTF e T 2 a3

Thus for ideal behavior in solution, and a homogeneous phase potential, the exchange
equation based on the Donnan equilibrium becomes identical with equation 6, with
the understanding that K, is now identified as half the micellar volume (which volume
determines the mean micellar concentration and is thus directly related to difference
in electric potential between the two phases). For resinous exchangers this may be
sensible, as the micellar volume could be regarded as the volume of the liquid phase
inside the resin beads. For layer silicates equation 18 seems of little help, as no a
priori information is available on the magnitude, nor on the constancy of the micellar
volume. Although one could replace ¥V, by d+/ [, in which 4+ indicates the thick-
ness of the layer of cation accumulation and /' the surface density of charge in
meq./cm2, this is of little help as again d+ is neither known nor necessarily constant.
Admitting finally that the behavior of the ions in both phases is certainly not ideal,
the Donnan model leads to the conclusion that K, as defined in equation 6 should
also be related to micellar activity coefficients according to:

fott dt
YT (fetr 2

K (19)

This seems a useless equation as no information is available on either f,, or d+.

The situation is different for the resinous exchangers; V,, being probably accessible for measure-
ment, one could thus obtain the functional relationship between the ratio of the micellar activity
coefficients and the exchanger composition.

A further consideration indicates, moreover, that the presence of a homogeneous
micellar phase on a layer silicate is hardly, if ever, a realistic picture of the situation.
Cations present in the vicinity of a charged planar surface will acquire a diffuse con-
centration distribution, unless adsorption forces other than electrostatic forces or steric
factors effectively condense them into a monolayer. In the latter case the approach
of Davis appears to be more enlightning, as it allows for the consideration of effects
other than electrostatic. At the same time it must be admitted that for a monolayer
the value of d+ could perhaps be estimated, giving the order of magnitude of Ky to
be expected (cf. Bolt, 1955).

If, however, this condensation into a monolayer has not taken place one may describe
the accumulation of cations in a much more detailed fashion by making use of the
Gouy theory of the electric double layer formed on planar, charged surfaces. This
approach was introduced by Eriksson (1952) following the works of Schofield (1947,
1952) in this field. Later this model was worked out in more detail by Bolt (1955),
Lagerwerff and Bolt (1959), Bolt and Page (1965).

Admittedly the assumption of ideal behavior of the ions in the double layer and the
assumed absence of forces other than electrostatic ones severely limit the applicability
of the ensuing equations for predictive purposes. On the other hand the model allows
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the calculation of the actual value of the selectivity coefficient K, inasfar as it is
determined by electrostatic forces. Thus it serves as a normalized treatment allowing
one to evaluate non-electrostatic effects influencing the cation adsorption by com-
parison of calculated and measured values of K, .

Starting with equation 16a above one may specify the (varying) concentration in the
double layer as:

ct = co+‘e~c1/)/kT ; c++ = Co++ e—Ze’l,U/kT (20)

in which v = f(x) is the electric potential in the double layer, varying with the
distance to the surface, x. The amount of cations present in the double layer is then
found as:

1 d c. + pd
N+ = _— (ct — ) dx = 2 (u — 1/u) dx
P ~/

o]

2 4 2 ¢t 4 @2n
N++ = _—_ ettt —c=)dx = ——— (uz — 1/u?) dx
o s

in which u = e_“’”/kr; [’ = charge density of the surface in meq./cm2. For ease of
notation the system is assumed to contain a mixture of symmetric salts rather than
two salts with a common anion (cf. Bolt and Page, 1965). The ensuing expression
of K, then reads:

(N+)2 ¢ ++
TN+ (cot)?

d
. gf (u—1/u)dx

d
2 r f (ue—1/u2)dx

Equation 22 obviously reverts to equation 18 if u is considered to be constant, 1/u
is neglected, and d is identified with d+. This equation also indicates the fundamental
error made when applying the equation 18, based on the Donnan formulation, to
systems in which the electric potential of the ‘micellar’ phase is gradually decreasing
to zero with increasing distance from the charged surface. As was pointed out already
by Davis (1942, 1945) such application implies equating the sum of the squares of
the Boltzmann factors, u, for consecutive layers, with the square of the sum of
these factors.

Double layer theory provides the means to carry out the above integrations, Taking
freely expanded diffuse double layers one finds for the symmetric salts above an
expression of the type:

Ky

2

(22)

Ko { arg sinh (I" ]/[7/ |/r2 + 8N,) }2

= — — (23)
r{pr — ryparg sinh (I"{B/ {/r2 + 8No) }
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in which § ~ 1015 cm/meq., r = ¢, T/ V coTt, No = o™ + 2 ¢, (total concen-
tration in the equilibrium solution).

Equation 23 represents a distribution equation of the type introduced in equation 13,
except that it does not contain a constant to be determined experimentally. The com-
puted values of K5 may thus be compared with experimental data. Extensive experi-
mentation on Na-Ca-soils and clays (Bolt, 1955; Bower, 1959; Bower and Hatcher,
1962; Lagerwerff and Bolt, 1959; Pratt and Grover, 1964) indicated that for these
systems, especially illitic clays, the agreement is remarkably good, considering the
neglect of both specific adsorption forces and activity corrections. At the same time
other ion pairs indicate considerable deviations; nevertheless equation 23 appears to
be the only one which allows a computation of the electrostatically induced distribu-
tion of cations on clays under idealized conditions. It is of interest to note that
when comparing the values of Ky, Ky and K¢, as computed from equation 23 to-
gether with the corresponding relations between the different coefficients, K appears
to be the best ‘constant’ in the range of N+ from O0—>3 0.4 at electrolyte levels
around 10-2 N, (cf. Fig. 1). Beyond that range the other coefficients remain constant
better than K.

Equation 23 may also be used to obtain an estimate of In K, and thus of the Coulombic energy
component of /\G° for heterovalent exchange. Integrating graphically the curves obtained for In Ky
from equation 23 at different electrolyte concentrations and extrapolating to vanishing electrolyte

level one finds AG°/RT = —1.08 for I’ = 10-7 meq./em® and AG°/RT = +1.22 for I' =
3.2 X 10-7 meq./cm?. Comparison of these figures with experimental data requires information over
the full range of mixed heterovalent compositions at different electrolyte levels. Recently such data
were produced by van Bladel and Laudelout (1967).

Combined models

As was pointed out before, the distribution equation derived from the Gouy theory
does not allow for preference factors aside from the valence effect. Application of
the model to homovalent exchange is thus without interest, as it leads to the con-
clusion that the ratio of adsorbed ions should equal the concentration ratio in solu-
tion. In this respect also the approach used by Davis offers no direct perspectives,
as this distribution equation does not contain any parameters that could be related
to properties of the ion other than its valence. At the same time, once the monolayer
mode] is accepted, one could perhaps assume that in this layer a ‘constant’ preference
would exist for one ion with respect to the other. In the diffuse layer model any
preference for a particular ion would necessarily vary with the location in this layer,
gradually changing from a certain value close to the surface to unity in the equi-
librium solution. Heald et al. (1964) have taken this into consideration by dividing the
adsorbed layer into two regions. In the part close to the surface, which could be
named a Stern layer, a preference factor is admitted, whereas the remainder (Gouy
layer) is assumed to be sensitive only to valence of the ion. The preference constant
for the Stern layer is then introduced as a formation constant for an ion-surfacé pairing
reaction, which yields for the amount of the ion adsorbed in the Stern layer, 45 (i), in
meq. per cm? exchanger surface:

As(i) = kicgli) IG (24)
in which k; = pair formation constant; c¢g (i) = concentration of the ion at the
boundary between Stern and Gouy layer; [’ = counterionic charge present in the
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Gouy layer, which signifies the number of free places in the Stern layer. It is inter-
esting to note that equation 24 also follows directly from the application of the Boltz-
man equation to the Stern layer, as was done by Stern in his original approach. One
then finds:

s) = 58 o) e TWST o= PT @25
&

in which g indicates a statistical weight factor which is taken proportional to the
number of available positions for the ion in the Stern layer and in the equilibrium
solution, respectively, and z is valence. The electric potential in the Stern layer equals
s, and the non-Coulombic adsorption potential of the ion i in this Iayer is indicated
with ;. Introducing the concentration of the ion at the boundary between Stern and

—ze T
Gouy layer as cg = ¢, € el equation 25 may be written as:
) = 55 o) e BT (252)
&o
with AEs = z; ¢ (s — %) + i, which potential difference is a constant for a

particular ion species. As furthermore g, may be taken as a constant, while gs is pro-
portional to [z , multiplication of both sides of equation 25a with the thickness of
the Stern layer, g, yields again:

As(i) = Ssesi) = kiec () I
Applying the above to a homoionic system one finds:
ccl)/ 2ecd) = coi)/ 2eo(i)

no preference factors being considered in the Gouy layer. Standard double layer theory
allows the total concentration at the boundary between Gouy and Stern layer to be
related to the total countercharge present in this layer according to (cf. Bolt and
Page, 1965):

2

Bls o 5 i)
2

Introduced into equation 24 this gives:

As®) = k, ? I o/ = coli) 26)

Applying this treatment to a system containing two species of monovalent cations.
indicating the equivalent fraction adsorbed by N, this gives:

N = as) + AG(1>8/r

{ )
NQ) = 31‘15(2) + AG<2>§/1*

N1) + N2) =1
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Using equation 26, with a =1/ one finds the ‘conservation’ equation:

2
/ST gklco(l)/fco + kzco(2)/2%§ @ +a—1=20 27
Recombination of the above equations yields:
o(2 1 ke, o(1
N =1 — k5P Ny 4o —1 4 LT RE@/D 28)
co(1) 1 4+ ¢(2)/eo(1)

in which k = kz/k1.

A plot of N(1) against {00(2)/c0(1)}N(1) now yields an estimate of k as the slope
of the line at N(1) —» 1. This estimate of k then allows evaluation of a from the
difference between the observed curve and the tangent at N(1) = 1. Finally substitu-
tion of a and k into equation 27 should yield the absolute values of &y and k..

The corresponding exchange equation would read:

N() ke fl'4+1 c.(1)

= (29)
N(Q) kea? fI'2/4 + 1 ¢co(2)

with ¢ = f:kl, ks, c,(1), cO(Z)%, according to equation 27.

The first ratio on the right-hand side of equation 29 represents the selectivity coef-
ficient Kj,» of the monovalent exchange reaction considered.

The application of the suggested treatment to experimental data (in order to derive
appropriate values of k; and k2) is involved and thus liable to yield only approxi-
mate values of the parameters concerned. Especially the estimation of k from the
limiting slope in the range of complete saturation, where the accuracy of the experi-
mental data is relatively low, seems difficult. In turn this will render the calculations
of a over the entire range of compositions of the exchanger rather uncertain, A curve
fitting procedure may thus be necessary in order to obtain satisfactory numerical
values for ki and k.

At the same time the above approach provides an interesting link between the mono-
layer model and the diffuse layer model. Obviously, in the absence of a significant
contribution of the assumed non-specific diffuse layer, the plot suggested by equation
28 yields a straight line. The exchange equation 29 then becomes identical with the
Kerr equation (ka3 and k243 remain finite for vanishing a; cf. also equation 28). It
would be of interest to investigate whether Na-Li-clay systems (which should have a
significant diffuse layer) would obey equation 28 with a constant value of k.

The extension of this approach to the mono-divalent case has not been done as yet.
Mathematical difficulties appear to be considerable, although these could be surmount-
ed with a computer. Heald c.s. limited their attempt to working out the equation,
assuming that in the presence of divalent ions the contribution of the diffuse layer
would be negligible. In addition the pair formation for divalent ions was visualized
as a relation between the ion and two independent free sites, leading to the appearance
of ()2 in the corresponding equation 24. This is hardly of interest as then the
resulting equation becomes identical with Vanselow’s equation, the exchange constant
Ky now being identified as the ratio (k1)2/ke, with k1 and ke indicating the (un-
known) pair formation constants for mono- and divalent cations.
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Aside from the above semi-empirical approach (i.e. deriving preference parameters
from a comparison between experimental data and an equation based on a generalized
model) one might also attempt to estimate the magnitude of these parameters from
a theoretical analysis of the forces acting on cations in close proximity of the ex-
changer surface. Such an approach was recently published by Shainberg and Kemper
(1966). The difficulty in such calculations is the fact that one must estimate the
difference in energy between hydrated cations situated at a distance equal to the
radius of the hydrated form, and the (partially) dehydrated cations situated at shorter
distance. As pointed out by the above authors, this difference in energy comprises
several terms as e.g. the energy associated with the formation of the hydration shell
on the cations, the change in Coulombic energy upon close approach to the charged
surface, plus at least the charge-dipole interaction between water molecules and the
charged surface. Most of these terms can only be estimated roughly, yielding values
around 4 kcal./mole according to Shainberg c.s. The calculated difference in energy
between the two positions of the cation then falls in the range from + 14 kcal./mole
for Li to — 14 kcal./mol for K. As suggested by the authors the uncertainty about
the actual values of this small difference between the much larger single terms may
be a less serious limitation when this treatment is used to compare two different
ionic species.

In a following paper on the subject, Shainberg and Kemper (1967) attempt to in-
corporate these computations into an exchange equation, following an approach very
similar to that of Heald c.s.

Obviously the change in potential of an ion when it is transferred from the boundary
layer to the Stern layer, as calculated according to the procedure described above,
may be identified with the quantity A\Es appearing in equation 25a. Not mentioning
the weight factor g of this equation, the authors back-calculate k; from an equation
of this type as:

 — ABQ0)/T
PR 30)
I

Next the values of k; obtained for the homoionic forms of the clay with different
cation species are incorporated into an equation similar to equation 29 above, yielding
a selectivity coefficient for the homovalent exchange reaction written as (cf. Shainberg
and Kemper, 1967 ; equation 18):

Ksx = kiec + 1 (31)
kecg + 1

in which cg indicates again the total concentration of cations in the boundary layer.
Although superficially identical with the selectivity coefficient defined with equation
29, the selectivity coefficient of Shainberg—Kemper, Ksx , differs from the latter as
a result of two suppositions made by the authors in working out equation 31.

In the first place the parameters ki1 and k2 as defined in equation 30 will vary with
the changing value of 'z when going from one homoionic ‘endpoint’ to the other
endpoint through the mixed compositions in between. The equation 30 is thus in con-
flict with the concept of a pair formation ‘constant’ as used by the authors in the
earlier part of their paper. They circumvent this difficulty by using the values of ki
and k» pertaining to the homoionic endpoints of the system, but then violate their
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equation describing the pair formation reaction. In the second place the authors define
the total concentration in the boundary layer, ¢ , for mixed systems as the weighed
mean of the particular values found for the homoionic ‘endpoints’ of the exchange
reaction. Of these two suppositions, the second one (although mathematically con-
venient) is unnecessary and also unwarranted, because the double-layer theory, as used
by the authors for calculating the value of ¢g in the homoionic systems, also supplies
the relationship valid for mixed systems, i.e.:

oo = BIG 14 = a2fI'2/4 (32)

in which again a = JI/]'. The first supposition, which is unwarranted in the pre-
sent context, could be repaired by the introduction of a weight factor proportional
to [ in the formulation for the Stern layer, which would cancel this factor in
equation 30.

The ensuing equation for k; would then contain the proportionality constant between gg and I'c
which must be evaluated if k; is to be expressed in terms of A Es. Turning to the original liter-
ature on the subject (Stern, 1924, cf. also Grahame, 1947) one finds that the number of ions
per cm? of the Stern layer, ng, is related to the number of ions per cm? equilibrium solution, #g,
via the expression:

ns/(zs — ns) = e "I poi(zo — mo) 33)

in which z indicates the maximum number of positions available to the ions and (z — n) the num-
ber of ‘free’ positions; W is the difference in potential of an ion in the Stern layer relative to
an ion in solution. The value of z, is then taken equal to the number of solvent molecules per cms,
whereas zs equals the solvent molecules present per cm? of the Stern layer, ie. xs = d5%, . Unless
extreme crowding is expected ns and n, are usually negligible in comparison to zs and z, (cf. Gra-
hame, 1947). Although this condition is approximately fulfilled in clay systems (distances between
the clay charges are of the order of 10 — 15 A), the present model used for the calculation of the
Stern potential of the ion is based on the contention that Stern ions must be situated in close
vicinity of the clay charges. The ‘free’ positions in the Stern layer could thus not exceed the number
of water molecules present in the fraction of the Stern layer opposite to non-paired surface charges,
or:

(zs— ng) = 2005l /I’ (34)
Expressing the amounts present in milliequivalents and introducing cg , this gives:
—ALg/kT
As = cge OEs) CSs[‘(;/lv (35)
The pair-formation constant then equals:
— AEg/kT
sse AEg/

ki = I (36)

and is now invariant with composition in mixed systems in accordance with the chosen model.
Although one might contend that the ‘free’ fraction of the Stern layer is even smaller than FG/ I,
any further reduction of k; would be independent of the mixing ratio of the adsorbed ions. Because
of the uncertainty about the precise value to be taken for és (cf. the relevant comment in Shain-
berg and Kemper, 1967) it would seem satisfactory to maintain ! b/F in the equations, remember-
ing that 6 should be an ‘effective’ thickness of the Stern layer, which could certainly not exceed
the diameter of the ions in the Stern layer. When comparing the above derivations with the one
used by Shainberg cs., it would seem that the pair-formation constants as calculated by the latter

authors should at least be reduced with a factor I G/
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The difference between the approach of Shainberg c.s. and that of Heald c.s. is also
reflected in the calculation of [G/I" = a, ie. the fraction of the surface charge
balanced by hydrated ions. As worked out by the former authors for homoionic sys-
tems, the relationship used may be written as:

pat+a—1=0 (37a)
I e OEs/KT
4 I
pL’

= ka (= constant)
4

In contrast the comparable equation of Heald c.s. reads:

pad+a—1=0 (37b)
12
ith p) = — k'
with p 4

It should be noted that upon introduction of equation 36 into 37b p’ will equal p, whereas k’
differs from k. Accordingly the values of a, calculated by Shainberg c.s. will deviate from the ones
found when applying the pair-formation concept in a consistent manner according to equation 36.

Notwithstanding the above criticism the contribution of Shainberg c.s. is of great
interest as an effort to estimate the magnitude of the pair-formation constants on the
basis of physical properties of the ions, which could rather easily be amended to
become consistent with the semi-empirical approach of Heald c.s. Although, as pointed
out by Shainberg and Kemper (1967) in the discussion section of their paper, the
uncertainty about the actual values of physical parameters to be used remains con-
siderable, the proposed treatment presents an important step forward in the process
of gaining understanding about the nature of the cation exchange equilibrium in clay
systems. A further comparison of the values of the selectivity coefficients for homo-
ionic exchange as suggested by Shainberg and Kemper and those obtained with the
equations amended as suggested above with e.g. the experimental data presented by
Martin and Laudelout (1963) would be of great interest. Also the extension of this
treatment to heterovalent exchange would appear a worthwhile goal.

Concluding remarks

In Table 1 the equations for heterovalent exchange as discussed are summarized. As
is customary, the exchange reaction involving clays has been formulated as an exchange
between ions adsorbed by the clay and ions in solution. Accordingly the activities,
a0 , Tefer to the cationic activities in solution. As was mentioned before, the ‘reduced

activity ratio’, a,* / ]’ a,t 7T, appearing in these equations — usually in the form of
its square — may also be interpreted as the reduced activity ratio of the salts pre-
sent in the equilibrium solution.

With the exception of the equation derived from diffuse double-layer theory, all model
equations contain an empirical selectivity coefficient, which is expected to be con-
stant. Inasfar as this contention may be proved to be satisfactorily obeyed for any
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one of these equations (i.e. within the required degree of accuracy) the application
of that equation allows one to characterize the particular exchanger—ion combinations
in terms of a single parameter. As the models underlying the different equations are
still rather simple, there appears to be no reason to expect that any one of the
selectivity coefficients will be truly constant over a wide range of conditions. How-
ever, since practical interest in exchange behavior of soil materials is often limited
to fairly rough predictions for a particular system over a particular range of com-
positions, one should perhaps select to this purpose the coefficient which fulfills best
the condition of constancy under these circumstances. If the ease of application plays
a role it seems that K is perhaps best suited for the above rough predictions.

In a more detailed study of the exchange behavior of soil materials the monolayer-
model equations do not offer much perspective for interpretative usage. One should
then rather use the method of presentation as suggested by Gaines and Thomas. Ex-
perimental data can then be summarized in terms of a plot relating the Kn- and f-
values to the exchanger composition, provided the complete range of compositions
from N = 0 to N = 1 has been covered. The value of K may then be obtained
from graphical intergration over In K, . When interpreting the values of K and f thus
derived for systems involving mono- and divalent cations, the computed values of
Ky, as derived from the double-layer theory for ideal behavior, should serve as a
standard for comparison. Such comparison would allow evaluation of the relative
importance of electrostatic (Coulombic) versus specific energy of adsorption of the ions.
The most promising model for the description of adsorption on external surfaces ap-
pears to be a Stern—Gouy approach along the lines as used for the homovalent case
by Heald et al. (1964) and further advanced by Shainberg and Kemper (1967). Ex-
tension of this model to heterovalent exchange will increase its complexity consider-
ably, as both the fraction of the divalent ions in the Gouy layer and that in the Stern
layer will depend on the valence. In the Stern layer the statistical weight factor would
also have to be corrected for the valence of the ion: possibly Davis’ model could serve
as a guide line for calculation. The use of an electronic computer appears to be
necessary for the work-out of such a model.

A final remark should be made on the assumed reversibility of the exchange reaction.
There is evidence that certain exchange reactions are incompletely reversible. The
obvious example of such a system is the adsorption of potassium by certain clay
minerals. There steric factors influence the relative affinity of the clay for different
cations, which necessitates the recognition of a range of sites with different relative
affinity (Bolt et al., 1963; van Schouwenburg and Schuffelen, 1963). The fact that
often the cationic composition in turn influences these steric factors (by a varying
degree of collapse of the crystal lattice) suggests a considerable degree of hysteresis
in exchange reactions involving interlattice sites. Evidence has been presented indi-
cating that in these collapsing systems (e.g. vermiculite) one might even expect a type
of phase separation, certain interlayer spaces being filled preferentially with one
cationic species, others with the competing ion (Coleman and Le Roux, 1965). Till
this moment no model theories have been advanced to describe such systems.
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