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Abstract

The potential of an experimental imaging spectroscopy system with high spatial (0.16–0.28 mm2) and

spectral resolution (5–13 nm) was explored for early detection of nitrogen (N) stress. From June through

October 2000, a greenhouse experiment was conducted with 15 Lolium perenne L. mini-swards and 5 N

treatments. Images were recorded twice a week. With the experimental system, spectra of grass leaves

in the canopy can be obtained. Treatment effects on ground cover (GC) and changes in leaf spectral

characteristics were studied separately. Leaf pixels with similar reflection intensity were grouped in

intensity classes (IC). An index of reflection intensity (IRI) indicates the percentages of strongly reflect-

ing grass pixels. Blue edge, green edge and red edge positions were calculated for each IC. Both GC and

IRI increased until harvest, with largest increases for liberal N treatments. The width of the chlorophyll-

dominated absorption band around 680 nm (CAW) increased up to a maximum of 133 nm for both

liberal and limited N in the first two weeks after harvesting. CAW decreased for limited N in the second

half of the growth period in contrast to liberal N. At harvest CAW explained 95% of the variation in rela-

tive dry matter (DM) yield between treatments. Principal component analyses showed an intertwined

response of the principal components to both DM yield and N content. Edge positions changed strongly

with IC. Possible effects of sensor characteristics, canopy geometry, leaf angle and changes in leaf char-

acteristics with canopy position on the observed relation between IC and edge position are discussed.

Additional keywords: imaging spectrometry, hyperspectral, stress, grassland, leaf reflectance

Introduction

In the absence of fast, reliable and accurate methods for yield and nitrogen (N) stress
indicators, accuracy of grassland fertilization planning strongly depends on farmer’s
judgement. In literature, many authors describe the effects of N stress on reflection
characteristics of leaves and canopies. In dried material, N content can be detected
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directly from reflection at the 2.1 µ m absorption feature (Kokaly et al., 2001). For fresh
material, N stress can be remotely sensed by its effect on chlorophyll (Chl)1 content.
The content of Chl a and Chl b relates to reflection at various wavelengths and to vari-
ous reflection indices (Everitt et al., 1985; Chappelle et al., 1992; Blackmer et al., 1994;
Blackburn, 1998a, b). Chl content is highly correlated with leaf N content, especially if
N is deficient (Schepers et al., 1996; Bausch et al., 1998). However, variations in back-
ground reflectance, leaf area index (LAI) and leaf inclination distribution confound the
detection of subtle differences in canopy reflection due to changes in Chl content
(Clevers & Büker, 1991; Daughtry et al., 2000). Increasing amounts of biomass
normally lead to higher Chl per unit surface. Therefore, relations between remotely
sensed parameters and Chl are better for Chl per unit surface than for Chl per unit
biomass (Pinar & Curran, 1996). Using spatial resolutions smaller than single leaves
can reduce problems of background reflection and LAI (or biomass) influence on Chl
estimates. 

With a recently developed imaging spectroscopy system with a spatial resolution
smaller than single leaves (0.16–0.28 mm2) new and automatic means for grass sward
characterization have become available (Schut et al., 2002). Reflection intensity meas-
ured with this system is related to leaf height in the canopy and to leaf angle. With
this feature, image ground cover (GC) can be differentiated into reflection intensity
classes on the basis of the reflection intensity of selected spectral bands. For each
intensity class spectral parameters can be determined, which allows construction of
spectral profiles. The non-destructive nature of reflection measurements allows the
study of the evolution of GC and leaf pixel spectra. With GC estimates, light intercep-
tion, LAI and biomass can be determined (Schut & Ketelaars, 2003a). Spatial GC vari-
ability can be used to study sward deterioration (Schut & Ketelaars, 2003b).

In this paper the potential of the experimental imaging spectroscopy system is
explored for early detection of N stress. To this end, two experiments were conducted
with 5 N treatments (0, 30, 60, 90, 120 kg N ha–1 per harvest). Evolution of GC, spatial
variability of GC, index of reflection intensity (IRI) and spectral characteristics [blue
edge (BE), green edge (GE), red edge (RE) and Chl-dominated absorption width
(CAW)] in response to N supply were studied. 

Materials and methods

Experiments

In 2000, two N experiments were conducted with grass mini-swards in containers of
0.9 m long, 0.7 m wide and 0.4 m high, filled with a sandy soil (3% organic matter).
There were 5 N treatments (0, 30, 60, 90 and 120 kg N ha–1 per harvest) and 3 repli-
cates per treatment. The treatments will be referred to as 0N, 30N, 60N, 90N and
120N. The mini-swards were placed under a rain shelter covered with 80% light-trans-
parent foil and with windbreaks at the sides. After each harvest, N was applied by
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hand. Potassium, phosphorus and sulphur were kept at sufficient levels. Soil moisture
content was maintained at field capacity (22 volume %) by weighing and supplying
water to the containers twice a week. At harvest, mini-swards were hand cut to a stub-
ble height of 4 cm.

In the first experiment the mini-swards were measured from 1 through 19 June. In
April, 8.1 g N m–2, 13.8 g P2O5 m–2 and 24 g K2O m–2 were applied per mini-sward.
Then, grass was sown with a commercially available mixture of four Lolium perenne L.
cultivars. Once a good sward was established, the grass was cut (30 May) and N was
applied according to treatments. After the first growth period, the grass was harvested
on a hot day (20 June) creating severe sward damage. This ended the first experiment. 

For the second experiment, 5–10 cm thick, autumn-1999 sown swards were trans-
planted into the containers on 6 July. After an initial start-up period (with an interme-
diate harvest on 25 July), swards were cut on 8 August followed by N application
according to treatments. Swards were harvested on 29 August, 27 September, and 31
October. Because of the time in the season, N levels were reduced after the September
harvest to 0, 20, 40, 60 and 90 kg N ha–1. Soil samples for mineral N analysis were
taken after the September harvest. Application of N was further reduced with 1 N level
(e.g. 60 instead of 90 kg N ha–1) when soil mineral N content was higher than 22.5 kg
ha–1.

Measurements

On 42 positions in each container, from a height of 1.3 m above the soil, image lines
were recorded with the V7 and N10 sensor. A sensor consists of a camera, an imaging
spectrograph (V7 or N10) and a light source (xenon or halogen); for details see Schut et
al. (2002). The V7 sensor measures reflection hyperspectrally in wavelengths from
404 to 709 nm and the N10 sensor from 680 to 970 nm. At soil level an image line
was 1.39 mm wide with a length of 152.5 mm, with a spatial resolution of 0.28 mm2

per pixel. The spectral resolution was 5 nm. Light was focused with a bar-lens, and
only a 2–4 cm wide strip was illuminated. Light was projected vertically onto the soil
and reflection was measured under an angle of 2 degrees from nadir, minimizing
shadow influence.

In general, images were recorded twice a week. During the June growth period (6,
8, 10, 13, 15 and 17 June), an extra 100 adjacent image lines were recorded on one
container of each treatment, scanning an area of 100 mm long and 152.5 mm wide.
The extra image lines were recorded on similar locations in the container, and were
used for the construction of 2-dimensional images.

Chemical analyses

At harvesting, fresh matter yield was weighed and samples were taken for analysis of
dry matter (DM), total N, nitrate and sugar content. Total N was determined on a
Vario® EL (Elementar Analyse Systemen, GmbH Hanau), and nitrate on a TRAACS 

800 continuous flow system (Bran and Luebbe Inc, Roselle, USA). Sugars were deter-
mined in dried material. The sugars were extracted by adding demineralized water to a
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ground sample. On a Bran and Luebbe Auto Analyzer II (Bran and Luebbe Inc.,
Roselle, USA, Method NL213-89FT), the content of reducing sugars (glucose and fruc-
tose) was measured by reaction with ferricyanide, which is reduced to colourless ferro-
cyanide. The reduction in light absorbance at 420 nm was used to calculate the sugar
contents as glucose equivalents. Total sugars after hydrolysis was determined in the
same extract but the auto-analyser was now equipped with a hydrolysis-step to convert
di- and oligo-saccharides to glucose and fructose.

Calculation of image parameters

Classification
Schut et al. (2002) defined threshold values for soil, grass leaves, leaves with specular
reflection, and dead material classes, and for an intermediate class between soil and
dead material. Separation between classes was based on ratios of reflectance at 450,
550 and 680 nm. For each sensor these classes are subdivided into reflection intensity
classes (IC), based on the reflection intensity at predefined wavelengths (550 nm for
the V7 and 746 nm for the N10). The intensity classes for grass ranged from IC 0 up
to and including IC 6 for the V7 sensor and from IC 0 up to and including IC 10 for
the N10 sensor. For grass leaves with specular reflection, IC ranged from 0 up to and
including 2, and for dead material from IC 0 up to and including 3. A large number of
pixel reflection spectra in these intensity classes are available in a spectral library. With
this library, pixel spectra of the recorded image lines were classified with maximum
likelihood procedures (Schut & Ketelaars, 2003a). The classification procedure was
based on a limited number of selected wavelengths, maximizing class to class separa-
tion (Feyaerts & Van Gool, 2001).

After classification, spectra of pixels were normalized according to equations in
Schut et al. (2002). Normalization means that reflection was divided by the mean
reflection in the 550–555 nm range for the V7 sensor, and the 800–850 nm range for
the N10 sensor. Mean sward reflection spectra (MSS) were calculated from normalized
spectra of all pixels in grass IC 1 through 10. In addition, mean reflection spectra were
calculated from normalized spectra for each IC (MICS). It is emphasized that for this
procedure only grass pixels were selected, eliminating pixels containing soil and dead
material. Assuming that the data of the V7 sensor and the N10 sensor were from iden-
tical objects and that the sensitivity of the sensors in overlapping regions was compa-
rable, the data of the V7 sensor were normalized to the 800–850 nm range (Schut et
al., 2002). These assumptions seem valid for MSS as the reflection of leaves are meas-
ured with both sensors on similar positions in the sward. 

Ground cover, index of reflection intensity and spatial heterogeneity of ground cover
Ground cover (GC) was calculated per mini-sward for each reflection intensity class
(IC). Total image line (IL) ground cover (GCIL, %) was calculated as percentage area
coverage of all grass IC (GCG) and IC of all specular classes (GCS) from the V7 sensor
using the formula:
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6 2

GCIL = Σ GCGic + Σ GCSic

ic = 0 ic = 0

where 
ic = the index number of the intensity class. 

The mini-sward GC was calculated as the average of the GCIL over the 42 image lines.
This mini-sward GC estimate underestimates visually scored GC, which is equal to
8.63 + 1.076 × GC (Schut et al., 2002). The index of reflection intensity (IRI, %) was
then calculated with the formula:

6 1 42

Σ  –– Σ GCGIL,ic

ic = 3
42

IL = 1
IRI = 100 × –––––––––––––––––––––

GC

This IRI measures the presence of highly reflecting green pixels as a percentage of
GC. A high value represents a dense canopy with horizontally oriented leaves (Schut &
Ketelaars, 2003a).

The spatial heterogeneity was quantified with the spatial standard deviation of GC
(GC-SSD) and logistically transformed values of GC (TGC-SSD), which were calculated
according to Schut & Ketelaars (2003b):

GCILTGCIL = ln (–––––––––––– )101 – GCIL

The spatial standard deviation was calculated per mini-sward as the standard devia-
tion of the 42 GCIL or TGCIL estimates.

Calculation of blue, green and red edge positions
Reflectance spectra of green material typically have a sharp transition from minimum
reflection around 680 nm and maximum reflection around 750 nm, known as the red
edge (RE) (Horler et al., 1983). Green material reflects more radiation in the green part
than in the blue or red parts of the spectrum, and a blue edge (BE) and a green edge
(GE) can be found around 520 and 600 nm, respectively. In this study we used a
simple method for determination of edge position. From the normalized spectra,
minimum (Rmin) and maximum (Rmax) reflection values were determined for BE, GE
and RE within the spectral range of 472–800 nm. Next, a threshold value (T) was
calculated according to:

T = Rmin + (Rmax – Rmin) × CV

where CV is the critical value. At the RE, the transition between the V7 and N10
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sensor typically occurs between a normalized reflection value of 0.35 and 0.5. To mini-
mize effects of this transition the CV was set at 0.55. The reflection value of band i
was calculated as the average of band i, band i–1 and band i+1. Then, the wavelength
position with a reflection value equal to T was calculated. For this purpose two neigh-
bouring bands were looked up, one with a smaller and one with a greater reflection
than T. The exact wavelength position of T was calculated by linear interpolation of
reflection values and wavelength positions. Edges were calculated for MSS and for
each MICS. 

The chlorophyll-dominated absorption width (CAW) around 680 nm was calculat-
ed as the difference between RE and GE.

Canopy reflection profiles
Reflection intensity measured with the system is affected by both leaf angle and leaf
height (Schut et al., 2002). Each MICS was calculated as mean over a large number of
pixels. Effects of angles of individual leaves and mixed pixels (for IC 0) on MICS were,
therefore, averaged out and considered small. So the change in reflection characteris-
tics of MICS may contain additional information about the canopy or canopy strata.
Plotting the edges on the x-axis and IC number on the y-axis created a canopy profile.
For illustration purposes, only profiles of 30 October are shown in Figures 8, 9 and
10.

Principal component analysis
Principal component analysis was performed (on the sums of squares and products) to
combine all relevant spectral information in a limited number of variables. For this
purpose, spectral data of the V7 and N10 sensor were used, measured just before
harvest. For regression on relative DM yield, MSS of replicates were averaged per spec-
tral band. This resulted in 10 principal components (PC) per treatment per harvest.
These PCs were related to relative DM yield and DM, total N, organic N and sugar
content. Organic N was calculated as the difference between the contents of total N
and nitrate. Only statistically significant (P < 0.05) terms were included in the linear
regression models.

Relative dry matter yield

The relative dry matter yield (RDM, %) yield was calculated as

DMyield
RDMyield = 100 × –––––––––––

DMRyield

where DMR indicates the average dry matter (DM) yield of the 120N treatment. Stan-
dard errors were calculated for treatment means of DM yield and RDM yield.
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Results

Effects of N treatments on DM yield and N, nitrate and sugar contents are shown in
Table 1. Liberal N supply (90N and 120N) resulted in higher DM yields and nitrate
contents and in lower DM and total sugar contents than 30N. The 0N of the August,
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Table 1. Treatment means with standard deviations, of dry matter (DM) yield and foliar contents of DM, 

total N, nitrate, reducing sugars and total sugars for treatments 0N, 30N, 60N, 90N and 120N1 at differ-

ent harvesting dates.

Harvesting DM yield Foliar contents

date/

treatment

DM Total N Nitrate Red. sugars Tot. sugars

(kg ha–1) - - - - - - - - - - - - - - - - - - - - - - - - - - -(%) - - - - - - - - - - - - - - - - - - - - - - - - - - -

20 June 

0N 2430 + 124 18.90 + 0.15 1.73 + 0.03 0.00 + 0.00 5.08 + 0.61 31.98 + 0.48

30N 3161 + 23 18.07 + 0.95 1.88 + 0.12 0.00 + 0.00 4.59 + 0.43 27.17 + 1.57

60N 3198 + 49 17.37 + 0.26 1.99 + 0.03 0.01 + 0.00 4.45 + 0.05 25.01 + 0.60

90N 3612 + 165 16.43 + 0.38 2.24 + 0.07 0.02 + 0.00 4.38 + 0.22 22.00 + 1.70

120N 3786 + 146 16.63 + 0.30 2.39 + 0.03 0.03 + 0.01 4.59 + 0.13 21.26 + 0.55

29 August

0N 591 + 68 23.33 + 0.38 2.05 + 0.09 0.01 + 0.00 3.40 + 0.32 14.76 + 0.43

30N 1381 + 87 19.73 + 0.72 1.91 + 0.06 0.01 + 0.00 3.28 + 0.15 23.61 + 1.73

60N 1514 + 232 19.07 + 1.28 3.05 + 0.07 0.17 + 0.01 3.01 + 0.19 12.35 + 0.70

90N 2066 + 15 16.00 + 0.32 2.96 + 0.10 0.13 + 0.04 3.51 + 0.09 12.06 + 0.83

120N 2001 + 281 18.47 + 0.78 3.07 + 0.43 0.21 + 0.10 3.12 + 0.07 13.66 + 2.76

27 September

0N 356 + 62 19.50 + 0.61 2.25 + 0.11 0.01 + 0.01 2.00 + 0.18 11.47 + 1.88

30N 1304 + 144 19.27 + 1.63 1.94 + 0.08 0.02 + 0.01 2.19 + 0.05 20.27 + 1.38

60N 1913 + 179 16.33 + 0.76 2.33 + 0.43 0.12 + 0.03 2.66 + 0.20 14.36 + 0.47

90N 2587 + 116 14.57 + 0.20 2.83 + 0.23 0.30 + 0.01 2.77 + 0.10 11.41 + 0.68

120N 2696 + 151 14.30 + 0.5 3.54 + 0.10 0.49 + 0.05 2.37 + 0.07 10.12 + 0.45

31 October

0N 253 + 32 17.33 + 0.64 2.67 + 0.18 0.02 + 0.01 1.79 + 0.09 6.28 + 1.01

30N 836 + 19 15.50 + 0.26 2.88 + 0.07 0.04 + 0.02 2.38 + 0.18 10.71 + 0.60

60N 1109 + 115 15.33 + 0.86 3.34 + 0.08 0.14 + 0.01 2.39 + 0.10 10.25 + 0.69

90N 1298 + 45 13.63 + 0.69 3.87 + 0.27 0.42 + 0.11 2.28 + 0.19 8.07 + 1.11

120N 1403 + 72 12.97 + 0.92 4.54 + 0.09 0.72 + 0.06 1.89 + 0.10 6.39 + 0.20

1 For explanation see text.

320193-NJAS-51-3 Schut  12-12-2003  12:06  Pagina 7



September and October harvests was lower in total sugars than 30N. The newly sown
sward of the 20 June harvest had high sugar and low nitrate contents, suggesting N
deficiency even at high yields and high N application rates. The differences in reduc-
ing sugars content between treatments were small. Sugar contents decreased for
harvests later in the season. The 30N treatment had highest content of total sugars in
the August, September and October harvests.

Ground cover, canopy structure and spatial standard deviation of ground
cover

The June growth period differed from the other three growth periods in initial ground
cover (GC) (Figure 1). This is presumably caused by a different sward history. The
harvest preceding the June growth period was the first harvest of the newly sown
sward, without dead material in the stubble and with a high tiller density. This result-
ed in a high GC just after harvest. The second experiment (August through October)
had a second-year sward with a lower tiller density and with dead material in the stub-
ble. There was a long period without N supply before the experiment started, creating
poor starting conditions for this experiment. This was not the case in the first experi-
ment where starting conditions were not as poor. 

During the last two growth periods, a limiting N supply (0N and 30N), compared
with liberal N supply, retarded GC development (Figure 1). In Figure 1 the curve is
only a little lower for 60N than for 90N and 120N. GC showed a typical development
within a growth period: steep increases at low GC and smaller changes at high GC
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Figure 1. Development of image ground cover (GC) for 0N ( ), 30N (�), 60N( ), 90N(�) and

120N(0).
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levels. In the September harvest maximum GC level was reached for the liberal N
supply but not for the limited N supply and treatment differences decreased towards
harvesting. Treatments of the June harvest were much better discriminated with IRI
than with GC (Figure 2), indicating that N affects both GC and canopy geometry.
Differences in IRI were larger in the June and September than in the August and
October growth periods. The low IRI values in the October growth period probably
resulted from low DM yields (Table 1) and limited height development.

The values of spatial standard deviation of ground cover (GC-SSD) were smaller
than 10% at all intervals for all treatments (Table 2). The GC-SSD values of the 0N
treatment increased up to harvesting, whereas GC-SSD values of the other treatments
first increased and later decreased.  At 5–8 days after and just before harvesting, 0N
significantly differed from the 90N and 120N. Spatial standard deviations of logistical-
ly transformed values of ground cover (TGC-SSD) were smaller than 0.65 at all inter-
vals for all treatments (Table 2). TGC-SSD values of the 0N and 30N were significantly
smaller than 120N at 14–21 days after harvesting and just before harvesting. The maxi-
mum value of GC-SSD is reached at 50% GC and TGC-SSD peaks at low values of GC
(Schut & Ketelaars, 2003b). GC values for 0N exceeded 50% in the interval 14–21 days
after harvesting, whereas GC for all other treatments exceeded this value already in the
9–13 days interval. In the 1–4 and 5–8 days after harvesting intervals, treatments were
not statistically different in TGC-SSD value (Table 2). So treatment differences arose
from differences in GC dynamics.
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Figure 2. Development of index of reflection intensity (IRI) for 0N ( ), 30N (�), 60N( ), 90N(�) and
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Figure 3. Development of blue edge (BE) position for averaged sward curves for 0N ( ), 30N (�),

60N( ), 90N(�) and 120N(0).

Table 2. Mean values of spatial standard deviation of ground cover (GC-SSD) and logistically trans-

formed ground cover (TGC-SSD) with standard deviation of treatment means for intervals of days after

harvesting (DAH) for treatments 0N, 30N, 60N, 90N and 120N1.

DAH Treatment

0N 30N 60N 90N 120N

GC-SSD

1–4 7.45 + 0.52a2 8.09 + 0.49a 7.97 + 0.54a 7.69 + 0.32a 8.38 + 0.24a

5–8 7.63 + 0.35a 8.61 + 0.07b 8.50 + 0.18ab 8.95 + 0.44b 9.06 + 0.18b

9–13 8.68 + 0.35a 8.95 + 0.23a 9.05 + 0.45a 9.60 + 0.26a 9.47 + 0.16a

14–21 8.74 + 0.24a 8.05 + 0.18a 8.36 + 0.51a 8.35 + 0.45a 8.66 + 0.15a

Day before harvest 9.61 + 0.10a 8.08 + 0.15b 8.16 + 0.53b 8.12 + 0.37b 8.62 + 0.20b

TGC-SSD

1–4 0.55 + 0.02a 0.58 + 0.02a 0.58 + 0.05a 0.58 + 0.04a 0.59 + 0.03a

5–8 0.47 + 0.02a 0.44 + 0.00a 0.43 + 0.01a 0.47 + 0.03a 0.45 + 0.02a

9–13 0.48 + 0.02a 0.44 + 0.01a 0.45 + 0.03a 0.47 + 0.02a 0.46 + 0.01a

14–21 0.47 + 0.01a 0.49 + 0.02a 0.54 + 0.05ab 0.57 + 0.04ab 0.62 + 0.02b

Day before harvest 0.48 + 0.02a 0.51 + 0.01ab 0.58 + 0.05bc 0.59 + 0.04bc 0.64 + 0.02c

1 For explanation see text.
2 Means in the same row, followed by different letters are statistically different (P < 0.05).
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Figure 4. Development of green edge (GE) position for averaged sward curves for 0N ( ), 30N (�),

60N( ), 90N(�) and 120N(�).
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Figure 5. Development of red edge (RE) position for averaged sward curves for 0N ( ), 30N (�),

60N( ), 90N(�) and 120N(0).
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Position of blue, green and red edges

As with GC, the June growth period differed from the other harvests in edge positions,
especially shortly after harvesting (Figures 3, 4 and 5). The harvest prior to this growth
period was the first harvest of the new sward and leaves just continued their growth
after harvesting. In the second experiment (existing sward), after harvesting new
leaves had to emerge from the tillers, and here the position of the blue (BE), green
(GE) and red edges (RE) changed considerably within one growth period (Figures 3, 4
and 5). The 0N differed markedly in BE, GE, and RE from the other N treatments.
Differences between 30N and 120N were small one week after harvesting. Then, GE
increased and RE decreased for 30N whereas 120N did not increase strongly (GE) or
increased slightly (RE). So the largest treatment differences were found just before
harvesting. BE maximum and GE minimum for the 120N were reached within 10 days
after harvesting for the August and September growth period, and within 19 days for
the October growth period. The RE reached its maximum a few days later (Figure 5).
The CAW parameter showed a similar behaviour, but with a larger range and larger
treatment differences (Figure 6). 

Yield depression

Chlorophyll-dominated absorption width (CAW) relates strongly to relative dry matter
(RDM) yield (R2 = 0.95, n = 15; Figure 7). Differences in CAW at high RDM yields
were smaller than at low RDM yields. The CAW parameter outperformed RE (R2 =
0.78, n = 15) and GE (R2 = 0.78, n = 15) in the correlation with RDM yield.
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Figure 6. Development of chlorophyll-dominated absorption width (CAW) for averaged sward curves for

0N ( ), 30N (�), 60N( ), 90N(�) and 120N(0).
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Principal component analysis

The principal components were highly correlated with DM yield, N and sugar content
(Table 3). Total N was slightly stronger related to PC than organic N. Most PC were
selected for more than one variable. RDM yield was strongly related to PC1 through
PC5, with an R2 value of 0.93 (n = 15).
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Figure 7. Dry matter yield relative to 120N dry matter yield as function of chlorophyll-dominated absorp-

tion width (CAW) for harvests on 20 June ( ), 29 August (�), 27 September (�) and 31 October (O).

Error bars indicate standard error of treatment means.

Table 3. Linear regression of principal components (PC) with dry matter (DM) yield, and DM, N and

organic N content, N yield and relative dry matter (RDM) yield.

No. of observations PC in the model R2 S.E.1 of estimates

DM yield (kg ha–1) 60 1, 3, 5, 6, 7, 8 0.87 377

DM (%) 60 2, 3, 4, 9 0.61 1.66

N (%) 60 1, 2, 3, 4, 5, 6, 7 0.77 0.42

N org. (%) 60 1, 2, 3, 6, 6, 7 0.75 0.35

Total sugar (%) 60 1, 2, 7 0.78 3.89

N yield (kg ha–1) 60 1, 2, 3, 4, 5 0.77 13.3

RDM yield (%)2 20 1, 2, 3, 4, 5 0.93 0.75

1 S.E. = standard error.
2 Principal component analysis performed on spectra averaged over N treatment replicates.
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Figure 8. Blue edge (BE) position of leaf pixels per reflection intensity class for 0N ( ), 30N (�),

60N( ), 90N(�) and 120N(0).
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Figure 9. Green edge (GE) position of leaf pixels per reflection intensity class for 0N ( ), 30N (�),

60N( ), 90N(�) and 120N(0).
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Profiles of blue, green and red edges

As an example, profiles of the blue (BE), green (GE) and red edges (RE) were calculat-
ed from image lines recorded on 30 October. The profiles of BE (Figure 8) and GE
(Figure 9) showed greater differences between low and high IC’s than the profile of
RE (Figure 10). The BE and GE showed a larger shift with IC than RE throughout
growth periods. Changes of BE (4.5–4.8 nm) and GE (8–30 nm) with IC for the
August, September and October harvests were larger than temporal changes of BE
(1.3–3.5 nm) and GE (7–27 nm) of the MSS (compare Figure 3 with Figure 8 and
Figure 4 with Figure 9). Differences between N treatments were more or less constant
within the profile for the BE and RE. With increasing IC, differences between the N0
treatment and all other treatments increased for the GE. 

In Figure 11 the MICS and the BE and GE positions are shown from images
recorded on 13 June. The MICS differed in shape, affecting various curve characteris-
tics such as BE and GE position and position of maximum derivatives. The BE and GE
position of MICS shifted 4.3 nm (BE) and 7 nm (GE) from Grass IC0 to Grass IC6
(Figure 11). 

Discussion and conclusions

Nitrogen treatments differed in evolution of ground cover (GC), index of reflection
intensity (IRI) and spectral characteristics. Earlier it was found that GC and IRI are
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Figure 10. Red edge (RE) position of leaf pixels per reflection intensity class for 0N ( ), 30N (�),

60N( ), 90N(�) and 120N(0).
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related to biomass and canopy geometry (Schut & Ketelaars, 2003a). Therefore, an
indication of nitrogen (N) stress can only be given if actual values of GC and IRI can
be compared with GC and IRI under optimal N supply. 

Nitrogen treatments occasionally differed in spatial standard deviation of ground
cover (GC-SSD) and in spatial standard deviation of logistically transformed values of
ground cover (TGC-SSD). These differences arose from differences in GC dynamics.
For all N treatments, GC-SSD and TGC-SSD values remained below 10 and 0.65,
respectively. Schut & Ketelaars (2003b) found that dense swards had GC-SSD values
below 10.5 and TGC-SSD values below 0.6. Absolute differences between control and
deteriorated swards were largest at 50% GC for GC-SSD and shortly after harvesting
for TGC-SSD. Nitrogen treatments were not different in GC-SSD and TGC-SSD,
neither at 50% GC nor shortly after harvesting, and it is concluded that N supply did
not affect sward heterogeneity.

Leaf reflectance can indicate N stress in maize (Blackmer et al., 1994; Schepers et al.,
1996; Masoni et al., 1997). The dynamics of blue edge (BE), green edge (GE) and red
edge (RE) at limited N supply differed from those at liberal N supply. The chlorophyll-
dominated absorption width (CAW), calculated as the difference between RE and GE
position) at limited N supply decreased in the second half of the growth period, in
contrast to the CAW at liberal N supply. This indicates that the CAW is not strongly
affected by the increasing amount of biomass. This is probably due to the detailed spatial
resolution of the experimental system used and the vertical illumination of only a narrow
strip in the swards, minimizing influence of shadow and multiple reflected light.
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Figure 11. Normalized averaged reflection curves of images from 120N mini-swards recorded on 13 June

for IC 0 (– – – –), IC 1 (––––– ), IC 2 (–––––), IC 3 (– – – –), IC 4 (–––––), IC 5 (– – – –) and IC 6 (–––––).

Markers on the curves indicate the calculated BE and GE positions (left: BE; right: GE).
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CAW appeared to be strongly correlated with relative dry matter yield (RDM) (R2 = 0.95,
n = 15). This harvest-independent relation was stronger for the CAW parameter than for
the GE or RE alone, and may be the preferable parameter for N fine-tuning. The shape of
the relation was exponential with smaller differences in CAW under near optimal N
supply. Therefore, higher N treatments (60, 90 and 120 kg N ha–1) could not be separat-
ed from each other in all growth periods. The relation between N supply and chlorophyll
(Chl) content has a curvilinear character (Wood et al., 1992; Kantety et al., 1996) and
reflection decreases asymptotically with increasing Chl (Everitt et al., 1985; Boochs et al.,
1990; Ercoli et al., 1993; Schepers et al., 1996). So identification of near-optimal N-fertil-
ized swards with leaf reflectance alone is difficult. The same conclusion can be drawn
from absorption measurements. In Festuca arundinacea Schreb., Kantety et al. (1996)
found a maximum response for light absorption at 254 kg N ha–1 supply, while DM yield
was highest at 290 kg N ha–1. Apparently, small changes in absorption-values were
accompanied by relative large changes in DM yield. These findings, however, are in
contrast with the results of Canova & Gaborcik (2000), who found a response in absorp-
tion values up to the highest N supply. Likewise, Gaborcik et al. (1998) found linear rela-
tions between leaf colour, Chl content and N content in leaves of various grass species.

The linear regression between RDM yield and principal components resulted in
strong relations (R2 = 0.93, n = 15). Some selected principal components were also
strongly related to DM yield and N content. The intertwined response of PC to DM
yield, N content and RDM yield made interpretation difficult. Therefore, detection of
N-stressed swards under a range of harvesting frequencies requires extensive calibra-
tion and validation in order to correct for differences in DM yield related to the length
of the growth period and not to N deficiency.

In literature various methods are described for characterizing reflection curves,
such as fitting functions to edge regions and calculation of derivatives or indices.
Fitting a Gaussian function to the edge region (Bonham-Carter, 1988) is limited to
edges with a more or less Gaussian shape. Obviously, this approach is suitable for the
BE and RE but not for the GE. Polynomals (e.g. cubic splines) do not have this limita-
tion (Railyan & Korobov, 1993). Derivatives are sensitive to the degree of smoothing
(Rollin & Milton, 1998) and data noise, and thus require continuous curves. Indices
use only a small part of the reflection curve. The method we used is hyperspectral,
simple, fast and not limited to a specific edge shape. 

Some remarks must be made with regard to the strong effect of IC on edge posi-
tion. The observed profiles are presumably the result of a combination of sensor char-
acteristics, canopy geometry and changes in leaf characteristics within the canopy. 

Firstly, irradiance in our experimental system decreases with decreasing height
positions in the canopy, despite the bar-lens in front of the light source (Schut et al.,
2002). The sensor used requires high light input as the imaging spectrograph subdi-
vides the incoming light over a large number of spectral bands and diffraction efficien-
cy is smaller than 50% (Herrala & Okkonen, 1996). Therefore, lower boundaries of
camera sensitivity in strongly absorbing regions of the spectrum are reached earlier at
low than at high canopy height positions. As this phenomenon will be less
pronounced for strongly reflecting regions of the spectrum, it may result in changes in
the shape of the reflection curve with reflection intensity. 

Early detection of N deficiency in grass swards
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Secondly, shaded leaves will have reduced reflection intensity and will be assigned
to lower IC’s. As leaves preferably absorb blue and red light, shadowed leaves receive
greener light than leaves in full light. However, in the system used, only a narrow line
is illuminated and reflection is measured under a narrow angle, minimizing shade
effects. Light composition can only be altered by light scattered from neighbouring
leaves within a few centimetres. In the recorded images only minor shade effects were
visible. So we expect that shade had only a minor effect on spectral composition. In
accordance with this, canopy edge profiles were also strong for treatments with low
biomass and presumably a minimum of shadowed areas. 

Thirdly, canopy geometry appears to affect the profiles. Leaves with a vertical orien-
tation will be assigned to lower IC’s (Schut et al., 2002). The amount of chlorophyll
expressed per pixel will automatically increase if leaves become more vertically orient-
ed. As a result, shifts of the red edge at canopy level have been observed in relation to
leaf inclination angle (Guyot et al., 1992; Asner, 1998). Yet an increase in the amount
of pigment per pixel only affects the reflection curve if light absorption is below its
maximum. Leaf angle will probably have a greater influence with leaves and canopies
low in pigment content than with leaves and canopies high in pigment content. 

Finally, leaf pigment composition within the canopy might change with leaf age,
position on the leaf and growth conditions. During growth, leaves near the soil gradu-
ally become shaded and are exposed to greener light as a result of absorption of light
by newly developing leaves. Yellow light, when compared with red light (Liu et al.,
1993), as well as low light intensity induces lower Chl a/b ratios and higher Chl a and
b contents (Evans, 1988; Watanabe et al., 1993). Thus, the Chl a profile within a
canopy is stronger than the Chl b profile, leading to a profile in Chl a/b ratios
(Yamasaki et al., 1996). Pigment composition also varies within a leaf, with lower
pigment content near the base and tip than in the middle of the leaf (Biswal et al.,
1994). Obviously, leaf tips are mostly found at the top of the canopy and leaf bases low
in the canopy. Changing pigment content with position on the leaf may, therefore,
lead to profiles of pigment content within the canopy.

In acetone strong absorption peaks are found with an absorption maximum at 661.6
and 429.6 nm for Chl a, at 644.8 and 455.8 nm for Chl b and at 454 nm for β -carotene
(Lichtenthaler, 1987). In vivo, peak positions are slightly different with 680 nm and 440
nm for Chl a and 660 and 460 nm for Chl b (Maier et al., 1999). Thus, changes in Chl b
would have a stronger effect on GE, whereas changes in Chl a would primarily affect RE
and changes in both Chl a and β -carotene would affect BE. We found that BE, GE and
RE responded simultaneously during re-growth and were sensitive to the amount of N
supplied. This can be understood if it is considered that Chl a and Chl b respond to simi-
lar environmental factors, e.g. N stress, and are consequently strongly correlated. 

Imaging spectroscopy provides accurate means to monitor growth and N deficien-
cy. Growth can accurately be monitored with GC and IRI. There was a strong correla-
tion between RDM yield and CAW although discriminating ability of CAW was limited
at higher levels of relative dry matter yields. The effects of sensor characteristics,
canopy geometry, and pigment composition within the canopy on edge profiles require
further study. To this end an experiment where images were recorded after removal of
individual leaf-strata will be analysed and presented in future work. 
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Appendix

List of abbreviations

BE blue edge

CAW chlorophyll-dominated absorption width

Chl chlorophyll

Co control

DM dry matter

GC ground cover

GCG grass ground cover

GCIL image line ground cover

GCS ground cover specular class

GC-SSD spatial standard deviation of GC

GE green edge

IC reflection intensity class

IL image line

IP inflection point

IRI index of reflection intensity

LAI leaf area index

MICS normalized spectra for each IC

MSS mean sward reflection spectra

N nitrogen

P principal component

RDM relative dry matter

RE red edge

TGC logistically transformed value of GC

TGCIL logistically transformed value of GCIL

TGC-SSD spatial standard deviation of TGC
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