THE EFFECT OF SPACING AND THINNING ON THE YIELD OF CINCHONA LEDGERIANA

K. EBES

(Senior Lecturer in Tropical Agriculture, University College, Ibadan, Nigeria. Formerly, Agronomist & Plant Breeder for Cinchona at West Java Experimental Station, Buitenzorg, Java)

AUTHOR'S SUMMARY

The lay-out of an experiment, planned for 25 years, is described and the results of the first six checkings (the last at an age of nearly nine years) are given.

From an investigation made by Spruit in 1928 on the change in the number of trees in a Cinchona plantation according to their age, a preliminary conclusion was drawn that the mean average of space of a tree increases yearly by a constant amount of about 0.523 sq. metre.

In that investigation, carried out at the Government Cinchona Estate, "Tjinjiroean" near Bandoeng, Java, data were collected from plantations of different site quality and planted with different clones. The yields were mostly unknown. The incompleteness of data led to setting up an experiment to check the influence of spacing on the yield per ha.

1 THE LAYOUT OF THE EXPERIMENT

As a result of preliminary investigation, Spruit evolved the following formula:

$$Y = \frac{10000}{(x-a) b}$$

where Y = the number of trees per ha at the age x (x between 3.5 and 25 years).

a = constant, to indicate a correction for the fact that a plant does not shoot up immediately after planting.

b = constant, to indicate the annual increase of space.

The experiment was laid out by Sprutt in 1933. It consisted of six different spacings, each spacing with grafts of the clones Tjib 5 and Tjib 1 on succirubra rootstocks, with nine replications of each clone, giving a total of 108 sample plots. The selected test-area allowed 18×18 m for each plot.

Since the aim of the experiment was to investigate the effect of space on the yield per ha, the following different values were chosen for the constant b-0.348, 0.417, 0.500, 0.600, 0.720 and 0.864 sq. m. These values form a geometrical progression in the ratio of 1:1.2.

For this reason 12593, 10370, 8642, 7222, 6010 and 5023, were chosen as the starting number of trees per ha. These numbers of trees form almost a geometrical progression in the ratio of 1/1.2 so that the requirement of space at planting was proportional to the annual increase of the space requirement.

For the constant a, the following values were chosen, partly on basis of experience, partly for practical considerations: 0.578, 0.694, 0.833, 1, 1.2 and 1.44 years; that is to say the less plants per ha the longer it will take for the planting to shoot up. For the different cases we obtain the following numbers per plot and the following formulae for thinning:

Spacing I
$$y = \frac{10000}{(x-1.44) \ 0.864}$$
Spacing II
$$13 \times 15 = 195 \text{ pl. per plot}$$

$$y = \frac{10000}{(x-1.2) \ 0.720}$$
Spacing III
$$13 \times 18 = 234 \text{ pl. per plot}$$

$$y = \frac{10000}{(x-1.-) \ 0.600}$$
Spacing IV
$$14 \times 20 = 280 \text{ pl. per plot}$$

$$y = \frac{10000}{(x-0.833) \ 0.500}$$
Spacing V
$$16 \times 21 = 336 \text{ pl. per plot}$$

$$y = \frac{10000}{(x-0.694) \ 0.417}$$
Spacing VI
$$17 \times 24 = 408 \text{ pl. per plot}$$

$$y = \frac{10000}{(x-0.578) \ 0.348}$$

By means of these thinning formulae, the number of trees which were to be lifted annually were calculated. The results of these calculations are to be found in table A.

Further, by means of a small tree-map of one of the plots of each spacing, the number of trees to be thinned each year was distributed as evenly as possible over the plots. So in the first place attention was not given to the growth or outward appearance of the tree to be thinned, but to its position in the plot.

2 PROCEDURE OF THE EXPERIMENT

As already mentioned the test-area allowed a plotsize of 18×18 m; the area was set out in a rectangle of 6×18 plots. The plots of Tjin 1, and those of Tjib 5 alternated in every direction, while the spacing also differed regularly, lengthwise and breadthwise in the area. Thus the nine repetitions of each object and of each clone were scattered over the test-area as systematically as possible. The soil was a sandy loam of moderate quality, and used for cinchona since 1880. To secure a good development of the planting, the plantation was fertilized regularly with 100 kg of nitrogen (in the form of urea), and 40 kg of phosphoric acid (in the form of double superphosphate) per year and per ha. The development of the plantation up to 1942 has been satisfactory.

The experiment was set up in February 1933, and the densest planting (12593 trees per ha) was thinned for the first time in October 1935. Simultaneously all other plots were pruned. Further, they were thinned each year and pruned in April, 1937, 1938 and 1940.

During every thinning in October the number of trees in each plot was counted. The thinned trees were marked and measured as follows; the girth

Table A. Plan of thinning.

		To	408	384	272	211	172	145	125	111	66	89	82	75	69	65	57	51	46	42	38 88
	VI × 24	ļ	-	<u>ග</u>		csi										······································					
	17	To be lifted		24	112	61	39	27	20	14	12	10	7	7	9	4	. ∞	9	χĊ	4	4
	21	To	336		235	180	146	123	108	94	83	75	69	63	28	54	48	42	38	35	32
,	V 16 ×	To be lifted			101	55	34	23	17	12	11	∞	9	9	່ນ	4	9	ဖ	4	တ	တ
-	20	To remain	280		202	156	125	105	06	79	71	. 64	58	53	49	46	40	36	32	59	27
	14 ×	To be lifted		•	75	49	31	20	15	11	∞	7	9	ນດ	4	89	9	4	4	တ	ଧ
-	18	To remain	234	***************************************	180	135	108	06	22	29	09	54	49	45	42	39	34	30	27	24	22
	III × 81	To be lifted			24	45	27	18	13	10	2	9	ນ	4	ဇာ	တ	ນ	4	တ	တ	2
	15	To remain	195		161	118	94	78	99	28	51	46	42	88	35	88	29	25	23	21	19
	13 × 13	To be lifted			34	43	24	16	12	∞	7	ις ·	4	4	က	63	4	4	63	81	23
	15	To remain	165		146	105	82	29	. 57	20	44	39	35	32	30	28	24	21	19	17	16
,	11 ×	To be lifted			19	41	23	15	10	7	9	כת	4	တ	01	81	4	ဇာ	c)	61	п
	Age in	years	0	2.5	3.5	4.5	м. Ж.	6.5 7.	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	16.0	18.0	20.0	22.0	24.0
	Date		٠,	15 Oct. '35	98, ""	78, " "	38	68, " "	40	., ,, 41	, ,, ,42	., ,, 43	,, ,, 44	45	, , ,46	47	15 Feb. '49	51	., ,53	., ,55	57

at a level of one metre from the ground and the thickness of the bark. In addition a bark sample was cut from every tree and the bark samples of the trees of the same spacing were analysed together to estimate the ring contents

of quinine of the thinning stand.

The thinned trees were then lifted, the yield of wet bark was determined for each plot, and this was then separated into bark and root bark. Barks of plots of the same spacing were dried together, weighed, sampled and analysed. Further, the girth and thickness of the bark of the remaining stand were measured, tree by tree and plot by plot, and since 1939 the height of each tree as well.

By means of the data obtained at thinning it was possible to calculate production of bark and quinine sulphate per tree and per ha for the different spacings.

The calculations of the production per ha were made in two different ways:

1 by the yield per tree which was multiplied by the number of trees per ha,

2 by the surface area at the base.

On the basis of an earlier investigation it was assumed that the yield of bark of cinchona trees of the same age, the same clone, and grown under the same circumstances is about proportional to their surface area at the base of the tree i.e. the area of the transverse section of the trunk at one metre. From the total of the base surfaces of the thinned trees and their bark yield, the quantity of the bark per unit of base surface i.e. sq.m. was calculated. By multiplying the base surface of the remaining stand with the quantity of bark per sq. m. base surface, the stock of the bark of the remaining stand was found. The results of both manners of calculation coincided fairly well.

3 RESULTS OF THE FIRST SIX CHECKINGS

The results of the first six checkings are to be found in 18 tables which are added to this paper. They contain the following data:

a Of the production

1 Total production of ledger-bark.

2 Total production of root bark.

3 Total production of quinine sulphate.

4 Average annual production of quinine sulphate, from the date of planting.

5 Pruning and thinning yield of ledger bark.
6 Total pruning and thinning yield in quinine.

7 Stock of quinine sulphate directly after thinning.

8 Total production of quinine sulphate in percentage of the average.

b Of the stand

- 9 Number of trees of the remaining stand.
- 10 Number of trees to be thinned.
- 11 Average height.

12 Average girth.

- 13 Average thickness of the bark.
- 14 Percentage thickness of the bark.

15 Bark yield per tree.

16 Yield of quinine sulphate per tree.

17 Contents of the ledger bark.

18 Ring contents of quinine, waterfree at 1 m.

From the production data the following may be stated:

The production of Tjib 5 is about 20% higher than that of Tjin 1. The plantings of about 7200 and 8600 per ha have produced less than the widest-spaced plantings of about 5000 per ha and also less than the narrowest spaced planting of about 12600 per ha. The difference in yield between the plots of very different spacings is relatively small (Table 8). This could a priori be expected: there must be a relation between the production per ha and the total surface of the leaves of the trees present on the hectare. A maximum production will be found at a maximum surface of the leaves, that is when the canopy of the plantation is completely closed. This was the case with all 6 spacings, the difference of the extremes being only big crowns on a small number of trees against small crowns on a large number of trees.

The plots with the densest stand of Tjib 5 as well as of Tjin 1 have given

the greatest average production of quinine sulphate.

Whether this greater yield is of financial profit depends on the costs of planting material and of planting, and also the price of quinine sulphate.

From a technical point of view, narrow spacing has advantages as well as disadvantages: one advantage is that it is easier to thin a densely spaced plot than a widely spaced one, especially when the trees are older. Also pruning is not so difficult and general upkeep easier. However, narrow spacing has a disadvantage since it may make a heavy demand on the soil. Attention should be paid to the fact that the testing plot was fertilized every year with 100 kg nitrogen and 40 kg phosphoric acid per ha.

In Table 11 the average height of the six spacings is given. From this table it is evident that the height is practically independent of spacing, by contrast

with the girth (Table 12) which is a function of it.

Table 14 gives the "percentage" thickness of the bark. By percentage thickness of the bark is meant the thickness of bark expressed in percentage of the radius. The percentage thickness of the bark is therefore a relative measure of the thickness of the bark. It appears from the table that in the most densely planted plots the bark is relatively thick.

In practice the opposite is believed, namely, that narrow spaced cinchona should give very thin bark. This is correct in itself, as narrow spacing produces slender trees with thin bark, but relatively, these barks are not thinner than

those of wide spaced trees.

In tables 17 and 18 are given quinine contents.

The average content of the ledger bark has a slight tendency to decrease with the age as well as with the spacing. This tendency is most clearly shown in the figures for the ring content of quinine (content of pure quinine in absolutely dry bark from a sample cut one metre above the ground). This content had already reached its maximum in its sixth year. The maximum decreases obviously when spacing becomes narrower.

The experiment was planned for a period of 25 years, and it is regretted that the Japanese occupation of Indonesia 1942—'45 and the revolution for independence thereafter made scientific work in Indonesia impossible. The experiment therefore, was not completed and the results only permit a preliminary conclusion, namely, with regular thinning and regular fertilization, narrow spacing of cinchona is technically preferable and gives the highest yield.

REFERENCES

Spruft, P. P.zn. C., Over de verandering van het aantal boomen per oppervlakte-eenheid met den leeftijd, Cinchona 5 (1928) 34.

1. Total production of ledger-bark (kg p. ha) *).

Date		Oct. 1936 " 1937 " 1938 " 1938 " 1940 " 1941		Oct. 1936 " 1937 " 1938 " 1940 " 1940 " 1941		Oct. 1936 " 1937 " 1938 " 1940 " 1941		Oct. 1936 " 1937 " 1938	,, 1939 ,, 1940 ,, 1941	
Tjinjiroean 1	IA	1536 3161 4412 6071 7205 8685		950 1778 2199 2944 2445 4027		149.5 330.0 431.0 576.8 729.2 961.8		70.7	86.5 95.1 99.4	
	>	1509 3030 4400 5810 6967 8799	•	948 1716 2085 2823 3322 3911		157.3 303.9 448.5 581.3 729.0 875.9		42.9 65.1 79.1	87.2 95.0 101.0	
	λí	1354 2883 3908 5370 6434 8000		890 1656 1902 2685 3063 3736		129.8 291.7 391.9 534.8 633.7 787.5	(.	35.4 62.5 69.1	80.2 82.6 90.8	
	H	1189 2575 3721 5207 6041 7648	ha).	695 1503 1774 2641 2733 2977	p. ha).	118.0 270.1 372.6 515.9 625.8 768.0	(kg p. ha)	32.2 57.8 65.7	81.6 88.6	
	н	1197 2467 3728 5176 6370 7910	of root-bark (kg p.	766 1399 1802 2363 2621 3244	lphate (kg	117.2 250.9 369.2 519.0 657.3	ne sulphate	31.9 53.7 65.1	85.7 85.7 90.2	
)(1115 2317 3686 5095 6204 7677	of root-b	711 1214 1579 2191 2529 3296	quinine sulphate (kg	114.5 248.1 380.9 532.1 669.2 809.4	n of quinine	31.2 53.1 67.2	87.2 87.2 93.4	
	IA	1636 3349 4776 6586 7925 10102	production	871 1574 1842 2430 2870 3494		181.5 387.8 520.5 715.4 848.4 1051.9	production	49.5 83.0 91.8	107.3 110.6 121.3	
	>	1547 3280 4462 6077 7148 8499	2. Total 1	828 1495 1758 2324 2520 2864	Total production of	170.1 371.9 499.0 655.7 776.9 898.0	ige annual	46.3 79.6 88.0	98.3 101.3 103.6	
eum 5	NI .	1425 3133 4177 5806 6883 8416		802 1531 1656 2258 2424 2918	တ	157.1 368.8 468.8 626.0 744.3 873.8	4. Average	42.8 79.0 82.7	93.9 97.0 100.8	
Tjibeureum	Ш	1301 2947 4079 5529 6774 8138		597 1324 1502 2234 2323 2804		143.8 334.0 434.7 595.1 733.0 853.7		39.2	95.6 95.6 98.5	p. acre.
	П	1267 2864 4685 5720 7054 8567	•	666 1287 1539 2000 2283 2698		140.4 318.5 498.3 623.4 783.4 931.5		38.3 68.2 87.9	93.4 102.1 107.4	0.9 = lbs p
	H	1215 2697 4134 5602 6956 8555		568 1170 1392 1801 1972 2429	• •	131.4 306.7 465.3 616.6 774.6		35.8 65.7 82.1	92.4 101.0 107.6	ha X
Age		3.67 4.67 5.67 6.67 7.67	•	3.67 4.67 5.67 6.67 7.67 8.67		3.67 4.67 5.67 6.67 7.67		3.67	7.67 7.67 8.67	*) kg p.

5. Pruning and thinning yield of ledger-bark (kg p. ha).

Date			1936 1937 1937 1937 1938 1938 11, 1939 11, 1940 11, 1940 11, 1940 11, 1941	r. 1936 1937 1938 1939 1940 1941
	•	Oct. Apr. Oct. Apr. Oct. Apr. Oct. Apr. Oct. Apr. Oct. Apr. Oct. Apr. Oct. Apr. Oct. Apr. Apr. Oct. Apr. Oct. Apr. Apr. Apr. Apr. Apr. Apr. Apr. Apr	O A O O O O O O O O O O O O O O O O O O	Oct
Tjinjirocan 1	VI	336 158 254 262 201 621 621 7 7 7 8 585 585 585	49.2 56.1 116.9 130.0 182.1 242.5 247.7 310.5	100 213 249 334 419 494
	Λ	406 184 509 263 263 571 115 593 593 585	51.2 59.3 113.4 127.8 184.3 184.3 244.0 251.3 317.6	106 191 264 337 411 499
	IV	316 216 490 252 477 - 537 503 - 503 - 503	38.6 48.6 102.5 116.8 169.4 225.8 239.2 231.5 1	ha). 91 189 223 309 342 437
	ш	237 197 490 264 454 551 551 561 100 100 100 100 100 100 100 100 100 1	31.5 41.5 97.3 1112.2 161.5 232.7 232.7 284.5 341.6	g (kg p. h 87 173 211 298 341 426
	п	177 237 197 197 503 490 153 264 494 454 566 551 345 216 585 461 526 561 quinine sulphate (kg	26.1 35.0 91.0 100.0 152.3 211.6 236.3 301.5	ter thinnin 91 160 217 307 356 427
	I	103 259 485 104 539 600 329 519 519 yield of qu	19.1 33.9 91.7 98.1 157.2 - 222.4 248.3 308.5 - 308.5	directly af 95 156 224 310 361 439
	VI	· · · · ·	59.3 144.2 170.5 234.6 - 307.0 321.2 387.1 - 458.0	sulphate 122 244 286 408 461 594
	Λ	425 202 202 586 430 492 598 537 535 535 ming and	2552 68.5 139.1 169.2 229.5 296.3 15.8 315.8 376.7 434.4	of quinine 115 233 270 359 400 464
eum 5	IV	341 221 571 475 477 477 592 529 529 525 764 Total pre	47.2 62.6 134.7 166.8 226.3 72.5 372.1 431.0	7. Stock 110 234 243 334 372 443
Tjibeureum	Ш	261 261 263 563 563 574 766 6.	38.9 56.9 125.6 158.3 212.3 274.0 298.2 356.1	105 208 222 321 377 437
	Ħ	190 357 571 428 604 605 605	30.7 54.0 124.0 157.3 226.4 - 296.0 325.6 398.5 - 463.5	110 195 · 272 327 385 468
	1	1117 355 574 302 566 629 496 542 550	22.1. 50.8 122.1 146.4 215.2 286.9 333.3 397.0	109 185 250 330 378 475
Age		3.67 4.17 4.17 4.67 5.17 5.67 6.67 7.17 7.67 8.17	3.67 4.17 4.17 5.17 5.67 6.67 7.17 7.17 8.17	3.67 4.67 5.67 6.67 7.67 8.67

8. Total production of quinine sulphate in % of the average,

	Date	Oct. 1936 " 1937 " 1938 " 1939 " 1940 " 1941		Jan. 1933 Oct. 1936 " 1937	,, 1939 ,, 1940 ,, 1941		Oct. 1936 " 1937 " 1938 " 1939 " 1940 " 1941		Oct. 1936 1937	,, 1938 1930	" 1940 " 1941													
	VI.	114 117 108 106 108		12593 8396 6514 5310	4476 3858 3426		3385 1859 1111 827 614 429		4.17	4.60	6.05													
	>	120 108 112 107 108		10370 7253 5557 4507	3797 3272 2901	ė	3049 1578 964 700 525 357		4.21	5.72	6.13 6.75													
ean I	ΣI	99 103 98 98 94	•	8642 6327 4816 3859	3241 2774 2438		2226 1372 912 607 463 336		4.28	4.70 5.38	6.08													
Tjinjiroean	Ш	888888	stand.	7222 5555 4167 3334	2778 2373 2068		1612 1348 779 545 398 305		4.27	5.40	6.11													
	Ħ.	888888	remaining sta	6018 4969 3643 2902	2408 2037 1790	be thinned.	1015 1276 700 473 374 243	(m)	4.36	4.84 5.52	6.93													
	H	999888	of the rea	5093 4507 3231 2531	2068 1759 1543	trees to b	542 1194 669 463 305 209	ge height	4.30	4.85 5.57	6.23													
	I	118 111 108 112 109	Number of trees	12593 8396 6514 5310	4476 3858 3426	Number of	3433 1911 1190 830 617 432	11. Averag	4.21	5.59	6.40													
	>	110 107 104 103 100	9. Numbe	9. Numbe	9. Numbe	9. Numbe	9. Numb	9. Numb	9. Numb	9. Numb	9. Numbe	9. Numbe	Numbe	9. Numbe	9. Numbe	9. Numb	10370 7253 5557 4507	3797 3272 2901	10.	3100 1681 1008 731 525 370		4.22	5.56 5.56	6.36
eum 5	. IV	102 106 97 98 96		8642 6327 4816 3859	3241 2778 2438		2305 1485 947 641 463 340		4.27	4.82 5.53	6.26													
Tjibeureum	Ш	90 90 90 90 90 90 90 90 90 90 90 90 90 9		7222 5555 4167 3334	2778 2377 2068		1643 1375 809 566 401 309		4.24	4.79 · 5.49	6.95													
	п	91 104 101 101		6018 4969 3643 2902	2408 2037 1790		1029 1310 737 508 370		4.28	5.58 5.58	6.36													
	1	85 88 97 97 100		5093 4507 3238 2531	2068 1759 1543		566 1252 696 460 309 216		4.34	4.97 5.70	6.37													
Age		3.67 4.67 5.67 6.67 7.67 8.67	•	0 year 3.67 4.67 5.67	6.67 7.67 8.67		3.67 4.67 5.67 6.67 7.67		3.67	5.67	7.67													

12. Average girth (cm).

	240	Date	Oct. 1936 " 1937 " 1938 " 1939 " 1940 " 1941		Oct. 1938 " 1939 " 1940 " 1941		Oct. 1938 " 1939 " 1940 " 1941		Oct. 1936 " 1937 " 1938 " 1939 " 1940 " 1941			
		VI	9.1 11.5 13.6 15.8 17.6		8.8.4.4. 8.0.8	•	9.03 7.60 7.14 7.30		0.1974 0.4885 0.7368 1.1503 1.5206 2.0501			
Tjinjiroean 1		Λ	9.6 12.1 14.5 16.7 20.6	•	4.8 8.8 4.8 8.8		8.69 7.17 7.12 7.27		0.2385 0.5495 0.8499 1.2813 1.7256 2.4441			
	bean 1	IV	10.0 9.9 12.9 12.5 15.5 14.8 18.0 17.3 20.1 19.3		4.0 3.9 5.0		8.54 7.09 7.21 7.35		0.2624 0.6223 0.8594 1.3922 1.8449 2.6359			
	Tjinjire	Ш			4.4 3.9 5.1	the bark.	8.83 6.54 7.03 7.08		0.2629 0.6437 0.9606 1.6076 1.9524 2.8458			
		щ	10.5 13.4 16.4 19.0 21.1 23.7	bark (mn	4.4.4.70 70.11.00		8.59 6.83 6.87 7.07	ree (kg).	0.3280 0.6920 1.1210 1.7841 2.3891 3.3158			
	į	I	10.7 13.7 17.2 20.0 22.3 24.7	ress of the	4.4.8 5.0.0 6.0	Percentage thickness of	8.69 6.56 7.04 7.09	bark per tree	0.3617 0.7223 1.2122 1.9783 2.7049 3.8493			
		VI	9.4 12.3 14.5 16.8 18.8 20.9	13. Average thick		13. Average thickness of the bark (mm).	rage thick	6.4.0 6.4.3 7.7	ercentage t	8.72 7.55 7.17 7.01	Yield of I	0.1987 0.4821 0.7194 1.1110 1.5164 2.2247
		Λ	9.8 12.8 15.1 17.4 19.3 21.5				4.8.4. 6.9.4.8.	14. Pe	8.40 7.09 7.21 7.06	15.	0.2294 0.5490 0.7871 1.1875 1.5278 1.9948	
	eum 5	IV	10.2 13.3 15.6 18.0 19.9 22.2		4.4.2 2.4.4.9 9.4.9		8.53 7.37 7.30 6.90	_	0.2580 0.6286 0.3881 1.3096 1.6924 2.3510			
	Tjibeureum	111	10.5 13.7 16.3 18.8 21.0 23.3		2.4.4.7.7.7.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1		8.13 6.83 7.01 6.89		0.2637 0.6707 0.9433 1.4844 1.9788 2.6756			
		п	11.0 14.3 17.7 20.0 22.1 24.6		4, 4, 4, 7. 8 & Q &	•	8.42 6.72 7.00 6.79	-	0.3223 0.7448 1.2432 1.6331 2.3033 3.0928			
		П	11.5 15.1 18.8 21.3 23.6 26.2		4.4.7.7. 6.6.5.7.		8.11 6.76 6.93 6.87	_	0.3515 0.7844 1.2219 1.8718 2.6170 3.5611			
	Age		3.67 4.67 5.67 6.67 7.67 8.67		5.67 6.67 7.67 8.67	- ·	5.67 6.67 7.67 8.67	-	3.67 7.67 7.67 7.67 7.67 7.67			

16. Yield of quinine sulphate per tree (grams).

		Date	t. 1936 1937 1938 1939 1940 1941		t. 1936 1937 1938 1939 1940 1941		t. 1936 1937 1938 1939 1940 1941	
		_	Oct		Oct		o	-
	Tjinjirocan 1	IV	12.08 33.54 48.92 74.43 108.83	-	8.63 8.63 8.63 8.63 8.63 8.63		8 8 8 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-
		>	15.27 35.42 61.25 88.28 127.73	-	8.89 9.01 9.42 9.06 9.73		6.67 8.90 9.98 9.30 9.14 8.68	-
		2	15.18 40.90 60.66 94.96 126.01 178.8	-	8.95 9.06 9.03 9.00 8.84 8.84		6.64 9.13 10.16 9.23 8.87 8.95	
.		Ì	16.41 43.26 66.91 106.65 147.02 203.8	nate.	8.54 9.29 9.14 8.85 9.61	bark.	6.77 9.06 10.40 9.40 9.35 8.89	
		II	19.59 45.70 77.23 127.28 184.86 236.4	inine sulp	8.30 9.21 9.14 9.86 9.29	abs. dry	6.91 10.62 10.62 9.60 9.35 9.35	
		I	22.68 51.75 90.37 148.12 216.47 285.9	Contents ledger-bark % quinine sulphate	8.70 9.92 9.40 9.51 10.06 9.68	quinine in	7.01 9.43 11.12 9.48 9.47 9.12	
		VI	14.70 38.99 57.89 90.61 120.98 172.3	nts ledger-	9.94 10.83 10.13 9.90 9.54	contents of	8.84 10.51 11.58 9.78 9.69 9.78	
		>	16.43 43.76 65.26 94.13 126.57 159.4	17. Conte	9.86 10.55 10.67 10.05 10.23 9.75	Ring	8.65 10.48 11.79 9.81 9.53	
	eum 5	ľ	18.20 51.04 69.52 102.96 139.40 180.6		10.01 11.02 10.85 9.99 10.20 9.41	8.84	8.84 10.83 11.80 10.05 9.66 9.95	
	Tjibeureum	Ш	19.98 53.25 74.61 114.47 165.23 209.3		10.06 10.63 10.67 10.14 10.32 9.77		8.67 10.86 11.89 10.07 9.93 10.34	
		Ħ	23.41 58.11 102.86 136.14 202.49 261.7		10.07 10.55 10.11 10.56 10.93 10.16		8.84 11.10 12.68 10.39 10.21	
		I	25.90 63.39 106.35 158.78 235.83 304.7		9.97 10.73 10.84 10.42 10.74		8.95 11.47 12.94 10.67 10.63	
	Age		2.67 7.67 7.67 7.67 7.67	-	3.67 4.67 5.67 6.67 7.67 8.67		3.67 7.67 7.67 7.67 8.67	