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SUMMARY 
The various equations used by several authors to express the partial molar free energy 

of soil moisture as a function of certain parameters are compared with a "parent" equation 
derived in this paper. It is pointed out that aside from differences in terminology also 
some more basic differences of approach seem to exist, which only lead to identical results 
under certain limiting conditions. It is shown that from this "parent" equation some 
equations with practical applicability may be derived. The methods available for the ex
perimental determination of the partial molar free energy of soil moisture are reviewed, 
with special reference to the assumptions underlying the application of the freezing point 
depression of soil moisture. 

1 INTRODUCTION 
Since the appearance of EDLEFSON and ANDERSON'S "Thermodynamics of Soil 

moisture" in 1943 (6) several authors (réf. 1 through 15) have attempted to 
extend the treatment given by E. and A. in the light of increasing knowledge 
of the system soil-water. Although undoubtedly useful improvements on the 
original approach of EDLEFSON and ANDERSON were obtained, at the same time 
a diversion in the use and meaning of certain thermodynamic variables occurred 
which may occasionally give rise to confusion. This diversion in terminology 
is partly a matter of personal preference, although in certain cases differences 
of opinion may exist with regard to the principles governing the interaction 
between water and solid phase. 

As progress in any field is always hindered by such a lack of unanimity in 
symbols and definitions, it would seem useful to reconsider the existing 
literature in order to establish in what respect differences are only of super
ficial nature or whether actually basic differences of opinion exist. This should 
be of special interest to those, who, although not having worked on the subject 
themselves, are concerned with the application of the thermodynamics of soil 
moisture to soil physicial problems. 

Naturally it is outside the scope of this paper to give complete derivations of all thermo
dynamic equations employed. Instead it has been attempted to give satisfactory evidence 
for the equations to render them plausible and allow the reader to acquire an insight in 
their background and limitations. For further detail the reader is referred to standard 
textbooks and to ref. 6. 

As will be shown it seems doubtful whether one generalized equation for 
the system soil water will exist, which combines absolute generality with both 
sufficient detail and practical applicability. Depending on the specific nature of 
the system considered, different variables may be determinable, and accordingly 
different "working" equations would be preferred. Nevertheless it should be 
possible to relate all these equations to one "parent" equation which, although 
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not suitable for practical use, should serve the purpose of providing the 
necessary background against which the particular equations are to be seen. 

With regard to the terminology and symbolics to be employed it may prove 
difficult to reach unanimity of opinion, because of differences in background 
of the workers concerned. Even if certain differences in symbolics will persist 
in the literature, it should be possible to agree on the relationships between 
the parameters employed. With regard to this a warning may be sounded 
against the use of terms and symbols already in use in related fields, as e.g. 
chemical thermodynamics. Unless it can be shown explicitly that the use in this 
particular field covers completely the meaning adopted in other fields, this 
will undoubtedly lead to confusion. 

With the above in mind it will be attempted in the following sections to 
compare the approaches employed by the mentioned authors. For those who 
where not involved in this field before, a section on basic relationships is in
cluded. No differences of opinion seem to exist with regard to the contents of 
this. The next section is concerned with the generalized equation for the 
partial molar free energy of a constituent of a system. Although presumably 
in essence accepted by all authors cited it may still be seen as a starting point 
of the diversion discovered later on. When this equation is applied to the 
soil moisture system, differences arise. According to the present authors these 
differences could be explained as a result of the difficulty to find truly in
dependent, and at the same time practically determinable, parameters to 
characterize the complex system. Most differences in final equations may thus 
be traced back tot the method of splitting the partial molar free energy in 
determinable terms. It should be ascertained at the beginning that there may 
be several ways of splitting the partial molar free energy, which could all be 
essentially correct. It has occurred, however, that the effect of certain para
meters was counted twice, hidden as it was in other terms. This serves to 
illustrate that utmost care must be used when working out a certain way of 
splitting terms. At the same time one should be aware that although an 
equation may be formally correct the practical application may lead to 
erroneous results if it is not checked that variables that were introduced as 
independent, are indeed varied independently in the process used to deter
mine the value of certain partial derivatives (cf. section 6). 

2 BASIC RELATIONSHIPS 
In thermodynamics several variables of state of a system are used. Of these 

the "Gibbs' free energy" has been found to be most useful, because its value 
may be easily expressed as a function of pressure and temperature. 

The Gibbs' free energy, G 2), is defined according to : 

G = E + PV - TS (2.1) 

in which E = internal energy of the system, P = pressure, V = volume, 
T = temperature, S = entropy. With help of the first and second law of 
thermodynamics a criterium for equilibrium based on the value of G can be 
found. According to the first law : 

dQ = dE + PdV + dW' (2.2) 

2) In anglo-american literature the symbol F is used for the free energy, 
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in which dQ is heat added to the system, and dW' stands for work (other than 
the work of expansion, which is covered by PdV) done by the system on its 
surroundings. The condition for equilibrium of a system as formulated by the 
second law is: 

dS = (2.3) 

Combining (1), (2) and (3) another condition for equilibrium is found; viz. 

dG = VdP - SdT - dW' (2.4) 

which implies that for reversible processes (which may be seen as a series of 
successive equilibrium states) G may be calculated from the changes in P, T 
and W'. The term dW' may be replaced by —dW, i.e. the work done by the 
surroundings on the system. This quantity can be written formally as: 

dW = 2 Y d X (2.5) 

in which the summation term on the right hand side indicates that the work 
term must be seen as a summation of different types of work, each type being 
formally equal to the product of an intensive parameter and an extensive 
parameter (e.g. force X distance). Substituted in (4) this gives : 

dG = VdP - SdT + S Y d X (2.6) 

This implies that for a system at equilibrium with fixed values of P, T and 
X the free energy G is at its minimum value, according to: 

dGp.T.x — 0 (2.7) 

in which the subcripts indicate that P, T and X must be kept constant. The 
relationship (6) may also be written formally as: 

dG = Ä dP + Ä dT + 2 (S dX (2.8) 
or T,X OL p,x OA p,T 

since according to (6) the free energy of a system is a function of P, T and X 
only. 

The above relationship is, however, valid only for systems with a fixed com
position. If in addition to the variables P, T and X also the composition is varied 
(by transfer of material into, or out of the system) equation (8) must be expanded 
to cover also the changes in composition. This is done formally by adding a 
set of terms according to: 

dGp.T.x = ^ dG) dn; (2.9) 
i <3rii p.T.x.nj 

in which dGPTX conform the earlier adopted convention signifies the changes 
in G if P, T and X are kept constant, while the composition is varied, whereas 
n; indicates the amount of component i present. The partial differentiations 
covered by the summation term must naturally be performed at constant values 
of P, T, X and of the amounts of all components other than the one with respect 
to which is differentiated. Combining (9) with (8) the final expression for dG 
is found as': 
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dG = (STX dP + dT + ^(^) dX + 2& dn* 
Or T,X,n öl P,X,n OA P,T,n ; On/ P.T.X.nj 

(2.10) 
which equation indicates that the total change of G may be expressed as the 
sum of the changes effected by P, T, XA Xz , na n2 . 

Furthermore a comparison with (6) gives: 

(—) = V 
<5P T,X,n 

(f) = -s 'i11' 
ol P,X,n 

(-) = Y 
<5X P,T, n 

The last summation term may then be simplified by defining: 

Gi = ) (2.12) 
Olli P,T, X,r»j 

The quantity Gi is called the partial molar free energy of component i. 
Applying again the equilibrium condition for a system without material 

transfer through its boundaries (so-called closed system), i.e. 

dGp,T,x — 0 

one finds as a new criterium for a closed system in equilibrium: 

21 G; dn, = 0 (2.13) 
i 

Since also the total amount of each component in the system is constant 
(closed system) one finds 

dna = 0, dnb = 0 dnz = 0 (2.14) 

Combination of (13) aüd (14) then gives the well known equilibrium con
dition for a closed system at fixed values of P, T and X, viz. the partial molar 
free energy of each component is constant throughout the system. Thus the 
original equilibrium condition, which referred to the system as a whole, has 
now been replaced by a much more practical criterium referring to the value 
of the partial molar free energy of the individual components. Thus in the 
soil, equilibrium implies that GHj0 is constant throughout the entire soil system, 
including vapor phase, adsorbed layers, etc. 

3 THE PARTIAL MOLAB FREE ENERGY 
In order to apply the foregoing it is necessary that the value of the partial 

molar free energy of a component in a system is expressed as a function of 
measurable parameters. The more complicated a system becomes the more 
difficult it is to find a satisfactory set of parameters for this purpose. 

Although no differences of opinion are found with respect to the basic relation
ships described in section 2, no such unanimity of expression is found with regard 
to the equations relating G to measurable parameters. Nevertheless, as will be 
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shown here, the lack of unanimity is probably rather superficial and refers 
more to the appearance of the equations used than to their contents. In order 
to explain these differences it is useful to consider first a completely formal 
approach, which may then be adapted to specific systems of increasing com
plexity. 

The partial molar free energy of a component of a system depends on the 
pressure, temperature, position in force fields and the concentration (e.g. mole 
fraction, molarity) of all components. Thus one may put formally : 

dGi = (g1) dP + Ô dT + 2  Ö P;T,C dX + 2  ( f l )  dck 
or T,X,C DL P,X,C dX <5CK P.T.X.CJ 

(3.1) 
It should be noted that equation (3.1) has much in common with equation 

(2.10), P, T, X and c being the variables. Nevertheless there is a difference in 
the meaning of the variables P and X employed here, in comparison to those 
mentioned in equation (2.10). In this case the value of G, may be considered 
in all parts of a system, and accordingly the local values of P and X are to be 
used. In equation (2.10) the system is considered as a whole, and P and X 
refer necessarily to the ones acting on the system. 

Thus for the calculation of G of the water in a beaker one employs the external pres
sure (e.g. atmospheric) and the position of the beaker in the gravitation field. In calcu
lating the value of GH,O one may choose any location to perform this calculation, and 
should accordingly use the (varying) hydrostatic pressure with the corresponding height in 
the gravitation field. Naturally this will give a constant value of GH,O in case of equili
brium, notwithstanding the pressure and position terms vary throughout the beaker. 

Also the partial derivative with respect to the total number of moles in the 
system must in this case be replaced by a differentiation with respect to a 
concentration variable (e.g. mole fraction). Furthermore it is pointed out that 
G; must be differentiated with respect to the concentration of all components, 
including C; , as is indicated by the use of ck , k thus varying from a z. 
During each differentiation all concentrations, other than the one with respect 
to which is differentiated, are kept constant, as is indicated by the subscript q . 

Equation (3.1) may be applied to simple systems without any difficulty. For 
example the partial molar free energy of a solute, s, in an ideal solution is 
determined by the pressure, temperature and concentration cs , of the solute. 
In this case P, T and cs are constant throughout the solution. Thus one may 

P dGs = Ä dP + (& dT + Ä dcs (3.2) <5P T,cs dT p.cs ÓCS P,T 

The first two terms may be transformed by changing the following order 
of differentiation, according to: 

-  A  ( — )  A  1  #> = =(-^—-) = 0  =* 
<3P 'T,C8 <5P T,CS Sns P,T <5ns P,T 

and similarly: 

(*&) = -S. 
oT P,CS 
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in which Vs and S, are the partial molar volume and entropy, respectively. 
Since for ideal solutions 

dc, = RT d In cs , 
<5cs P,T 

equation (3.2) becomes: 

dGs = Vs dP - Ss dT + RT d In cs (3.3) 

At a given P and T this becomes: 

dGSp T = RT d In cs, 
or 

Gip T = RT In cs + constant (3.4) 

If one puts now Gsp T (cs = 1) = Gs 

(standard value of Gs at the given P and T), then: 

Gs r= G,° + RT In Cs . (3.5) 

This equation is often used in the form: 

^ jWs "I- RT In Cs (^*^) 

(with cs in mol/liter), in which 

is given the name chemical potential. For non ideal systems 

óGs, -
( T —) des 

OCs P.T 

is no longer equal to RT d In c, , because of interaction of the solute with 
the solvent, and if present, with other solutes. In that case a term must be 
maintained to cover the effect of the concentration of all components (cf. the 
summation term in equation 3.1). Since Gs is in general mainly determined 
by cs , and only secundarily by other concentration terms (because of inter
action) it is formally possible to separate the summation term in two other 
terms, viz. 

S (~) dck = (^) dcs (ideal) + dGSpT (inter.) 
OCk P.T. C j  OCs P.T, C j  P'J 

in which the last term signifies the effect of the interaction between solute s 
and other components, thus covering in effect all that is left of the summation 
term of equation (3.1) after 

/ <5GS. -
(Î—) dcs 

OC5 P, T, cj 
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has been taken out. This term can then be expressed as 

dGsp T (inter.) = RT d In ys , 

with ys = activity coefficient of the solute. Defining now as = ys .cs , one 
finds for non-ideal solutions: 

dGSp T = RT d In ys cs = RT d In as 

Putting now GSp (as = 1) = Gs°, equation (3.5) is transformed into 

Gs = Gs° + RT In as (3.7) 

or ƒi, = fi° + RT In as (3.8) 

According to the foregoing the chemical potenital, //s , thus equals the 
partial molar free energy in systems where P, T and the concentrations (ac
tivities) are the only variables of concern. In solution chemistry this is usually 
the case, which accounts for the extensive use of equation (3.8). For these 
systems the equilibrium condition is then: 

fis = constant (3.9) 

For all other systems (i.e. systems in which P, T, c and X are of concern) 
one should employ the original condition, i.e. 

Gs = constant (3.10) 

in which Gs jus . 

One could consider extending the meaning of /a. to cover all effects, although in che
mical thermodynamics generally no mention is made of the X terms of equation (2.10). 
Thus GLASSTONE (in Thermodynamics for Chemists, p. 242), discussing the presence of 
surface effects, introduces 

ÓG~ 
=  & "  

oni P,T, O 

the subscript O signifying constant surface area. On the other hand in electrochemistry, 
where a term zFy appears if G; of charged components is considered, the chemical 
potential fj,, is usually replaced by 

ÔG 
i"i = (s—) » 

1 onj P,T,i/> 

the electrochemical potential. To avoid confusion it would seem advisable to avoid the 
name "chemical potential" for G, in systems where force fields are of concern, as e.g. in 
soil moisture. There "partial molar (or specific) free energy" should be preferred, or if 
this name is too long for practical use, "thermodynamic potential" (in cal or erg per mole) 
or "moisture potential" (in erg per gram) could be considered. 

The expression for Gs as a function of P, T, c and X will then be: 

dGs = Vs dP - Ss dT + 2 Ys dX + 2* (—-) dc, (3.11) 
i OCi P, T, X, Cj 

in which Y, stands for (T—) óns P,T,C 
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4 THE PARTIAL MOLAR FREE ENERGY OF SOIL MOISTURE 

Departing from equation (3.11) one may attempt to define the variables 
that determine GHi0 . Listing all factors which may be of concern as follows: 
temperature, pressure, concentration of solutes, moisture oontent, surface free 
energy, adsorption forces, gravity field (and in special cases centrifugal field) 
one should select a particular set of variables which covers the effects of all 
factors listed, without omissions or duplications. 

In fact different possibilities exist with regard to the selection of the set of 
variables to be used, depending on the manner in wich the system is described 
(cf. Takagi in ref. 14). Thus one may choose to regard the soil-water-air system 
as a three phase system, of which only the phase "water" is considered. 

Alternatively it is also possible to disregard the heterogeneity and treat the 
system as one single phase, containing at least two components, viz. water and 
"solid". Both the "three phase" and the "single phase" approach may then 
be divided into a "macro" or "micro" approach. Each of these four possibil
ities requires different variables to describe the partial molar free energy of 
water in a consistent manner. Naturally, all four methods should eventually 
lead to identical results if the correct expressions are used. As will be shown, 
none of the four methods is entirely satisfactory from a practical point of 
view, i.e. generally it is not possible to obtain a set of completely independent, 
practically determinable parameters to describe the system. Again this does 
not imply that the resulting equation is incorrect, but only that practical 
application is not always possible. 

Treating the different approaches mentioned separately the following may 
be said. 

a-y. Macro approach, considering water as one phase of the three phase system 
soil-water-air. 

In this case the water phase is considered as a system by itself, being a 
body of water with a definite surface, which separates the phase from the 
other phases. The solid phase particles are not included in this phase, and 
consequently the liquid phase is considered to be an electrolyte solution, i.e. 
water with dissolved solutes. The variables determining the partial molar free 
energy of water in such a system are Pe (the external pressure on the system), 
T, the concentration of solutes, the position of the system in the gravitational 
field, the surface energy terms and the adsorption forces extending from the 
solid phase. Thus the appropriate equation for this case reads: 

dG = VdPe + (~) _ dT + do; + Mgdh + adÖ + da (4.1) 0 P pe . ty,h,o,a ° 

in which doj signifies the osmotic effect of the solutes, a = surface tension of 
water against air, O = surface area of the air-water interface per mole of water 
and a = energy of adsorption of the water by the solid. It should be stressed 
that here Pe and h refer to the system (i.e. the phase water) as a whole. The 
three last terms of (4.1) correspond to the XYdX term of equation (3.11). 

a2. Micro approach 
Since the partial molar free energy of the water is constant throughout the 
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water phase it is advantageous to express G at a conveniently chosen location 
as a function of local parameters. This allows one to obtain detailed inform
ation on the values of certain parameters at different locations. With this 
approach one selects a "test body" of water, if possible situated in such a 
manner that it lies outside the region of influence of all interfaces. The 
variables of ooncern are now T, P (the local pressure), co and h. Although it is 
always possible to stay outside the interface water-air it may not always be 
possible to select a body completely outside the range of interaction forces of 
the solid phase. In that case a term da must be included. The result of this 
approach is then: 

dG = VdP - SdT + dco + Mgdh +da (4.2) 
The obvious difference between (4.1) and (4.2) is that now P oontains Pe 

and the local increment of pressure, p, according to P = Pe + p. Thus in 
effect the term dO has been incorporated in VdP. In this case the last two 
terms are regarded as YdX terms conform equation (3.11). 

b\. Macro approach, considering the soil-water-air system as one, homo
geneous system 

Although this approach is less straightforward than ax it deserves attention, 
because it allows one to introduce the moisture content as a variable (cf. réf. 
1, 2, 15). The variables to be considered are then Pe (as in %), T, h, 
solute concentration, 0 (moisture content, e.g. the weight fraction of water 
in the "homogeneous" system) and a geometry factor. The latter will be in
dicated with X , without further specification (e.g. pore size distribution) and 
must be included, because at constant Pc , T, h, solute concentration and 0 
the partial molar free energy is influenced by rearrangement of solids and 
water. (In fact this last statement is inconsistent with the very acceptance of 
the one-phase system). The corresponding equation would read: 

dG = VdP. + (^) dT + Xai8+ (^)ptT Xa>eiX 

+ da) + Mgdh (4.3) 
Although superficially acceptable, closer consideration indicates that this 

equation is not generally applicable. Thus a change in 0 will change the con
centration of solutes, comprising both the free salts and the adsorbed ions. 
It would seem advisable, therefore, to split the osmotic term according to: 

do) = dftio + dco*, 
OJ0 referring to the free salts, OJA to the contribution of the adsorbed ions. 
Since the change in oja at constant salt concentration of a freely swelling clay 
paste, caused by a change in 0, is covered fully by the effect of 0 on G, 

ÔG 
one is forced to omit the dco. term if d 0 is maintained, in order to avoid 

counting the same effect twice. Replacing (4.3) by: 

dG = VdPe + (S dT + (S) y d© + S „ dZ 
OA PCIX,0,COO 00'pe,T ,X ,C00 èX'  PEIT ,0 ,COo 

+ dcoo + Mgdh (4.4) 
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remedies this partly. Nevertheless (4.4) is not entirely satisfactory either, 
because a change in the salt concentration at constant 0 will also affect dco 
(cf. réf. 4) which indicates that, although doja is covered in part by the 0 
term, there are some additional effects on the doj, term which are not covered 
by the 0 term. 

One could formally adjust doja to cover both the direct osmotic effect of the added 
salts, and the secundary effect on dcoa which is not taken care of by the 0 term. This 
would then imply that da>0 — — Vdjt + dco0 in which — Vdjr signifies the "ordinary" 
salt effect, and dojQ ' is the secondary effect on do>a . It is obvious that this makes general 
application of equation (4.4) impossible. 

It is important to note that the temperature term of equation (4.4) is not 
the same as in equation (4.2), because different parameters are kept constant 
during the differentiation of G with respect to T. In equation (4.2) the soil 
water is considered to be an electrolyte solution constituting one phase of the 

<50 _ 
three phase system. Accordingly the differential (~^P)P h equals — SHJ0J 

i.e. the entropy of the water component in an electrolyte solution. In principle 
the value of SHi0 may be found from standard tables, and equals SH,O > the 
standard entropy of pure water with a (small) correction for the effect of the 
difference in pressure between soil moisture and water under atmospheric 
pressure, and a correction for the presence of ionic constituents. 

In equation (4.4) the soil water is considered as a component in the "one 

phase" water-solid system. That the term (-^) P QX aj h ^oes not eclual ~SHj0 

as defined above is obvious, if one realizes that upon a change of T at constant 
0 as least the pressure P of equation (4.2) changes. This would give in first 
approximation (neglect ing the inf luence of  T on eo,  h ,  a ) ,  

Ä _ /<5G\ , y 
<5T pe, 0,%,coo, h <5T p,a>,a,h, <5T pc,@,^,co0.h 

indicating that () of equation (4.4) contains at least a term V( ) in 

addition to — SHs0 as employed in equation (4.2). One could, of course, con-
—' ôG 

sider defining a variable SH.2o equal to ( p c  © X  c o  h but it seems doubtful 

whether this "entropy" of soil moisture considered as a component of the 
hypothetical one phase system has any physical meaning. It would seem more 

<5G 
straight-forward to maintain (—) as such, indicating that the value 

d l  pc,0, X , c o o , h  _  

of this parameter may be obtained by adding at least a V(— ) .term 
to the entropy of soil water. pcl0,^,(Mo , 

b2. Micro approach 
Consistent with a2 it may be attempted to limit oneself to the consideration 

of micro-regions, introducing the local values of the parameters in stead of 
the values pertaining to the entire soil-water system. Pc would then signify 
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the local value of the external pressure; otherwise the equation is identical 
with (4.4). The ambiguity of the approach b is now clearly demonstrated. Con
sidering a soil column with a fixed water table, the equilibrium condition 
implies that the variation of the Mgdh term in the capillary zone must be 
balanced by a change in the sum of all other terms listed in equation (4.4). In 
the unsaturated portion of the capillary zone this variation is obviously taken 

<5G care of by the (—^)df) term if the soil is incompressible (i.e. has a constant 

pore size distribution) and by the sum of (—^)d@and ( — )à"/. if the soil is 
o© oJC 

compressible (i.e. has a pore size distribution which varies with depth). Ob
viously the dPe term must be taken equal to zero in this case, indicating 
that Pe is considered to be constant throughout the unsaturated capillary 
zone. If also a saturated region exists in the capillary zone ,this procedure 
does not work. Then d<9 equals zero, and if the soil is incompressible d'/ 
is also zero. Thus Mgdh may not be balanced by the © and X terms, and 
one is forced to introduce a variation in Pe to obtain a constant value of G in 
the soil column. Such a change of Pe could be interpreted as the result of 
the increasing value of the "reaction" pressure of the capillary walls on the 
water present in the capillaries. Of course this gives the correct result, because 
this "reaction" pressure necessarily equals the pressure in the water (as em
ployed in the approach a2), and accordingly VdP of equation (4.2). The 
inconsistency is, however, that also in the unsaturated portion of the capillary 
zone such a "reaction" pressure of the capillary wall is present (again equal 
to the "water" pressure P of equation (4.2), but there one is forced to put 
dPe = 0, because of the variation of the © and % terms. Thus the extension 
of the approach b into saturated soils makes it necessary to define Pe in a 
manner which differs from the definition employed in the unsaturated portion. 
The reason for this ambiguity is obvious: the energy level of soil moisture is 
a direct function of the local pressure in the water, whereas the moisture 
content is a derived quantity. For a given pore size distribution (i.e. constant 
value of %) and constant salt concentration, © is a single valued function of 
p, or P — Pe (the "pF-moisture content" curve) and the energy level may be 
expressed satisfactorily as a function of ©, provided the slope of the curve 
relating p and © is finite. In the saturated region of the capillary zone this 
slope is infinite (below the air-entry value the moisture content is constant). 
Thus the use of © (and X ) as variables is limited to unsaturated regions. In 
the saturated region one is thus forced to invent another variable, which then 
must be Pe . The ensuing identification of Pc with P (= p + Pe ) of approach 
a2 remains inconsistent with the procedure employed for the unsaturated soil. 
Obviously extreme care must be used in employing the approach b. 

5 COMPARISON WITH EXISTING LITERATURE 

In table 1 the equations employed by different authors (1, 4, 5, 6, 9, 10, 11, 
15) are listed in a comparative manner. In the center of the table the "parent" 
equation (3.1) is given, and next to it on both sides are the equations (4.2) 
(approach a2) and (4.4) (approach by and b2). Obviously the approach a has 
been used by most authors, although the equations differ in notation. 

Apparently some confusion has arisen between a\ and a% Thus W. GABDNER et al. (7), 
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discussing GH,O in spherical raindrops suggest that a dilemma exists with regard to the 
necessity of counting a adO or a VdP term, or even both. Obviously these authors have 
used parameters belonging to two different types of approach, and when suggesting to 
combine the two are counting double. Naturally the change of dP in the drop is caused 
by the effect of surface tension, and either adO or VdP should be counted. 

On the other hand BABCOCK and OVERSTBEET (1, 2) and TAYLOR (15) ap
parently used an approach comparable to b, although not explicitly mentioned. 
The reason forwarded by B. and O. for using Pe and 0 as variables is that in 
thermodynamics only external, independent variables should be used. This is 
acceptable, although the author's inference that the equations of type a used 
by other authors are less complete than their own can be turned around to 
the effect that B. and O.'s equation in fact covers less than the other equations. 
This follows from section 4 where it was pointed out that the geometry of the 
system (Xterm) should be maintained as a variable once & is adopted. 

This change in pore size distribution is presumably the effect hinted at by SCHOFIELD, 
as quoted by B. and O. (3), when stating that the "pressure" in a soil column may vary 
from the top on down, invalidating Buckingham's equation. Such a change in intergranular 
pressure of the solid phase will affect the pore size distribution, leading occasionally to 
a decrease in moisture content with increase in depth (as is found in the engineering 
literature). 

According to the foregoing discussion in b%, B. and O.'s term equivalent to 
<5G 

t° ( ) p 0 a) does not equal —SHs0 • Although it is not clear from B. and 

O.'s equation whether dwa was meant to be included in the <9 term or in 
their "osmotic" term, it was shown above that neither choice is entirely satis
factory. The ambiguity of Pe , elaborated upon before, was apparently felt by 
B. and O. when discussing the water in a saturated zone (3). They then in
troduce Pe as a varying external pressure, not mentioning that this is incon
sistent with the adoption of a constant value in the unsaturated region. Ac
tually they suggest then that Pe may also vary in the unsaturated zone, without 
specifying how it would change. 

If they had in mind to vary it in a manner consistent with the suggested variation 
below the water table, they would overlap their own f) term, and thus count the same 
effect twice. Obviously the introduction of a Z term in the unsaturated zone would solve 
their difficulties, although the result would remain inconsistent with the procedure employed 
in the saturated zone. 

The supposedly novel consequence of their theory for the capillary ascent 
of soil moisture is clearly non-existent, and is the result of the ambiguity of 
their choice of parameters. 

The approach used initially by Low (9, 10, 11) seems consistent with 
equation (4.2). In a subsequent paper (12) Low apparently switches over to 
approach b without warning. Developing a method to determine the "entropy 
of soil moisture" (which in accordance with his previous papers should have 

*5G been (—) ). Low suggests that the change in swelling pressure with 
oT p, co, a, h 

temperature be measured at constant value of © and Pe . The swelling pres
sure being a direct measure of G — G° (at least in salt free systems) this 

ôG amounts to the determination of (—) .In other words the "entropy" 
dT pc,@,X,m0,h 
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determined by Low is the SHj0 discussed above, and not SH,o of his preceding 
papers. 

The determination of SH,O from equation (4.2) does not involve any measurements. Con
sidering for simplicity reasons a system in which the co and a terms may be neglected, 
one finds : 

/ Pc + P_ _o _ 
GTI = GTJ + J VTi dP — GTI + VTI P 

p 
e 

_o 
in which GT, is the molar free energy op pure water at pressure Pe (presumably atmos
pheric pressure), and p is now the "capillary" pressure (equivalent to the negative value 
of Low's "osmotic" pressure, n). 

At a temperature T2 one finds : 

GT, — GT, + VTJ p. 

Thus : 

and : 

(GT, — GTI) (GT, — GTI) (VT, — VTI) 

(T, - T.) = (T2 - T.) + P CrT-'Tij" 

- _ _o 5V 
"S H,0 — Hjo -F p (^-J.) 

(Sh,0 — ^H,o) — — P (^f) (5-1) 

According to equation (5.1) SH,O at given value of P is determined by the product of 
p and the temperature expansion coefficient. It is interesting to note that Low's equation 
is consistent with these considerations. According to equation (4.5) : 

_ —„ _ _ - ÓP — 
(SHao - SH,o) - SH,o - V (5X) Pe,0,ZlCOo, h~ Sf 

(cf. equation 4.5) 

P (<5T} V (ÓT)PE,@,Z,CÜO,H (5"2) 

(cf. equation 5.1). This is identical with Low's equation (10) in which p has been replaced 
by -71. In other words Low's procedure does not lead to the determination of the entropy 
of soil water as it is usually defined, but is a direct measure of the effect of T on the 
P term of equation (4.2), which effect must be added to the known entropy of soil water 
in order to obtain the change of G with T at constant moisture content. As will be pointed 
out in section 7 these arguments have a significant bearing on the treatment of the 
freezing point depression of soil moisture. 

A further subdivision of the adsorption term, da, as introduced by Low, 
BOLT and MILLER, or of the & term (BABCOCK and OVEBSTREETJ is mainly of 
academic interest. The equations proposed (so-called extra-thermodynamic 
equations) serve to provide a better understanding of the forces that influence 
the adsorption of water by soil. On the other hand the constants involved in 
a van der Waals adsorption equation, and apparently the equation describing 
the effect of H-bonds and even the equation for the adsorption of water in 
an electric field (cf. 2, 4 and 9), are not known with sufficient certainty to 
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allow a calculation of the a term for practical systems. On the other hand, as 
will be shown in section 6 the approach a2 makes it possible to avoid the 
a term entirely (i.e. by selecting a micro region outside its range of influence) 
at least in fairly moist soils. 

The suggestion forwarded by Low (9) to combine all terms of equation 
(4.2) and to express the sum total by means of its antilog does not offer any 
new perspectives. 'Naturally the constancy of G (or its antilog) is used as 
equilibrium condition, but in order to establish whether equilibrium exists, 
G has to be broken down in measurable parts. The use of the antilog, then 
called (total) activity according to: 

dGT = RT d In a 
or 

(GT - GX°) = RT In ä 

in fact is rather impractical, because the variation of a in the range of interest 
— — G G" in soil moisture studies is limited from 1.000 at G— G° to 0.9993 at—_ — 

g G° _ V 
= — 1 atm. and 0.993 at — —= — 10 atm. Thus a is clearly no improvement 

in comparison to the use of G. Moreover the word "activity" has acquired 
a definite meaning in solution chemistry (covering only the effect of concen
tration and ionic (molecular) interaction in homogeneous systems) and the 
extension to the soil moisture system would undoubtedly lead to confusion. 

TAYLOR (15) proposed a similar introduction of the activity of soil water 
(presumably not including the gravity effect) and then went even further by 
defining the activity coefficient of soil water. This activity coefficient equals 
a/0, in wich a = activity and 0 = moisture content. This is clearly an un
desirable over-extension of the meaning of the activity coefficient as used in 
solution chemistry. The activity coefficient of soil water according to this 
definition would be increasing upon a decrease in moisture content, because 
© decreases much faster than a upon drying-out of the soil. 

The water in a "normal" field soil would thus have an activity coefficient of about 3 
at saturation (containing 30—40% moisture). At a pF of 4 the activity coefficient would 
be 10, respectively 20 (assuming 10%, respectively 5% moisture at pF 4). 

The equation used by DAY is presumably correct although force fields other 
than the gravitational field are not explicitly mentioned. Edlefson and Ander
son's equations are consistent with approach a2. On the other hand their 
treatment of the adsorption force is outdated, inasfar as the osmotic effect of 
the adsorbed ions, dcoa , is not mentioned. 

Summarizing the situation with regard to the equations available it seems 
that most equations are formally correct, or could at least be interpreted in a 
correct manner. The equations based on approach b are missing the Z term, 
which in compressible soils should be present. On the other hand the approach 
b entails so many difficulties that it seems doubtful whether anything is 
gained by this approach. Nevertheless, also the equations based on approach 
a still contain parameters which are not independent under most experimental 
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conditions, thus rendering the application difficult in practice. As will be 
shown in section 6 some more practical equations may be obtained by suitable 
combinations of terms. The usefulness of such combinations is usually limited 
to certain specific systems, and accordingly the practical equations are not 
always generally applicable. 

6 PRACTICAL APPLICATIONS 
Since thermodynamic equilibrium implies thermal equilibrium, it is for 

most purposes satisfactory to consider the variation of G at constant tempe
rature. For this case (approach a^)\ 

dGï = VdPe + Vdp + da + dcoa + dco0 +Mgdh (6.1) 

Of this equation the first and last term are external to the system, and are 
usually accessible for direct measurement. The term dco0 refers to the free 
salts in the system; a fair estimate of this term may be obtained from con
ductivity measurements in the soil solution (equilibrium dialyzate, or pressure 
filtrate). The remaining three terms, i.e. Vdp, da and da>a , together describe 
the influence of the solid phase on the partial molar free energy of soil water. 
These three cannot be measured separately, although the sum of all three is 
found from pressure membrane and/or tensiometer data. 

At equilibrium GT is the same in the soil water and in the water present in tensio
meter or pressure membrane apparatus. Furthermore the gravity term and salt concentra
tion are supposed to be equal in both systems (osmotic equilibrium should be established!). 
In the tensiometer the external pressures are also identical, and thus the sum of the three 
terms described is found as the gauge pressure in the tensiometerpot. In the pressure 
membrane apparatus the sum of the three terms plus VdPe equals the pressure on the 
liquid phase collected, i.e. the barometric pressure. The sum of the three terms discussed 
is thus found from the difference between the applied gas pressure Pe (inside the appa
ratus) and the barometric pressure, i.e. —V(dPc — dPe0)-

Both practical and formal motives would thus favor the combination of the 
three terms into one. For historical (and perhaps practical) reasons this is 
usually done in the form of a "hypothetical" pressure, according to: 

Vdp + da + da)* = VdPs 

in which Ps is thus the pressure equivalent of the three energy terms, the 
subscript s indicating that it is the effect of the solid phase on the water. 
The negative value of Ps equals the so called "Soil moisture tension". 

Recently 3) a new term "Matric suction" has been proposed to cover —Ps . 

It may be pointed out that "matrix" refers to the geometrical arrangement of the solid 
phase, whereas the term d<ua is determined mainly by the structure of the ionic atmos
phere on the soil particles, and only secondarily by the geometric arrangement. Strictly 
speaking solid (phase) suction should perhaps be preferred. 

Introducing Ps in equation (6.1) one finds: 

dGT = VdPe + VdPs + dcoo + Mgdh (6.2) 

3) T. J. MARSHALL proposed this in the interim report to the International Committee 
for Horticultural Congresses, March 1958. 
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This equation is very attractive, although much less detailed than (6.1). The 
four parameters are now reasonably independent. Thus one may change Ps , 
leaving Pe , h and OJ0 constant. On the other hand it is practically impossible 
to change co0 without changing Ps , at least when da>a is a sizable part 
of dPs . 

In the special case where the geometric arrangement of the solid phase is 
ÔG fixed (i.e. ( —- ) dX = 0), and where the salt concentration is kept constant 

(or, alternatively, d<ya does not contribute significantly to dPs ) one may 
assume that for a given temperature in unsaturated soils Ps is a single valued 
function of 0 (neglecting hysteresis phenomena). Now a2 leads to approach 
b, with : 

(<gs)dPs = (g) d0 

and thus: 
ÔG 

dG-r.coo,© = VdPc+ (ó@)d@ + Mgdh (6.3) 

This is the equation proposed by BABCOCK and OVERSTBEET, which may thus 
be classified as a practical equation valid only if T and "/• are constant, if the 
soil is unsaturated, and if co0 is constant or dcoa is negligible. The factor 
(5G sp 
—-then equals V ( „s ) = tg/î (the slope of the "Tension"-moisture content 
00 00 

curve), such that: 
dGx.œo.z  = VdP + tgß.  d0 + Mgdh (6.4) 

For soil systems which are not defined in detail with regard to the properties 
of the solid phase, equation (6.2) is the best choice. Ps must be determined 
experimentally, and a further division of this' term, as used in equation (6.1) is 
mainly of academic interest. It serves to give a better understanding of the 
factors which make up Ps , and allows one to predict at least the direction 
of the effects introduced by the variation of the parameters employed, if these 
are not truly independent. 

There are, however, some special systems', for which a further splitting of 
terms seems warranted. In the first place this concerns systems in which the 
solid phase consists of a fairly homogeneous, coarse grained material. Because 
of the small value of the specific surface area of such a material the terms da 
and dfi)A may be neglected, at least at moderately high moisture content. 
Thus VdP g contains only the term Vdp, in which p is the pressure deficit 
caused by curved liquid menisci. For a fairly homogeneous material one may 
attempt to calculate the curvature of the menisci as a function of the moisture 
content, and one would find: 

2,3 dGT P(_ = Vd — cos (p + dcoo + Mgdh (6.5) 

in which a = surface tension, <p = wetting angle and r = mean radius of 
curvature of the menisci (= f(© )). Thus G could be calculated as a function 
of 0 , or, conversely, the calculation could be checked against experimental 
data. 
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The second system of interest is a paste of peptized clay particles. If the 
intergranular pressure in the paste is zero (particles do not touch each other) 
negatively curved menisci cannot exist. 

Aside from thermal equilibrium, thermodynamic equilibrium also implies mechanical 
equilibrium. Thus a negative value of p caused by curved menisci must be balanced by 
a "reaction" pressure of the walls of the capillary. If these are not rigid, as is the case 
in a fully swelling and shrinking clay paste, the capillary walls (i.e. the particles) will 
approach each other upon a decrease in moisture content. Thus dp (due to curved menisci) 
equals zero. 

Although p varies inside the ionic atmosphere, this variation is locally 
balanced by increased concentrations of the adsorbed ions. As was pointed 
out before one may select any location in the system to determine G. Selecting 
the air-water interface (or the symmetry plane between charged particles) 
one can easily prove that at that location dp depends solely on the curvature 
of the meniscus, and thus equals zero (4). Furthermore one can prove that, 
except at very low moisture content (when the water layer is only a few mole
cular layers thick), also da equals zero at the chosen location. The problem 
is thus shifted towards finding the ionic concentration at this location. The 
latter may be calculated from the double layer theory as a function of the 
moisture content of the system, provided the specific surface area of the solid 
phase is known (4). One then finds' for these systems: 

dGpe,T— (dft)a)c-f- da>0 -f- Mgdh (6.6) 
in which 

(dcoa)c + da>0 = (dco)c = — Vdyic. 

The osmotic pressure at the chosen symmetry plane or interface, nc , may 
then be expressed as a function of © , S (specific surface) and 2c 0 (the con
centration of solutes in the equilibrium dialyzate). 

7 DETERMINATION OF THE PARTIAL MOLAR FREE ENERGY OF SOIL WATER 

As was already described in section 6, GT may be expressed by means of 
the working equation (6.2). Evaluation of the variables Pe , Ps (by means of 
tensiometer, pressure membrane and possibly calibrated Bouyoucos blocs), oj0 

and h will thus give G at the temperature employed. The calculation of G at 
r T — 

any other temperature formally involves only the addition of a term —SdT. 

This is in practice of little help, because the actual change of G with tem
perature depends on the choice made with regard to the constancy of the 
parameters used. Since the only practical approach is to consider the change 
of G with temperature at constant values of Pc , © and to0 , one must con

clude that ( — ) for such a situation usually does not equal —SHi0 . 
<5T 

A second extremely useful means of determining G is to measure the 
pressure of the water vapor. By the definition of equilibrium G(vapor) = 
G(liquid), and G(vapor) is a rather simple function of the relative vapor 
pressure. 
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If the water vapor is regarded as an ideal gas one finds 

dGT (vapor) = vdpy = RT d In pv (7.1) 

in which v = molar volume of water vapor, pv = vapor pressure. By integration : 

Gt (vapor) = Gt (vapor) -f RT In /p° (7.2) 

in which GT is the partial molar free energy of free water at temperature T, and p° is 
the saturated vapor pressure. If expressed in pF units equation (7.2) yields the well known 
SCHOFIELD equation, viz. 

pF = 6.5 + log (2 - log pr ) (7.3) 

in which p = 100 pv /p° = relative vapor pressure in percent. If necessary the ideal 
gas equation may be replaced by a more accurate equation of state of water vapor. 

The only reservation with regard to the use of the vapor pressure method 
is the extreme accuracy required to measure G in the range of 0 to —18.106 

erg/mole (corresponding to Ps values' from 0 to — 1 atm.) 
A third method described in the literature to determine G is the measure

ment of the freezing point depression of soil moisture. The principle involved 
is the fact that G (liquid water) equals G (ice) at the freezing point. Obviously 
the first requirement is now to prove that G (ice) is easily found from ex
perimental data. Although one may assume (at least for a moderate F.P.D.) 
that pure water freezes out, it is much harder to prove that the ice freezes 
out against atmospheric pressure. Assuming nevertheless that this is the case, 
G (ice) at the freezing point is found as: 

G,f (ice) = GTq (ice) - S(ice) (T - To ) (7.4) 

in which Tf indicates the temperature at the freezing point, and T0 is the 
temperature at the ice point (freezing at atmospheric pressure, i.e. 0 °C) 
and in which it is assumed that S (ice) is constant over the temperature range 
concerned. Now GTf (ice) = GXf (liquid water) and thus G of the soil 
moisture at the freezing point is found. 

Next G (liquid water) at the ice point is calculated according to: 

GT (liquid water) = GTf — S(liq.) ( To — Tf ) (7.5) 

Combination of (7.4) and (7.5) then gives: 

GX (liquid water) = GT (ice) — | S(liq.) — S(ice) j (To — Tf ). (7.6) 

Now Gt (ice) is the partial molar free energy of ice at 0 °C, which must 
equal the partial molar free energy of liquid water that just freezes at 0 °C, 
or in other words, the molar free energy of "free" water at 0 °C. Defining 
now AG (liquid water), that is the free energy depression of the soil moisture 

To 

at 0 °C as: 

AGTo (liq.) = GTo (liq.) - GTq = GTq (liq.) - GTq (ice) 
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in which G indicates the molar free energy of "free" water, one finds : 

AGTo (liq.) = - ( S(liq.) - S(ice) } (F.P.D.) (7.7) 

According to this relation the free energy depression of the soil moisture 
(at 0 °C) may be expressed as a function of the F.P.D. 

The above considerations were extended by TAKAGI (14) who introduced 
actual equations of state to improve the accuracy of equation (7.7). The present 
authors have some severe objections to such an extension, because it suggests 
the possibility of obtaining high accuracy, whereas the assumptions under
lying this treatment seem very week indeed. 

Thus TAKAGI assumes: 
a. That the ice freezes out as pure ice under atmospheric pressure, and 

consequently the corresponding value of the entropy of pure ice may be used. 

b. That the change in G of the liquid phase with a change in temperature 

equals J S dT. As was pointed out before, there are no reasons to believe 
that the change of G (soil moisture) with T (at presumably constant values 

—O 
of Pe , 0,wo ) is covered by an S dT term, since dcoa and dp would also change. 

Finally a last complication arises' because the value of G (soil moisture) at 

"field" temperature is sought. Only if S (soil moisture) equals S (entropy 
of free water) and if also the effect of temperature on G (soil moisture) is 
adequatly described by a term SdT, may one put: 

AGT = GT - GT (= AGT0 -  f  (S - S°) dT) = AGTQ 

This leads to a third assumption hidden in Takagi's treatment, viz. 
c. That even over t^e entire temperature range from 0 °C to field tem

perature, the change of G (soil moisture) with temperature at constant moisture 

content is covered adequatly by a term f S dT. 
Only if the above three conditions are satisfied is an improvement of the 

existing equation (7.7) by means of equations of state, warranted. Till now 
little evidence is available to support such a treatment of F.P.D. data. On 

<5G the contrary Low's procedure for determining ( —^,) p q % m h as commented 

on in sections 5 and 6 suggests that this differential is generally not equal 
— O 

to SH O, 
According to the present authors it would be safest to dismiss the deter

mination of the F.P.D. as a measure of the partial molar free energy of soil 
moisture until the effect of a temperature change on G (soil moisture) has 
been evaluated. For this purpose the simultaneous determination of the 
freezing point depression and the vapor pressure at several temperature values 
should be considered. 
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