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Summary 

A number of observations was constructed artificially by giving the independent vari­
ables of a system of equations various values ; in this way the values of the dependent 
variables could be computed. Next these data have been analysed by factor analyses 
of which the results were compared with the content of the original model. 
It appears, that the number of aspects is equal to the number of independent vari­
ables. It is very difficult to interpret the results of these analyses without rotation. 
This rotation must be performed according to the caumax method: the possibility to 
a causal interpretation is maximized by a rotation in which every reference axis is 
rotated as much as possible upon an independent variable ; the dependent variables 
are not taken into account. By this an identification of the factor analytical model is 
obtained. The results are not altered very greatly by error factors and correlations 
between the independent variables. 

Introduction 

We know a number of methods to describe and to analyse the complex relationships 
in certain fields of investigation such as economics, psychology, sociology and agri­
culture; for this purpose factor analysis and path coefficient analysis or simultane­
ous equations analysis are used widely. Purpose and models of both those analyses 
differ rather greatly (Ferrari, 1965). The latter is used mainly in order to test more 
or less developed hypotheses and to quantify the parameters of them. The factor 
analysis can also be used for this purpose, in a lesser degree, however; the analysis 
can be applied better for drawing up or for correcting hypotheses (Cattell, 1965). 
The model on which factor analysis is based, is little specified. Neither is the system 
identified, by which the solution is not unique and rotations of the reference axes 
are allowed and necessary (Ferrari, 1965). In connection with this underidentification 
the interpretation of the analytical results meets mostly with many difficulties. The 
researcher understands with difficulty the meaning of the results obtained (Liberg 
and Mol, 1961). 
It is in the nature of things, that the results of the method with the simultaneous 
equations are easier to understand. In connection with this a comparison between the 
results of both methods of analysis applied on the same data may be meaningful. 
Mol (1966) already demonstrated the significance of the number of exogeneous vari­
ables in an economic model for the results of a factor analysis. In the following we 
shall investigate by means of factor analysis the conduct and relationships of variables 
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in which investigation the observational data are computed after giving one or more 
primary factors (exogeneous or independent variables) of a path coefficients model a 
range of various values. We shall compare the results of such analyses with the model 
from which the data originated. These comparisons will give the possibility to draw 
some rules for making more specified models and for the study of the results (by 
rotations). 

Fig. 1 Model of the influences of 4 independent variables (primary causes) on 3 dept ndent vari­
ables (effects). 

The data are obtained from an investigation into the influences of some variables 
on the magnesium content of herbage, described before (Ferrari, 1964). This model is 
given in Fig. 1. The model shows how the variables: humus content (*i), magnesium 
content (*3), potash content (*2) and pH of the soil (*4) influence directly and indirectly 
via changes of the proportion of weeds (>>3) and of the crude protein content (y>2) the 
magnesium content of the herbage (yi). This model can be described by the following 
structural equations 1 : 

^3 — 031*1 + 032*2 4- 033*3 + Û34*4 (1) 

y2 = 021*1 + 022*2 + 023*3 + b^ys (2) 
y 1 = ai2*2 + ßi3*3 + bisyä + buys (3) 

Terms x-, in the equations are the primary causes or the exogeneous variables of the 
economics. The changes of the effects y, caused by the changes of these independent 
variables can be computed by the equations in the reduced form; in each reduced 

1 In these and following equations the level (constant term) will be left out of consideration. 
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structural equation an effect is expressed as a function of independent variables only. 
We used for the calculations the parameter values of Table 1, found in an earlier 
research (Ferrari, 1963). 
Next we investigate on which way the effects in this model change, when only cause 
Xi is changed and the other causes remain constant. We shall also examine the 
results of changes of two independent variables (xs and *2) at constant values of xi 
and X4. Finally we shall look at the influences of changes of three or more inde­
pendent variables. In this way we simulate the response of the nature to certain 
changes. We shall apply factor analyses to the data computed, the results of which 
will be compared with the original model. From these comparisons we can make 
some inferences. 

Table 1 Parameter values of the equations 1, 2 and 3 

"31 = 1.67 "21 =  —0.74 a12 = —0.0038 
«32 = —0.23 a22 0.11 alS = 0.0004 
a33 = —0.0.31 •< = 0.011 *13 = 0.0041 
°34 = 5.26 *23 = 0.20 *12 = 0.0083 

Response of the dependent variables to changes of one or more independent ones 

We give the variable xg a number (20) of various values chosen at random but not 
lying outside the range of original values. Next the values of ya, y2 and yi belonging 
to the twenty values of xs must be calculated. As we have to do in this case with 
changes of X3 only, we need a simplified system of equations, viz. : 

y 3 = 033X3 (4) 
y2 = 023JC3 + b23y3 (5) 
yi — (213X3 + èi2j2 + bi3y9 (6) 

In this system equation 4 has already the reduced form. The reduced form of the 
other equations is as follows: 

yt = (ö23 + £33^23) X:< (5a) 
yi — (fll3 + 023^12 + Û33&12 + 033613) X3 (6a) 

Under the assumption that nature will respond according to the parameter values of 
Table 1, the equations become: 

y3 = —0.031 *3 (4b) 
y2 = 0.0048 X3 (5b) 
yi = 0.0003127 jc3 (6b) 

Using these equations we can now compute the values of y3, y2 and yi for every of 
the twenty values of xs. Table 2 gives some results. 
In general a researcher will be ignorant of the relationships governing these numbers. 
It is his task to discover these relationships. However, we know these relationships 
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and a simple computation shows us, that the numbers of the second row equal —0.031 
times the corresponding numbers of the first row; the numbers of the >>2-row equal 
—0.155 times the numbers of the second row etc. Consequently the rows (and the 
columns) of this table are dependent on each other ; if the numbers of one row are 
given, the numbers of the other rows can be computed by these ratios. This means 
in mathematical terms, that the rank of this matrix equals 1. 

Table 2 Some computed observational data, with 1 independent variable 

Variable Observation 

i 2 3 20 

X" 167 122 50 185 
y-.i —5.18 —3.78 —1.55 . .. —5.74 
V; 0.80 0.59 0.24 0.88 
y 1 0.052 0.038 0.016 0.058 

For a good understanding of the results of a factor analysis the geometric represen­
tation of the idea of rank may be significant. Starting point is the representation of 
the correlations between the four variables into a 20-dimensional space with rectan­
gular coordinates, in which frame the twenty observations are represented as reference 
axes. The variables themselves are represented as vectors in this system. In Fig. 2 
the axes of only three observations of Table 2 are drawn; in reality the four vectors 
are contained in a 20-dimensional space. It appears in this case, that the four vectors 
have the same or the opposite direction ; these directions coincide. This means, that 
the correlations are complete and the correlation coefficients are +1 or —1. The 
positions of these four vectors can be described with a one-dimensional space. This 
one-dimensional vector configuration corresponds to the one-dimensional space in the 
well-known correlation representation in which the variables are taken as reference 
axes. 
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The fact the variation of the three dependent variables ya, y2 and y 1 has been caused 
by only one independent variable, makes that the vector configuration has a dimen­
sion of one ; the space of the joint movements of the variables has the same dimen­
sion of one. 
Further we notice, that the actual changes of the effect variables are described by 
three equations. The space of the vector configuration informs of the number of equa­
tions, but not of the nature of these ones. The researcher, having determined this 
number by a factor analysis, has the liberty to give divergent explanations to this 
movement pattern with different equation systems. 
Next we change independently of each other the variables x% and xt of the model. 
The variables xi and X4 remain constant and can be left out of consideration in 
equation 1, 2 and 3. The reduced equations are now as follows: 

.ys = 033*2 + «33*3 (7a) 
y2 = («22 + aab'ii) xt + (023 + 033^23) *3 (8a) 
y 1 = («12 + 022^12 + 6132^23^12 + «32613) X'i + 

(öl2 + (lîîbl2 + 033 ̂ 23^12 + 033^13) X3 (9a) 

We assume again, that the model responds to these changes according to the data 
of Table 2 and obtain the following equations: 

ys = —0.230 X2 — 0.031 X3 (7b) 
y2 = 0.0640 X2 + 0.0048 x3 (8b) 
yi = —0.00421 X2 + 0.00031 (9b) 

We use the equations in order to compute the values of >'3, yi and y 1 for every of 
the twenty values of X3 and X2. Table 3 gives some results. 

Table 3 Some computed observational data, with 2 independent variables 

Variable Observation 

1 2 3 20 

x 1 6 7  1 2 2  5 0  1 8 5  
x.', 21 15 21 6 
y\ —10.01 —7.23 —6.38 —7.12 
v., 2.15 1.55 1.58 1.27 
yT —0.037 —0.025 —0.073 0.032 

These data have been produced by changes of two independent variables only ; from 
this it follows, that the rank of the matrix of data is 2. The numbers of each row 
can be computed, if the numbers of any two rows are given. The correlations between 
the numbers in the rows (variables) can also be studied by the method just described. 
These relationships are drawn in Fig. 3 in which the three reference axes (observa­
tions) are left out for reasons of drawing technique. Now the vectors (variables) 
appear not to be contained in a one-dimensional space, but to be spread out in a 
two-dimensional plane. The variables x:t and x2 are not correlated and therefore the 
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x* Fig. 3 Vector configuration for 2 independent 
variables. 

y2 

X2 
y3 

directions of these vectors are mutually orthogonal. The variable y-z is correlated 
positively with the variables X2 and xn, the variable j>.i on the contrary negatively. 
Finally yi is correlated negatively with x* and positively with -ï.i. 
As the relationships between the variables (joint movement pattern) of the first 
example with one independent variable could be represented by a one-dimensional 
space, we now need a two-dimensional space to describe the relationships produced 
by two independent variables. The rank two corresponds to a two-dimensional move­
ment pattern. The researcher ignorant of the creative model can now conclude, that 
the number of independent variables has been two and that the number of equations 
describing the model equals to the total number of variables minus the number of 
independent variables or dimensions of the vector configuration. But he has again 
the freedom to interpret these relationships and equations in various ways. 
In analogy to the results discussed above, it is clear that we shall get a three-
dimensional vector configuration by the changes of three independent variables etc. 
Therefore we can formulate the following rule: 

The number of equations in a model is equal to the number of variables minus 
the dimensions of the vector configuration; this dimensional number equals the num­
ber of independent variables. 

With the aid of this rule the researcher is able to investigate whether the assumed 
model he wants to test is in accordance with reality. Besides, he can use his know­
ledge of the dimensions of the movement pattern and of the variables, joined with 
each other in a certain movement direction, in order to formulate a more specified 
hypothesis. The rule can also be used to give a better interpretation of the results 
of factor analytic research. 

Factor analysis and rotation 

The factor analysis tries to determine the dimensions of the vector configuration 
and to indicate in which measure the variables in a certain aspect (dimension) are 
related with each other. The analysis represents the vector configuration as a pro­
jection upon a rectangular axes frame (reference axes) with the same origin as the 
vectors. The positions of this reference frame with respect to the vector configura­
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tion depends upon the solution method 2 and upon the variables taken up (Harman, 
1960; Seal, 1964). The factor analytic model is not identified (Ferrari, 1964), so that 
the solution obtained is not unique. By rotation of the reference axes each solution 
can be reached in which the vector configuration and the number of dimensions of 
the movement pattern remain unchanged. This underidentification and the many solu­
tions connected herewith make the interpretation of the analytic solution difficult. 
A comparison between the original model and the results of the factor analyses 
applied to data produced by this model points to the possibility to reach an identifi­
cation by a certain rotation of the reference axes. This comparison is also useful to 
indicate the potentialities and limits of the factor analysis. 
We start with an analysis of the data originated from changes of two independent 
variables X2 and X3 (Table 3); the changes themselves of x-z and X3 are not correlated 
with each other. The researcher is supposed to be ignorant of this background and 
tries to get some information about the origin of the relationships between the vari­
ables by a factor analysis. For this purpose he intercorrelates the variables (Table 4). 

Table 4 Correlation coefficients, computed with data of the complete Table 3 

*3 1*3 y2 yi 

0 —0.74 +0.89 —0.89 
1.00 —0.68 0.47 0.44 

1.00 —0.96 0.35 
1.00 —0.59 

1.00 

Table 5 Principle-factor solution; model with 2 
independent variables 

Variable A sped 

Fl F., Sum a2im 

Xn 0.94 —0.35 1.01 
x'i 0.35 0.94 1.01 
y-i —0.92 —0.38 1.00 
y-> 0.99 0.12 0.99 
yi —0.68 0.73 1.00 

Eigenvalue 3.30 1.70 5.00 

This matrix of correlation coefficients needs little comment as the background is 
known to us; the absence of correlation between the independent variables x-2 and x-i 
is self-evident, we have varied these variables independently of each other. We are 
interested more in the results of a factor analysis applied to this matrix (Table 5). 
The coefficients aim are a measure of the degree of correlation between aspect and 
variables; they vary from +1 to —1. The square of a coefficient times 100 indi­

2 We have always used the principal factor method of Hotelling. 
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Yi yj y3 *a Xj 

Fig. 4 Factor analytic model with 3 dependent 
and 2 independent variables. 

cates the proportion of the total variance of the variable connected with the aspect 
concerned ; the sum of these squares therefore equals 1 (total variance). The original 
correlation coefficient between two variables can be reproduced from this aspect 
matrix by the sum of the products of pairs of corresponding numbers in the two 
rows concerned (inner product), so the correlation coefficient between the vari­
ables X2 and X3 is equal to 0.94 X 0.35 + (—0.35 X 0.94) = 0 etc. Finally the eigen­
value is a measure for the total variance accounted for by the corresponding aspect. 
A comparison between the model of Fig. 1 without the variables x\ and Xi and the 
model of the aspect analysis (Fig. 4) shows, that we may not expect to obtain back 
the original information out of the factor analysis. The original model is character­
ized by chain processes and these are missing in the factor analytic model. The 
model with the path coefficients contains information about the sizes of the separate 
influences, and the possibility to achieve these parameters is absent in the factor 
analysis. The analysis gives information about the simultaneous changes of the vari­
ables, connected with the aspects. These changes are expressed as proportions of the 
total variance: 88% of the ^-variance is connected with 12% of the .^-variance, 
with 85 % of the >>3-variance etc. The same applies to the data of aspect 2 ; in this 
aspect the variances of the variables independent of those of aspect 1 are represented. 

The data of Table 5 show that the variances of all variables is accounted for entirely 
by both aspects ; the sums of squares always equal 1. This is according to the rule : 
two independent variables must give two aspects or movement patterns. 
The correlations between an aspect and the independent variables Xï and x:t are con­
trary to our expectations. For we varied these variables independently from each 
other, as is expressed by the zero-correlation coefficient. However, we have a situation 
in which both variables vary simultaneously in the two aspects ; these correlations 
are not in agreement with the original conditions. It is caused by the fact, that the 
principal factor method selects an axis so as to maximize the total with the axis con­
nected variance. We achieve then a solution of Fig. 5, in which the reference axes 
do not coincide with the ^-vectors of Fig. 3 ; now a ^-vector must be described by 
two reference axes. 
This problem can be solved by a transformation of the reference frame ; we know, 
that a rotation is always allowed. The problem suggests instantly the rotation by 
which the axes and the jc-vectors coincide. By this rotation the correlations between 
aspects and the irrelevant ^-variable disappear and an identification of the aspects 
has been achieved. We get a unique solution of which a causal interpretation meets 
with no difficulties. The result of this rotation is recorded in Table 6. 
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Fig. 5 Positions of reference axes and vectors 
in the principal-factor solution (model with 2 
independent variables). 

Table 6 Caumax solution; model with 2 independent variables 

Variable Aspect 

Fi Sum a2 
im 

x2 1.00 0 1.00 
xs 0 1.00 1.00 
y% —0.73 —0.68 1.00 
y-2 0.89 0.46 1.00 
y 1 —0.89 0.44 0.99 

Table 7 Principle-factor solution; model with 4 independent variables 

Variable Aspect 

*1 
x.> 

*4 
*3 
y •> 
y 1 

Eigenvalue 

Fl F'2 F3 Fi Sum a2 
im 

0.83 —0.39 —0.04 0.40 1.00 
—0.54 —0.61 0.18 0.55 1.00 
—0.07 0.62 —0.30 0.72 1.00 

0.12 0.31 0.93 0.14 1.00 
0.93 —0.23 0.29 0.02 1.00 

—0.91 0.31 0.26 0.01 0.99 
0.68 0.73 —0.04 0.01 1.00 

3.15 1.68 1.15 1.01 6.99 

A causal interpretation of the results obtained by this rotation can now be easily 
given, with the already mentioned limits however. 
The significance of this rotation is much more apparent, if we have to do with 
more-dimensional systems. We shall demonstrate this by an example, in which the 
four independent variables xi, X2, xs and Xi are involved and the reference frame is 
four-dimensional. The results of the aspect analysis are recorded in Table 7. 
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These results are rather disappointing. It is true, the number of aspects is equal 
to 4 according to the expectations — the number of independent variables was 4 — 
the causal background of the used equations, however, has mainly disappeared. It is 
difficult, even with our foreknowledge, to interpret some aspects. A relatively large 
proportion of the variance has been accounted for by the first aspect. Each aspect 
has relatively strong correlations with more than one ^-variable. Identification and 
consequently the final solution are achieved again by a rotation by which the refer­
ence axes must coincide as well as possible with the ^-vectors. In this case a solution 
is obtained in agreement with the original conditions. Table 8 gives the result of 
this rotation. 

Table 8 Caumax solution; model with 4 independent variables 

Variable Aspect 

Fl F 2 FS F4, Sum a2 
im 

Xi 
x2 
x3 
x4 
>"3 
y 2 
y 1 

1.00 
0 
0 
0 
0.86 

—0.88 
0.29 

0 
1.00 
0 
0 

—0.30 
0.36 

—0.81 

0 
0 
0 
1.00 
0.32 
0.23 
0.27 

0 
0 
1.00 
0 

—0.28 
0.19 
0.43 

1.00 
1.00 
1.00 
1.00 
1.01 
0.99 
1.00 

The usefulness of the rotation performed and the significance of the method of 
rotation are demonstrated clearly by this result. The rotation has achieved an identi­
fication of the aspects and the causal interpretation has been simplified. 
The results obtained have demonstrated the importance of the following procedure. 
In order to obtain a causal interpretation the results of each factor analysis must 
be transformed by a rotation. The rotation criteria are the independent variables only, 
of which the number must be taken equal to the number of aspects found by the 
analysis. The rotation must try to get a situation in which every reference axis co­
incide as well as possible with one independent variable. The correlations between 
an aspect and the other independent variables must be made as small as possible. 
Finally, the rotation must be performed with all variables by means of the rotation 
matrix upon the x-variables. This rotation, which we have named caumax-rotation, 
aims to identify the aspects and to maximize the possibility towards a causal inter­
pretation. 

Discussion 

We mentioned in the introductory section, that the factor analysis is used especially 
to formulate hypotheses about complex phenomena. In such an explorative investiga­
tion the researcher is still far away from a situation, in which he has a clear notion 
of the system of relationships and the estimation of the parameters of models as 
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Table 9 Caumax solution; model wifh 4 correlated independent variables 

Variable Aspect 

Fl F 2 F3 ^4 Sum a2 
im 

xi 
Aj 
x:i 
*4 
y-A 
y-> 
y 1 

0.89 
0.11 

—0.27 
0.22 
0.74 

—0.90 
0.09 

—0.03 
0.95 

—0.29 
—0.07 
—0.10 

0.32 
—0.85 

0.45 
0.23 

—0.22 
0.97 
0.59 

—0.12 
0.11 

—0.13 
—0.20 

0.89 
—0.02 
—0.28 

0.28 
0.51 

1.01 
1.00 
1.00 
1.00 
1.00 
1.00 
1.01 

described on p. 40 ff. are seen as very important. The researcher, employing the factor 
analysis, has mostly a more simple aim and tries: 
a) Firstly to examine how many independent variables do influence the system, and 
b) secondly to indicate which variables can be considered as independent ones in 
order to achieve an interpretation of the aspects. 
The technique of the determination of the number of aspects or dimensions of the 
vector configuration will not be discussed, for this we refer to the literature. How­
ever, we have to realize that error factors in the equations may raise the number 
of dimensions. If these discrepancies are relatively unimportant, they can be neglected 
without any objection; the analysis produces in this case a number of eigenvectors 
with relatively large eigenvalues. If these errors are more important, the analysis 
will produce eigenvectors with relatively small nor large eigenvalues. Now, the re­
searcher will be left in doubt of the real dimensions. He has to decide intuitively 
how large the number of dimensions is. An uncertainty as to the number of aspects 
exists in such cases. This uncertainty is enlarged by the presence of correlations 
between the independent variables; a correlation does have the tendency to decrease 
the dimensional number. 
In connection with this we are interested in the answer to the question how strongly 
the results of a factor analysis are influenced by these disturbing factors and circum­
stances. In order to get an impression we have performed some computations on 
the influences of errors (standard deviation about 15 % of the mean) and of the corre­
lations between the independent variables. It appeared from these computations, that 
these disturbances in the used models had only little influence and that factor analyses 
are yielding rather consistent results. This can be illustrated by the result of an 
analysis (with rotation) on data obtained from the model of Fig. 1, in which the 
independent variables had rather strong correlations (0.20, —0.45, 0.64, —0.53, 0.20 
and —0.27). The result is given in Table 9. 
A comparison between these data and those of Table 8 demonstrates that the pres­
ence of these rather strong correlations between the independent variables did not 
change essentially the loadings and the character of the aspects 3. 
Concerning point b) we note, that the researcher has mostly to renounce of the objec­
tive and automatic rotation methods. The best known methods are those, that try 
to achieve the simple structure and in which a distinction between independent and 

3 An oblique rotation makes the correlations between aspect and irrelevant x-variables disappear. 
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dependent variables plays no role; all variables are used to find the new positions 
of the reference axes and the rotation itself can be performed without intervention 
of the researcher (Harman, 1960). Parenthetically, it will be clear that we reject the 
rationale of the simple structure approach. 
On the other hand, the caumax rotation demands from the researcher a standpoint 
with regard to the most acceptable interpretation of the aspects, the independence of 
the variables to which the reference axes has to be rotated etc. An automatic solu­
tion is not obtained, if a marking of the variables with respect to their independence 
is difficult. In such cases the researcher, supported by his knowledge and the quanti­
tative results of the analysis, will decide upon the final rotation only after an iterative 
rotation procedure. This also means, that the researcher achieves only during the 
investigation and rotation itself a logical interpretation of the aspects. 
Summarizing, we have in such cases a marking of the variables with regard to their 
independence in the rear of the procedure. This rests on the reasonable but only 
empirically testable proposition, that the reverse of the proposition as described under 
the heading Factor analysis and rotation also holds: rotation to interprétable aspects 
leads to a rotation upon independent variables. In practice both procedures will be 
used at the same time, at which the accents will shift to the first or to the second 
way depending on the knowledge about the system. 
From this the possibility also follows that different opinions on the character of the 
variables exist. In that case and that phase of the research the researcher must ad­
mit that more than one position of the reference frame leads to aspects that are 
interprétable. 
Finally, we note that it is only allowed to make causal inferences from the counting 
rule of the number ot independent variables, if all relevant variables are taken up 
in the analysis. Indeed, it is possible that an independent variable can not be measured 
or measurements are just missing. Such an independent variable does give a dimen­
sion to the vector configuration. After rotation to a certain position we have ob­
tained an aspect too, of which the loadings can be considered to be caused by an 
absent variable. It is clear, that the counting rule holds only if this last variable is 
also counted. 
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