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SUMMARY 

The derivation of the fundamental differential equation for the transmission of tidal 
waves in elastic artesian beds is given. Starting with the work of STEGGEWENTZ (1933) the 
general solution of this equation is worked out. A comparison is made between this solu
tion and the transmission of tidal waves in a rigid aquifer and a somewhat different 
solution obtained by BOSCH (1951), A discussion is given on the application of the various 
solutions of the calculation of hydrological constants of the soil from measurements of 
waterpressure in the aquifer. From this it is clear that a fairly good approximation of the 
vertical resistance of the overlying beds may be obtained, without knowledge of the com
pressibility of the aquifer and the water confined within it. Futhermore the storage capacity 
of the overlying beds needs not exactly to be known. The values for the vertical resistance, 
obtained with the described equations, are nearly the same as those found in the special 
case described by BOSCH, but a large difference is present with the values obtained from 
the equations governing the transmission of tidal waves in rigid artesian beds. 

Finally the error of the vertical resistance, introduced through an error in the value of 
the transmissibility kD of the aquifer, is approximately the same as the error in kD. 

1 INTRODUCTION 

Consider an homogeneous artesian basin with uniform thickness D and hy
draulic conductivity k which is infinite in areal extent (see fig. 1). The aquifer 
is overlain by a layer with thickness D' 2) and hydraulic conductivity k' (k' « k). 
Variations in hydrostatic pressure caused by the tides in a neighbouring river, 
lake or sea give lateral displacement of water in the aquifer. As a result of 
the inevitable loss of head accompanying this movement, a reduction in mag
nitude dependent on the distance from the river, lake or sea of the fluctua
tions occurs. 

Because of the low permeability, lateral movement of water in the upper 
layer can be ignored. The influence of the tides on the water-level in neigh
bouring wells reaching into the rigid artesian basin has been dealt with in 
detail by STEGGEWENTZ (1933). For the fundamental equation governing the 
case of fig. 1 this author gives 

ôh „ ô2 cp - = a2 — 
ôt ôx2 

where 

2 kD a2 = 
H 

(la) 

(lb) 

Received for publication November 4, 1958. 
2) In fact the upper soil layer must be taken from its lower boundary upto the water 

table. The fluctuations of the water level in this layer are smaller, however, and generally 
the water table is close to the soil surface. 
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so i  l  su r face  

FIG. 1 SYSTEM SHOWING THE TRANSMISSION OF TIDAL WAVES IN AN AQUIFER REFERRED TO 
BY STECGEWENTZ (1983) AND USED IN THE DERIVATION OF THE FUNDAMENTAL DIF
FERENTIAL EQUATION. 

h — the hydrostatic pressure of the water in the upper layer expressed in 
meters watercolumn 

t = time 
cp = the hydrostatic pressure of the water in the aquifer, i.e. the water-level 

in a well penetrating into this layer 
x = the horizontal distance from river, lake or sea 
ju — the effective porosity or storage capacity of the upper layer, i.e. the 

volume of water taken up by unit volume of the soil when water pres
sure rises unity. 

From Darcy's law for the vertical flow in the upper layer follows 

fi 
ôh 

~dt 
<P - h 

D' m 

The term D'/k' = c is called the vertical resistance of the upper layer. 
Assuming C = /i. c, the relation between cp and h becomes 

cp = h + C ôh 
~dt 

(3) 

With the aid of eq. 3 STEGGEWENTZ derived the general solution of eq. 1, 
this being 

<P 
ax 

M U e sin (nt — ß x) 

in which 

2 a2 
I + C2n2 + Cn + Cn 

T + C2n2 

(4a) 

(4b) 
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2 d 2  
I + C2n2 + Cn + Cn (4c) 

1 + C2n2 

and 
M = the average level of the river or sea 
U — amplitude of the tides 

2 n n = — , T being the period of the tide 

a = constant 
ß — constant. 

According to eq. 4a the fluctuations of the river, lake or sea are reduced 
by a factor e"axat a distance x from the tidal basin and at this place a phase-
shift ß x occurs. 

From (4b) and (4c) it follows that 

r, 2 R2 

2 aß a2 kD 
n/* (5a) 

1 + C2n2 = ~ . -1— (5b) 
72 2 aß 

If one of the three hydrological constants u, c and kD and a and ß are 
known, the other two constants may be calculated from (5a) and (5b). Usually 
the constant kD is determined by means of a pumping test, while a and ß 
are determined from observations of the water pressure in the aquifer at 
various distances from the tidal basin. This method is frequently used to get 
data about the hydrological constants of the soil which are necessary when 
designing water supply- and drainage projects (STEGGEWENTZ, 1933, TIMMEKS, 
1955). 

In the above mentioned theory, however, the compressibility of water and 
the change in volume of the aquifer due to compression of the solid skeleton 
have not been taken into account. This may lead to completely wrong values 
of /< and c (VAN HOORN, 1954, BOSCH, 1951) and considerable errors may be 
expected in the values of the computed hydrological constants. 

Taking into account these compressibilities, BOSCH (1951) derived the fun
damental differential equation for the case given in fig. 2 in which a constant 
phreatic level q>P (polder level) is maintained in the bed overlying the aquifer. 
This differential equation is 

ô2 ( p  <p-<pP SX ôcp _ g ^ 
x2 kD c kD ôt 

in which Sx is a dimensionless coefficient of storage having the value (cf. 
JACOB, 1940) : 

s ' = » « d { ï ; + £ }  < 7 )  
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FIG. 2 SYSTEM SHOWING THE TRANSMISSION OF TIDAL WAVES IN AN ELASTIC AQUIFER 
REFERRED To BY BOSCH (1951). 

where 
Q = density of water 
g =; acceleration of gravity 
e = porosity of the aquifer 
Ew = bulk modulus of elasticity of water 
E = modulus of compression of the solid skeleton of the aquifer. 

BOSCH (1951) assumed the general solution of eq. 6 as being 

q> — cpp + fo e'ax sin (nt ~ ßx) (8a) 

Differentiating this equation with respect to x and t, and substitution in 
eq. 6 yields the conditions 

•  • - / ! •  =  - ± - c  ( 8 b )  

2°P=S tn- (8c) 

With known a, ß and kD, the values of c and Sx may be calculated. General
ly the phreatic level in the upper layer is not at a constant height and eqs. 8a 
and 8b are therefore only valid in special cases. Using the method of STEGGE-
WENTZ a general solution for an elastic aquifer can be obtained, however, 
for the case under discussion. This solution will be given in detail in the 
next sections. 

2 THE FUNDAMENTAL DIFFERENTIAL, EQUATION 
In the solution of BOSCH (1951) only the influence of variations in 99 on 

the compressibility of the aquifer has been taken into account. Neglecting 
changes in volume of the upper layer, that will be small compared to those 
of the aquifer because D' « D the influence of the fluctuations of h on the 
compressibility of the aquifer can be introduced by taking a second dimen-
sionless coefficient of storage S2 where (ZIJLSTRA, 1957). 
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s2 = Q g D  ( 9 )  

For the derivation of S2 a method similar to that of JACOB (1940) and 
BOSCH (1951) was used. 

Introducing the coefficients of storage Si and S2, the change in mass of 
water in the element ah ef of fig. 1 will be 

= q S i  dx — Q S2 dx (10) 
dt dt dt 

which must be equal to the difference between inflow and outflow into and 

^ and t>, = k> ^-h 

dx y D' 
out of the element. Taking v., = — k and vv = k' the funda-O X y 

mental differential equation becomes 

ô2 cp cp — h Si ôcp S2 ôh 
ô x2 kD c kD ôt kD ôt 

= 0 (11) 

Differentiating eq. 3, giving the relation between cp and h with respect 
to t and substituting in (11), yields : 

d2± - A dh-B ')2h = 0 (1£) 
ô x 2  ô t  ô t 2  y  

where 

A = -j-_r (m + + S2) 
kD 

B  =  ± D . S l  )  < 1 3 >  
c 

C = fA, c 

3 SOLUTION OF THE FUNDAMENTAL DIFFERENTIAL EQUATION 

The solution of the problem under discussion can most easily be obtained 
by solving the differential equation in terms of h. The boundary conditions 
are : 

x = 0 cp = M + U sin nt ) 

ô cp n ( (14) 
x = 00 —— = 0 V 

ôt J 
Substituting the first of these boundary conditions in (3) and integrating, 

yields : 
,, , TT sin nt — nC cos nt , „ ,, ,, M + u—nrpg*— = * + «** <15> 

R being the constant of integration. 

When dynamic equilibrium has been established, t is very large so the 
last member of (15) may be neglected' (STEGGEWENTZ, 1933) and the following 
boundary conditions can be taken : 
26 



u 
x = 0 h = M -1 sin (rit — arctp nC) 

y 1 + n2C2 & 

ôh x = oo = 0 
ôt 

(16Ï 

A fundamental equation in terms of h instead of in terms of h and <p may 
be obtained by differentiating (3) with respect to x and substituting the result 
into eq. 12. The result is given by : 

ô 2  h  ô 3  h  ôh D ô 2 h  
ô x 2  H t  " ô t 2  ~  (  *  

The problem now has been reduced to the general equation (17) subject to 
the boundary conditions (16). 

The solution of (17) can be represented by the general equation 

h  = M + I  [  W  ( x )  e n i t  ] (18) 
where the symbol I means — i times the imaginary part of " and V is a 
function of x alone. 

Substituting this value into eq. 17 gives for the condition which V' must 
satisfy 

V " (1 -f- Cni) = V (Ani — Bn2) (19) 
where y" means the second derivate of V with respect to x. 

If the solution of eq. (19) is written in the form 
V = R evx (20) 

then must satisfy the condition : 

r = r ± l /  ( A C - B ) n 2  +  n ( A  +  B C n 2 ) i  ( 2 1 )  

\ 1 + C2n2 

i  . . . . x  
For x —> m the term e —>- on and the plus sign of eq. 38 is not 

ôh in accordance with the boundary condition - - = 0 for x = <J-> . The minus 

sign of (38) gives therefore a solution only. 
In order to trace the real and imaginary parts of eq. 21 we take 

V  = - (a + ß i )  (22) 

The real and imaginary parts of (21) now must be equal to respectively the 
real and imaginary parts of (22) : 

2 " f > =  n<i+c y = g  < 2 4 )  

Substituting now eqs. (22) and (20) into the general solution given by (18) 
yields 

h = M + R eax sin (nt — ß x) (25) 
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The general solution for h from (16) and (25) will then be 

h = M -1— - — e'ax sin (nt — ßx — arete nC) (26) 
]/' 1 + n2C2 8 v ' 

In order to get the solution for ÇD eq. 26 can be substituted into eq. (3). 
This yields 

U { 
cp = M -j _ : e'ax 1 sin (nt — ßx — arctg nC) nC cos (nt — ßx arctg nC) 

y I + n2C2 I 

which is identical with 

cp = M + U e'ax sin (nt — ßx) (27) 

Eq. 27 is the same as eq. 4a derived by STEGGEWENTZ (1933). The relation 
between a and ß and the properties of the artesion basin is given by (23) 
and (24) in which the compressibility of the aquifer and the water confined 
within it, are accounted for by eq. 12a. 

Neglecting the influence of the fluctuations of h on the compression of the 
aquifer, S2 will be zero (cf. eqs. 3 and 12a) and the fundamental differential 
equation will be 

ô2 cp cp — h Si dep 

kDc kD dt 
0 (28) 

The solution of this equation is identical with eq. 27 with the restriction 
that for A is taken eq. 12a with S2 = 0. 

5 DISCUSSION 
As is pointed out in the introduction, the equations describing the tidal 

movement in artesian basins are used to derive values for the storage capa
city ju, the vertical resistance c and the transmissibility kD of the basin. 

If eq. 4 is applied, ju and c may be derived if kD, a and ß are known. 
Otherwise, kD may be derived from a, ß and n or a, ß and c. The constants 
a and ß can easily be determined from water table measurements in water 
gauge tubes. 

Using eq. 8 instead of the storage capacity fj, the storage coefficient Sx is 
obtained. Here again three variables, namely Sx, c and kD, occur in the equa
tions, Si containing now D, s, Ew and E. . Generally the last mentioned con
stants are unknown, but from eq. 8c, vallues of Si may be obtained directly. 

Using the equations (23) and (24), the constants A and B are introduced 
besides kD, ju and c. The constants A and B (given by eq. 12a) contain the 
terms Si and S2 which are functions of D, e, u, Ew and Es . In order to get 
a simplified relation between u and c the constants A and B may be solved 
from (23) and (24). This leads to the relation 

A = + PC (29) 
n 

B = ÇC- - P (30) 
n n2 
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Substituting now the values of Sj. and S2, given by (7) and (9) into eq. 12a, 
values of A and B expressed in u, c, k, kD, q, g, s, Ew and Es will be ob
tained. By setting equal these values to those of eq. (29) and (30), two expres
sions for the permeability k can be obtained which must be equal. After 
rearranging we get the relation 

( — -  « V c 2  P  -  P )  ( e  +  E J E J  +  ( n ^ Q c  -  ^ P )  E J E ,  =  0  (31) 

When the value of kD is known, the relation between /< and c may be ob
tained from eq. 31. For this purpose water table measurements from VAN HOOBN 
(1957) along the river Rhine are used. These measurements were made for 
the building of a dam near Hagesteijn. For the calculations, the tidal wave 
of September 11, 1956 has been taken, for which 

a = 3.33 X 10"3 

ß = 2.50 X 10-3 

n = 12.14 rad/24 hrs 

The transmissibility kD of 1400 m2/day was determined by means of a 
pumping test carried out by the "Rijksinstituut voor Drinkwatervoorziening" 
at The Hague. 

Taking e = 0.35 in eq. 53, /< and c can be derived for various values of 
the ratio Ew/Es by assuming a certain value of /< and solving the remaining 
equation in c. The roots of this equation will be either distinct, equal or im
aginary. It appears that the minimum value of ,M obeying eq. 31, may be 
derived if the determinant of the second order equation in c is zero. If 
Ew/Es = 5, the minimum value of // = 1.116 X 10"3 for the tidal wave of 
Sept. 11, 1956. The corresponding value of c is then 73.9. For values of // 
< 1.116 X 10"3, the roots of eq. 31 will be imaginary. For values of u > 1.116 
X 10"3 eq. 31 gives two values of c. According to eq. 30 the values of c must 
be such, that C > P/Qn since B has a positive value. Generally one of the 
two roots of eq. 31 will not obey this condition and for an assumed value 
of [I >1.16 X 10"3, only one value of c is obtained. The results of these 
calculations are given in table 1. 

Table 1 Values of /â and c obeying eq. 30 for various ratios of Ew / E s  .  

ES 

y-
1 

To 
l 
5 1 5 10 15 

2.10-1 147.67 147.73 147.82 147.87 
10-1 147.67 147.71 147.82 147.87 147.88 147.88 
10-2 147.21 147.26 147.31 147.41 147.43 147.43 

5.10-3 145.58 145.86 145.99 145.99 — — 

4.10-3 144.75 144.78 144.83 144.94 — 

3.10-3 141.94 142.42 142.52 142.58 — -

2.10-3 135.12 135.16 135.26 135.32 — 

From this table it is clear that the value of fi has little or no influence 
on the calculated value of c, if u is not too small. In this manner a good, 
approximate, value of c may therefore be obtained in the case of moderately 
large and large values of u. In order to obtain the exact value of c, u has to 
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be known. On the other hand, the value of u cannot be obtained from eq. 31 
when the value of c is not known exactly. 

It appears further from table 1, that the effect of the ratio E w / E s  on the 
calculated value of c is very small. 

In table 1, e is taken 0.35. In order to show the influence of s on c, the 
ratio Ew/Es = y was introduced in eq. 30. This equation then can be written 
in the form 

n 2 f l 2 c  -  n 2JU2 c  P  -  P  +  ( n /U2 Q c  -  /LI P )  7  =  0  (32) 
kD e + 7 

y 

y 
FIG. 3 THE RELATION BETWEEN y  (= E w  / E s  )  AND . — FOR VARIOUS VALUES OF THE 

POROSITY E OF THE AQUIFER. S ~R ? 

The values of u and c are now only dependent on the last term of this 
equation. Generally e ranges from 0.3 to 0.4 for artesian basins. The relation 

y 
between y and —-— , for e is 0.3, 0.35 and 0.40, is given in fig. 3. The 

e + y 

range of —-— in this figure is almost completely covered by table 1. There-
e + y 

fore the influence of e is also very small. 
1 S 

The term —-— = — ——. This can be derived from eqs. 7 and 9. With 
e + r /* s, H 

g 
increasing y the ratio increases at the same rate. On the other hand this 

ratio is highly dependent on the value of u as could be expected from the 
theory. 

The last variable occuring in eq. 31 is the transmissibility kD. In order 
to investigate the influence of this factor we differentiate eq. 31 with respect 
to c. Then we get 

d ( k D )  _  1  

^  k D  —  k 2 D 2  ( 2  P c  —  —  .  — )  ^ 3 3 )  

n e -j- y 
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Substituting the mean values of k D ,  c  and —-— (being 1400, 147 and 0.93 
« + y 

respectively) in (55) we get 
d ( k D )  '  —  0 , 1  d c  

The mean value of kD is approximately 10 times the mean value of c. This 
means that if kD is found 10 % too small, the calculated value of c is about 
10% too large. 

From table 1 it is obvious, that the ratio E w / E s  = y  has little or no in
fluence on the relation between ii and c. In order to compare the results of 
eq. 31 with those of eq. 4 and 8 the ratio Ew/Es = 5 has been taken only. 
The results are given in table 2. 

Table 2 Comparision of the results of eq. 4 (STEGGEWENTZ), 8 (BOSCH) and 31. For the 
latter case only the results of Ew /Es — 5 are taken. 

STEGGEWENTZ (eq. 4) BOSCH (eq. 8) eq. 31 

fx c Si c fi c 

2.1 X 10-3 11 19.20 X 10-4 147.62 2.10-1 147.87 
10-1 147.87 
10-2 147.37 

5 X 10-3 145.99 
4 X 10-3 144.94 
3 X 10-3 142.58 
2 x 10-3 135.32 

The values of both //. and c calculated according to eq. 4, are very small 
compared with those according eq. 31. The value c = 147 which implies 
k' = 0.04 m/day agrees very well with conductivity data obtained from drain 
outflow measurements in this area carried out by VAN HOORN. In order to 
compare the results from the equations 8 and 31, the values of Sx and S2 

will have to be calculated. According to (12a), St and S2 are 
kD 

S1 = B — (33a) 
c 

Sx + S2 = A k D  -  j u  (33b) 

The values of A and B were computed from eqs. (29) and (30). The calcu
lated values for Si and S2 are given in table 3 together with those derived 
from eq. 8. 

Table 3 Calculated values for Si and S2 from eqs. 8 (BOSCH) and 31. In the latter case 
only the ratio Ew /Es = 5 has been taken. 

BOSCH (eq. 8) eq. 31 

Si /X Si s2 

19.20.10-4 2.10-1 19.19.10-4 3.49.10-4 
— 10-1 19.17.10-4 1.77.10-4 
— 10-2 18.89.10-4 1.15.10-4 
— 5.10-3 18.57.10-4 0.08.10-4 
— 4.10-3 18.41.10-4 0.06.10-4 
— 3.10-3 18.13.10-4 0.04.10-4 
— 2.10-3 17.51.10-4 0.02.10-4 
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From this table it is clear that a fairly good approximation of c can be 
obtained by using a special solution as given by eq. 8. This is due to the 
fact that the effect of the fluctuating water level in the overlying bed on the 
compressibility of the aquifer, is very small. 
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