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Abstract

The potential of an experimental imaging spectroscopy system with high spatial (0.28–1.45 mm2) and

spectral (5–13 nm) resolution was explored for early detection of drought stress in grass. A climate

chamber experiment was conducted with nine Lolium perenne L. mini swards with drought stress treat-

ments at two nitrogen levels. Images were recorded once every two days. Growth was monitored by

changes in ground cover (GC), index of reflection intensity (IRI) and wavelength position of and gradi-

ent at inflection points, as estimated from images. Drought stress increased leaf dry matter and sugar

content. Drought stress decelerated and ultimately reversed GC evolution, and kept IRI at low values. In

contrast to unstressed growth, all absorption features narrowed and became shallower under drought

stress. The inflection points near 1390 and 1500 nm were most sensitive to drought stress. Differences

between drought stress and control swards were detected shortly before leaf water content dropped

below 80%. The evolution of inflection point wavelength positions reversed under drought stress,

except for the inflection point at the red edge where the shift to longer wavelengths during growth accel-

erated. The relation between inflection points at 705 and 1390 nm differentiated unstressed swards at

an early growth stage from drought-stressed swards in a later growth stage.

Additional keywords: imaging spectrometry, hyperspectral, grassland, leaf reflectance

Introduction

Water resources for agriculture are limited, urging optimization of irrigation water
use. Irrigation optimization strategies include temporal and spatial differentiation. In
grassland, duration and intensity of drought stress influence tiller survival (Grashoff et
al., 2001). Therefore, an accurate timing of irrigation may prevent sward deterioration.
In grass swards under drought stress first growth rate decreases and in more advanced
stages of drought stress morphological changes and eventually leaf senescence and
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leaf death take place (Jones & Lazenby, 1988). With accurate drought stress detecting
sensors, new irrigation management tools can be developed, limiting irrigation water
use and preventing long-term production loss.

Dehydration of leaves decreases light absorption by water and severe dehydration
affects pigment light-absorption. Dehydration also changes internal leaf structure.
However, changes in internal leaf structure are less important than effects of pigment
and water absorption for reflection and absorption characteristics of stressed leaves
(Carter, 1991). So if water is lost, reflectance of leaves increases in both visible and
infrared wavelengths (Ripple, 1986; Bowman, 1989; Inoue et al., 1993; Penuelas &
Inoue, 1999). For passive sensors only wavelengths with abundant natural light can be
used for stress detection, eliminating the use of strong water absorption bands.
Remote sensing of drought stress in crops is further complicated by changes in leaf
area index (LAI) and ground cover, canopy geometry, fraction of dead leaf material and
background soil reflectance (Jackson & Ezra, 1985; Ripple, 1986; Hunt et al., 1987;
Penuelas et al., 1993; Fernandéz et al., 1994). 

With a recently developed imaging spectroscopy system new and automatic means
for grass sward characterization have become available (Schut et al., 2002). Reflection
intensity measured with this system is related to leaf height in the canopy and leaf
angle. With reflection intensity, image ground cover (GC)1 can be differentiated into
reflection intensity classes where the pixel distribution over intensity classes relates to
canopy geometry (Schut et al., 2002). The non-destructive nature of reflection meas-
urements allows the study of the evolution of GC, canopy geometry and leaf pixel spec-
tra. From GC data light interception, LAI and biomass can be estimated (Schut & Kete-
laars, 2003a). Sward heterogeneity can be quantified with spatial GC variability and is
related to production capacity (Schut & Ketelaars, 2003b).

In this paper the potential of this experimental system is explored for early detec-
tion of drought stress in grass swards. For this purpose a climate chamber experiment
was conducted with 9 Lolium perenne L. mini swards from 1 through 27 November
2000. Evolution of GC, spatial GC variability and spectral characteristics in response
to drought stress were studied. To this end, images of drought-stressed swards with
low and high nitrogen (N) supply were recorded throughout one growth period, and
shifts of and gradients near inflection points were studied with derivative spectra.

Materials and methods

Experiment

From 1 to 27 November 2000, 9 mini swards of Lolium perenne L. were grown under
abundant light (16 hours under HPI 400® light source (120 W m–2) and 8 hours dark).
Temperatures were kept at 20 oC during the day and at 15 oC during the night, with
65% relative humidity during the day and 80% during the night. Swards were grown
in containers (0.9 m long, 0.7 m wide, 0.4 m high). The mini-sward containers were
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taken from a N experiment (Schut & Ketelaars, 2003c). Only containers with mini-
swards were used that previously had received adequate N nutrition (60, 90 or 120 kg
N ha–1 per harvest in the growing season). The containers were evenly distributed over
the treatments: control with high N supply (Co), drought-stressed with high N supply
(DS-HN) and drought-stressed with low N supply (DS-LN), with three replicates per
treatment. There were not enough mini-swards available to include a control with low
N supply. At the start of the experiment the low N and high N treatments were fertil-
ized with 30 and 120 kg N ha–1, respectively.

The mini-swards started with 20% (volume) soil moisture. During the experiment
no extra water was supplied to the DS-LN and DS-HN mini-swards. The Co mini-
swards were kept at 20% soil moisture, with water supplied through perforated tubes.
To minimize changes in canopy geometry these tubes were placed under the canopy
on top of the soil. Once every two days the containers were weighed. Leaf dry matter
(DM) content was measured to monitor the degree of drought stress. For this purpose,
10 top canopy leaves were sampled per mini-sward and dried (105 oC) overnight for
DM content determination. 

Chemical analyses

At harvest (27 November), fresh matter yield was weighed and samples were taken for
analysis of dry matter, total N, nitrate and sugar content. Total N was determined on a
Vario EL® (Elementar Analyse Systemen, GmbH Hanau), and nitrate on a TRAACS
800® continuous flow system (Bran and Luebbe Inc., Roselle, USA). Sugars were
determined in dried material. The sugars were extracted by adding demineralized
water to a ground sample. On a Bran and Luebbe AutoAnalyzerII (Bran and Luebbe
Inc., Roselle, USA, Method NL213-89FT), the content of reducing sugars (glucose and
fructose) was measured by reaction with ferricyanide, which is reduced to colourless
ferrocyanide. The reduction in light absorbance at 420 nm was used to calculate the
content of sugars as glucose equivalents. Total sugars after hydrolysis were determined
in the same extract but the autoanalyzer was now equipped with a hydrolysis-step to
convert di- and oligo-saccharides to glucose and fructose.

Images

Image recording
At 42 positions in each mini-sward, image lines were recorded once every two days. At
each position reflection was measured with three sensors (V7, N10 and N17), in the
wavelength ranges 404–709 nm (V7), 680–970 nm (N10) and 960–1650 (N17); for
details see Schut et al. (2002). At soil level, an image line recorded by the V7 and N10
was 1.39 mm wide and 152.5 mm long. For the N17 sensor, an image line was 1.39 mm
wide and 133.1 mm long. There were 768 (V7 and N10) and 128 (N17) pixels per image
line for the spatial dimension, resulting in a spatial resolution of 0.28 mm2 and 1.45
mm2 per pixel, respectively. Per pixel, radiance was measured in 565 (V7 and N10) and
128 (N17) spectral bands. The spectral resolution was 5 nm for the V7 and N10 sensor
and 13 nm for the N17 sensor. The system used xenon and halogen light sources with
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lenses that only illuminated the area (2–4 cm wide strip) where an image line was
recorded. Light was projected vertically to the soil, and reflection was measured under
an angle of 2 degrees from nadir, minimizing shadow effects. Per sensor the imaging
spectroscopy system recorded a single image line with the light sources switched off
and 5 image lines from a 50% reflection standard as part of the sampling routine.
With these standard image lines, reflectance was calculated from the radiance data.

Classification
Schut et al. (2002) defined threshold values for soil, grass leaves, leaves with specular
reflection, dead material classes and for an intermediate class between soil and dead
material. Separation between classes was based on ratios of reflectance at 450, 550 and
680 nm. These classes were subdivided into reflection intensity classes (IC), based on
the reflection intensity at predefined wavelengths (550 nm for the V7, 746 nm for the
N10 and 1100 nm for the N17 sensor). For grass the intensity classes ranged from IC 0
up to and including IC 6 for the V7 sensor and from IC 0 up to and including IC 10
for the N10 and N17 sensors. For leaves with specular reflection, IC ranged from 0 up
to and including 2, and for dead material from IC 0 up to and including 3. A large
number of pixel reflection spectra per intensity class is available in a spectral library.
With this library, pixel spectra of the recorded image lines were classified with maxi-
mum likelihood procedures (Schut & Ketelaars, 2003a). The classification procedure
was based on a limited number of selected wavelengths, maximizing class to class
separation (Feyaerts & Van Gool, 2001).

After classification, spectra of pixels were normalized according to equations in
Schut et al. (2002). Normalization means that reflection was divided by the mean
reflection in the 550–555 nm range for the V7 sensor, in the 800–850 nm range for
the N10 sensor and in the 1070–1130 nm range for the N17 sensor. Mean sward reflec-
tion spectra (MSS) were calculated from normalized spectra of all pixels in grass IC 1
through 10. In addition, mean reflection spectra were calculated from normalized
spectra for each IC (MICS). It is emphasized that for this procedure only grass pixels
were selected, eliminating pixels containing soil and dead material. Assuming that the
data of the V7 sensor and the N10 sensor were from identical objects and that the
sensitivity of the sensors in overlapping regions was comparable, the data of the V7
sensor were normalized to the 800–850 nm range (Schut et al., 2002). These assump-
tions seem valid for MSS as the reflection of leaves are measured with both sensors on
similar positions in the sward. 

Ground cover, index of reflection intensity and spatial heterogeneity of ground cover
Ground cover (GC) was calculated per mini-sward for each intensity class (IC). Total
image line (IL) ground cover (GCIL, %) was calculated as percentage area coverage of
all grass IC (GCG) and IC of all specular classes (GCS) from the V7 sensor using the
formula:

6 2

GCIL Σ GCGic + Σ GCSic

ic = 0 ic = 0
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where 
ic = the index number of the intensity class, and 
N = the total number of pixels per image line. 

The mini-sward GC was calculated as the average of the GCIL over the 42 image lines.
This mini-sward GC estimate underestimates visually scored GC, which is equal to
8.63 + 1.076 × GC (Schut et al., 2002). The index of reflection intensity (IRI, %) was
then calculated with the formula:

6 1 42

Σ  –– Σ GCGIL,ic

ic = 3
42

IL = 1
IRI = 100 × –––––––––––––––––––––

GC

IRI measures the presence of highly reflecting green pixels as a percentage of GC. A
high value represents a dense canopy with horizontally oriented leaves (Schut & Kete-
laars, 2003a).

The spatial heterogeneity was quantified with the spatial standard deviation of GC
(GC-SSD) and logistically transformed values of GC (TGC-SSD), which were calculated
according to Schut & Ketelaars (2003b):

GCILTGCIL = ln (–––––––––––– )101 – GCIL

The spatial standard deviation was calculated per mini-sward as the standard deviation
of the 42 GCIL or TGCIL estimates.

Calculation of chlorophyll-dominated absorption width
Reflectance spectra of green material typically have a sharp transition from minimum
reflection around 680 nm and maximum reflection around 750 nm, known as the red
edge (RE) (Horler et al., 1983). Green material reflects more radiation in the green part
than in the blue or red parts of the spectrum, and a blue edge (BE) and a green edge
(GE) can be found around 520 and 600 nm. In earlier work, Schut & Ketelaars
(2003c) used a chlorophyll-dominated absorption width (CAW) measure between the
half height of the green and red edge. This measure was strongly related to relative
growth deficit due to N shortage.

Calculation of derivative spectra
The mean sward reflection spectra (MSS) were smoothed with cubic splines. Splines
are non-parametric regression functions, mostly third order polynomials, where a
regression curve is calculated for each interval between knots. The regression curve is
continuous between intervals at the first and second derivative (Silverman, 1985). The
number of knots was arbitrarily set to one third of the number of spectral bands.
Decreasing the number of knots smoothes the spectral curve more strongly, removing
small features. The effects of the choice of the number of knots on the selected
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features were evaluated by setting the number of knots to one ninth of the number of
spectral bands. First and second derivatives were determined from the resulting
curves. The minimum or maximum derivative wavelength was defined as the point of
intersection of the second derivative with the abscissa (Railyan & Korobov, 1993).
These points of intersection will be referred to as inflection points (IP, nm). The gradi-
ent values at the IPs, calculated as ∆ reflection per ∆ nm over the two nearest bands,
were also determined. The gradients and IP only slightly changed with the choice of
number of knots. Therefore, the values of the IP and gradients presented were calcu-
lated with the number of knots set to one third of the number of spectral bands.

Statistics

The statistical differences were evaluated with analysis of variance. The null hypothe-
sis was that treatment means on the same date did not differ. This hypothesis was
tested with a two-sided t-test (P < 0.05). 

Results

Dry matter yield and chemical analyses

Dry matter (DM) yield of the drought-stressed treatments was significantly lower than
of the control (Table 1). Drought stress affected all variables but only nitrate of DS-HN
and control were not statistically significantly different. Drought stress increased DM,
reducing sugar and total sugar content. Total sugar content increased from 14.7% for
Co to 23.8% for DS-HN and to 25.5% for DS-LN. The DS-LN had lower N and nitrate
contents than DS-HN and Co. The N content was slightly lower for DS-HN than for
Co, but there was no statistical difference in nitrate content (Table 1).
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Table 1. Means with standard deviations of dry matter (DM) yield and contents of DM, reducing sugars,

total sugars, N and nitrate for control and drought-stressed swards with high (DS-HN) and low (DS-LN)

N supply.

Sward

Control DS-HN DS-LN

DM yield (kg DM ha–1) 2000 + 108a1 761 + 276b 649 + 122b

DM (%) 16.93 + 0.8a 39.13 + 7.3b 34.37 + 2.9b

Reducing sugars (%) 3.22 + 0.26a 4.39 + 0.55b 4.50 + 0.26b

Total sugars (%) 14.7 + 1.8a 23.8 + 3.5b 25.5 + 1.3b

N (%) 3.81 + 0.09a 3.40 + 0.20b 2.26 + 0.17c

Nitrate (%) 0.51 + 0.05a 0.51 + 0.04a 0.04 + 0.01b

1 Means in the same row, followed by a different letter are statistically different (P < 0.05).
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During growth, leaf DM content of Co increased but did not exceed 21% (Figure 1).
From 13 November onwards, DM contents of DS-HN and DS-LN were higher than DM
content of Co. DM content of DS-HN differed significantly from Co for the first time
on 13 November and DS-LN differed significantly from Co for the first time on 17
November. Soil moisture content of DS-HN dropped below 11% two days earlier than
DS-LN, and DM content for DS-HN also responded slightly earlier than for DS-LN
(Figure 1).

Image analysis

Ground cover, index of reflection intensity and spatial standard deviation of ground cover
Ground cover (GC) of Co increased steadily up to 27 November (Figure 2). DS-LN had
a slightly higher initial GC. Growth rates of GC of DS-HN and DS-LN decreased after
9 November and became negative after 17 November, resulting in a decrease in GC
due to folding and eventually dying of leaves. From 15 November onwards error bars
of drought-stressed treatments are longer, indicating that differences between repli-
cates of drought-stressed swards increased. The index of reflection intensity (IRI) of
Co increased strongly after 17 November, whereas the IRI of DS-HN and DS-LN
remained constant (Figure 3). Drought stress visibly changed leaf angle to a more hori-
zontal orientation, but also decreased mean leaf height. Due to these two opposite
effects IRI values increased only slightly.

The GC-SSD of Co remained below 11% (volume) during all intervals, whereas the
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Figure 1. Development of leaf dry matter content for control swards (�), drought-stressed swards with

high N supply (�) and drought-stressed swards with low N supply (�). Error bars indicate standard

error of means.
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Figure 2. Development of image ground cover (GC) for control swards (�), drought-stressed swards

with high N supply (�) and drought-stressed swards with low N supply (�). Error bars indicate standard

error of means.

0

5

10

15

20

25

30

1 Nov 6 Nov 11 Nov 16 Nov 21 Nov 26 Nov

Date

IRIR
I 

(%
)

Figure 3. Development of index of reflection intensity (IRI) for control swards (�), drought-stressed

swards with high N supply (�) and drought-stressed swards with low N supply (�). Error bars indicate

standard error of means.
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GC-SSD first increased and then decreased (Table 2). The GC-SSD values of DS-LN
and DS-HN remained constant from 13 days after harvest. Therefore, the statistically
significant differences in GC-SSD between DS-LN and DS-HN and Co just before
harvest (27 days of growth) mainly resulted from differences in GC evolution. The
TGC-SSD remained below 0.6 for all intervals and treatments, except for DS-HN at 27
growth days with a value of 0.66. Only one of the three DS-HN containers showed a
strong TGC-SSD increase towards harvest. This indicates that the GC decrease was not
evenly distributed over this container. The differences between the drought-stressed
swards and Co were not statistically significant.

Derivative spectra
The drought-stressed swards had a higher reflection than Co in the visible wavelength
range and in the range above 1100 nm, whereas reflection was lower in the 730–830
nm range (Figure 4A). The amplitude of the derivatives of DS-HN and DS-LN was
lower than that of Co throughout the spectral range measured. The dots in Figure 4B
indicate that 17 IPs were identified (at 463, 480, 485, 519, 570, 595, 608, 624, 640,
705, 768, 960, 990, 1140, 1220, 1390 and 1510 nm). The IPs at 519, 570, 705, 990,
1140, 1390 and 1510 nm corresponded to clearly visible slopes (Figure 4) that were also
selected with the number of knots set to one ninth of the number of spectral bands.
The IPs at 463, 480, 485, 595, 608, 624 and 640 nm corresponded to less strong
absorption features, but these features were present in spectra of all data. 
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Table 2. Spatial standard deviation of ground cover (GC-SSD, %) and logistically transformed ground

cover (TGC-SSD, -/-) with standard error of replicate mean for intervals of growth days for control and

drought-stressed swards with high (DS-HN) and low (DS-LN) N supply. 

Growth days Sward

Control DS-LN DS-HN

GC-SSD

1–4 8.1 + 0.9a1 8.6 + 0.8a 8.1 + 0.1a

5–8 9.3 + 0.6a 10.0 + 0.5a 10.7 + 0.4a

9–13 11.0 + 0.6ab 10.3 + 0.3a 12.3 + 0.4b

14–21 9.1 + 0.7a 10.8 + 1.1a 11.8 + 1.1a

27 6.5 + 0.8a 11.0 + 1.8b 12.8 + 0.8b

TGC-SSD

1–4 0.57 + 0.04a 0.51 + 0.03a 0.53 + 0.02a

5–8 0.51 + 0.05a 0.47 + 0.03a 0.56 + 0.01a

9–13 0.47 + 0.03ab 0.43 + 0.01a 0.53 + 0.02b

14–21 0.46 + 0.03a 0.47 + 0.04a 0.51 + 0.06a

27 0.47 + 0.06a 0.47 + 0.09a 0.66 + 0.09a

1 Means in the same row, followed by a different letter are statistically different (P < 0.05).
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During unstressed growth, absorption features became deeper and wider, resulting in
IP shifts. Under drought stress, water absorption features became narrower, resulting
in reversed IP shifts. Table 3 presents the pigments and chemical bonds with light-
absorbing or emitting features near the IP and the evolution of IPs with statistically
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Table 3. Mean inflection points (IP, nm) for control (Co) and drought-stressed swards with high (DS-
HN) and low (DS-LN) N supply during the period 3–27 November. The indicated pigments [ β -carotene
(Car), chlorophyll a (Chla) and b (Chlb)] and chemical bonds have an absorption or emission maximum
near IPs (after Curran, 1989; Lichtenthaler, 1987; Zarco Tejada et al., 2000).

Sward Pigment Date
or bond

3/11 9/11 11/11 13/11 17/11 23/11 27/11

Co Chlb+Car 481.2a1 479.3a 479.2a 479.0a 478.3a 480.2a 479.7a
DS-LN Chlb+Car 480.0a 478.9a 478.1a 479.2a 479.7b 479.4ab 478.1a
DS-HN Chlb+Car 480.2a 478.6a 478.1a 478.6a 479.3ab 478.7b 478.6a

Co Car 484.2a 485.6a 486.4ab 486.7a 486.5a 486.4a 485.5a
DS-LN Car 484.9a 486.6a 486.6a 487.4a 487.2a 486.7a 487.7ab
DS-HN Car 485.5a 485.9a 485.6b 487.3a 488.2a 488.3b 489.2b

Co Car+Chlb 516.4a 518.4a 519.1a 519.1a 519.6a 519.6a 519.6a
DS-LN Car+Chlb 516.7a 518.8b 519.2a 519.2a 519.2b 519.4a 519.7a
DS-HN Car+Chlb 516.5a 518.6c 519a 519.2a 519.5a 519.5a 519.4a

Co Chlb 571.9a 569.5a 569.5a 569.3a 569.1a 569.1a 569.2a
DS-LN Chlb 571.2a 569.8a 569.5a 569.5a 569.8a 570.1b 570.4b
DS-HN Chlb 572.0a 570.0a 569.6a 569.5a 569.8a 570.2b 571.1b

Co Chla 622.8a 625.0a 625.2a 624.5a 625.4a 625.1a 624.4a
DS-LN Chla 622.6a 624.9a 624.9a 625.2a 624.7ab 623.7ab 623.9ab
DS-HN Chla 622.5a 624.6a 624.1a 624.9a 623.4b 623.4b 622.0b

Co Chlb 639.3a 640.8a 640.9a 639.4a 639.5a 639.6a 638.9a
DS-LN Chlb 640.7a 640.9a 639.4a 640.7a 640.3a 638.4a 640.2a
DS-HN Chlb 641.5a 638.6a 638.1a 638.9a 637.7b 639.2a 638.9a

Co Chla 696.2a 703.3a 706.5a 706.3a 706.9a 708.1ab 709.6ab
DS-LN Chla 695.0a 705.9b 705.8a 707.8b 707.8a 707.0a 708.7a
DS-HN Chla 694.9a 704.6ab 707.8a 708.5b 709.5a 710.6b 711.7b

Co Fluoresc. 763.5a 765.8a 766.1a 767.0a 771.6a 770.5a 770.6a
DS-LN Fluoresc. 763.5a 766.2a 766.9a 767.7a 770.9a 775.1a 776.3ab
DS-HN Fluoresc. 762.4a 767.6a 765.8a 767.6a 771.1a 774.9a 781.6b

Co O-H 962.6a 961.6a 961.1a 960.2a 959.6a 959.1a 957.6a
DS-LN O-H 962.6a 962.0b 961.9a 961.4b 961.6b 962.0b 961.6b
DS-HN O-H 962.6a 961.9ab 961.4a 961.2ab 961.4b 962.0b 961.4b

Co O-H 996.6a 992.6a 992.0a 989.8a 987.6a 986.8a 981.9a
DS-LN O-H 996.6a 994.1b 993.6a 992.3a 992.8b 993.5b 992.9b
DS-HN O-H 996.6a 993.2a 992.6a 991.8a 992.4 b 993.7b 992.8b

Co O-H 1142.9a 1139.2a 1139.3a 1139.4a 1138.6a 1137.9a 1138.4a
DS-LN O-H 1139.7a 1139.6a 1140.1a 1139.4a 1140.5b 1141.1b 1144.1b
DS-HN O-H 1142.4a 1139.2a 1138.7a 1139.5a 1141.1b 1142.4b 1143.3b

Co O-H, C-H 1391.8a 1390.2a 1389.7a 1389.7a 1389.6a 1389.0a 1389.4a
DS-LN O-H, C-H 1391.8a 1390.7a 1390.0a 1390.4b 1390.4b 1390.9b 1392.9b
DS-HN O-H, C-H 1391.8a 1390.3a 1390.1a 1390.2b 1391.0c 1391.8b 1393.2b

Co O-H, N-H 1499.8a 1500.3a 1504.7a 1504.5a 1506.4a 1508.0a 1506.6a
DS-LN O-H, N-H 1499.0a 1499.1a 1501.0b 1502.9ab 1503.6b 1500.9b 1496.4b
DS-HN O-H, N-H 1498.5a 1501.4a 1502.8ab 1502.0b 1502.6b 1499.7b 1497.0b

1 Means in the same row, followed by a different letter are statistically different (P < 0.05).
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significant effects of drought stress. On 17 November, all IPs detected with the N17
sensor and the IP near 960 nm of the N10 sensor responded to drought. The IPs near
the strongest water absorption feature, i.e., around 1390 and 1500 nm, responded
earliest to drought stress. The evolution of IPs of DS-HN and DS-LN at 1140, 1390 and
1500 nm reversed after 11 November under drought stress, whereas the IP positions
near 960 and 990 nm remained stable. 

Drought stress accelerated shifts of IPs around 485, 707 and 768 nm, whereas the
IPs around 624 and 570 nm shifted in opposite direction after 17 November (Table 3).
The IPs around 480, 640 and 519 nm did not change significantly under drought
stress.

There were no statistical differences between DS-LN and DS-HN in IP position in
the near infrared (NIR) region. The IPs around 485 nm shifted less far to shorter
wavelengths for DS-LN than for DS-HN, and the IPs around 624 and 705 nm shifted
less to longer wavelengths.

The slopes of nearly all IPs became steeper during unstressed growth (Table 4).
Under drought stress, slopes became less steep for all IPs around water absorption
features. In contrast to IP position, the gradient around 517 nm significantly differed
between DS-HN and Co just before harvest. Under moderate drought stress, slopes
became less steep for most IPs. The accelerated shift of the IP position near 707 nm
towards longer wavelengths under drought stress coincided with a decreased slope
gradient. The gradient near 767 nm became negative under unstressed growth, where-
as under drought stress gradients remained positive. This can be understood if the
differences in general gradients between 740 and 800 nm of drought-stressed and
unstressed leaves are considered (Figure 4). In this range, unstressed leaves had a
nearly flat reflection curve whereas drought-stressed leaves showed a slight increase in
reflection with wavelength. The chlorophyll fluorescence feature in unstressed leaves
has a distinct right shoulder, whereas this shoulder is flat for drought-stressed leaves
and the IP is then shifted to the first maximum derivative thereafter.

The N supply affected gradients at the IPs around 485, 517, 570, 624 and 640 nm,
whereas there were no statistically significant differences between the gradients at NIR
IPs for DS-LN and DS-HN.

The IP position near 1390 nm of unstressed swards in an early growth stage
(shortly after harvest) is similar to stressed swards later in the growth period. There-
fore, a reference is required to separate between growth stages. The relation between
the IP position near 705 and 1390 nm provided such a reference (Figure 5). The meas-
urements at the beginning of a growth period are located at the left top, and points
from measurements later in the growth period are located to the right of the relation.
The slope of the relation between the 705 nm and 1390 nm IP position for low ( λ 1390
= 1495 – 0.15 × λ 705; R2 = 0.78, n = 6) and high N supply during unstressed growth
differed significantly, where the slope was less negative at low (–0.15) than at high N
supply (–0.20). The combination of IPs larger than 706 nm and 1390.2 nm identified
drought-stressed swards. 

Chlorophyll-dominated absorption width
Under severe drought stress, DS-LN and DS-HN had a lower chlorophyll-dominated
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Table 4. Mean derivatives ( × 10-3, in ∆ reflection per ∆ nm) near the inflection points for control (Co),
and drought-stressed swards with high (DS-HN) and low (DS-LN) N supply during the period 3–27
November.

Sward Typical Date
pos. (nm)

3/11 9/11 11/11 13/11 17/11 23/11 27/11

Co 480 1.53a 0.88a 0.74a 0.77a 0.62a 0.56a 0.51a
DS-LN 480 1.50a 0.91a 0.81a 0.79a 0.84b 0.83b 1.00b
DS-HN 480 1.48a 0.84a 0.71a 0.77a 0.82ab 0.84b 1.01b

Co 485 1.41a 0.61a 0.38a 0.36a 0.21a 0.33a 0.31a
DS-LN 485 1.28a 0.47b 0.32a 0.30a 0.42b 0.50b 0.41a
DS-HN 485 1.12a 0.46b 0.40a 0.26a 0.25ab 0.28a 0.33a

Co 517 8.5a 8.81a 8.15a 8.19a 8.02a 7.69a 7.59a
DS-LN 517 8.26a 7.84b 8.03a 7.62b 7.70a 7.50a 6.97a
DS-HN 517 8.67a 8.48ab 7.57a 7.45b 6.80b 5.81b 5.08b

Co 570 –3.59a –5.15a –4.87a –5.03a –5.03a –4.81a –4.69a
DS-LN 570 –3.62a –4.59b –4.86a –4.64b –4.57a –4.14ab –3.61b
DS-HN 570 –3.80a –5.07ab –4.45a –4.50b –4.02b –3.14b –2.51c

Co 623 –1.05a –1.37a –1.30a –1.31a –1.29a –1.23a –1.18a
DS-LN 623 –1.08a –1.14a –1.22a –1.19a –1.20a –1.07ab –0.98a
DS-HN 623 –1.02a –1.24a –1.30a –1.23a –1.02a –0.73b –0.60b

Co 640 –2.36a –2.52a –2.24a –2.21a –2.11a –1.99a –1.98a
DS-LN 640 –2.28a –2.23a –2.16a –2.13a –2.01a –1.93ab –1.70a
DS-HN 640 –2.46a –2.41a –1.96a –2.03a –1.93a –1.56b –1.26b

Co 707 16.41a 20.30a 20.70a 20.63a 20.56a 20.40a 20.18a
DS-LN 707 16.51a 19.41b 20.32a 19.93a 19.26a 18.46b 17.43b
DS-HN 707 16.74a 20.12a 20.18a 19.99a 18.96a 18.04b 17.09b

Co 767 1.07a 0.14a –0.19a –0.09a –0.22a –0.27a –0.27a
DS-LN 767 1.06a 0.30a 0.16b 0.06a 0.04a 0.19b 0.34b
DS-HN 767 0.98a 0.05a –0.01ab 0.04a –0.02a 0.28b 0.44b

Co 963 –23.29a –13.11a –10.13a –7.13a –4.71a –3.37a –1.51a
DS-LN 963 –23.17a –14.59a –13.43a –10.80b –11.32b –12.56b –11.26b
DS-HN 963 –22.65a –14.06a –11.63a –10.35ab –10.32b –11.89b –9.07b

Co 997 2.60a 2.58a 2.36a 2.35a 2.27a 1.96a 0.75a
DS-LN 997 2.59a 2.49a 2.38a 2.26a 2.25a 2.31b 2.14a
DS-HN 997 2.53a 2.58a 2.36a 2.37a 2.20a 2.1ab 1.84a

Co 1140 –0.26a –0.93a –0.98a –1.08a –1.26a –1.43a –1.47a
DS-LN 1140 –0.17a –0.65b –0.81a –0.91b –0.98b –0.81b –0.66b
DS-HN 1140 –0.23a –0.79c –0.93a –0.92b –0.88b –0.78b –0.63b

Co 1392 –7.69a –10.39a –10.64a –10.62a –10.74a –10.92a –10.22a
DS-LN 1392 –7.69a –8.90b –9.29b –9.32b –9.78ab –9.25b –7.56b
DS-HN 1392 –7.10a –9.79ab –9.77ab –9.49b –9.20b –8.36b –6.89b

Co 1500 1.30a 1.93a 1.89a 1.91a 1.97a 2.10a 2.13a
DS-LN 1500 1.55b 1.64b 1.60a 1.74b 1.69b 1.54b 1.32b
DS-HN 1500 1.23c 1.78ab 1.70a 1.68b 1.64b 1.34b 1.19b

1 Means in the same row, followed by a different letter are statistically different (P < 0.05).
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absorption width (CAW) than Co (Figure 6). CAW decreased when leaves started to
shrink and GC decreased (Figure 2). Under drought stress, RE increased and GE
decreased. This increase in RE is caused by a shift of the position of the first derivative
maximum. The DM yield of DS-HN was 38.1% of Co, and of DS-LN 32.5% of Co with
a CAW of 120.2 and 126.8 nm at harvest, respectively. 

Discussion and conclusions

Drought stress increased leaf dry matter and sugar content, decelerated and ultimately
reversed ground cover (GC) evolution and kept the index of reflection intensity (IRI)
low. This GC development can be understood if it is considered that drought stress
first decreases leaf photosynthesis and, in a more advanced stage of drought stress,
specific leaf area (Jones et al., 1980a, b). Thomas (1991) and Van Loo (1992) found
that sugar content under drought stress strongly increased in Lolium perenne L.
Drought stress became first visible in slower GC development. The GC estimates are
linearly related to the light intercepting capacity of the sward. Reflection intensity
measured with the system is related to leaf height in the canopy and leaf angle (Schut
et al., 2002). Therefore, IRI is a measure of canopy geometry and with the combina-
tion of GC and IRI, dry matter (DM) yield can be determined (Schut & Ketelaars,
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2003a). Spatial standard deviation of GC (GC-SSD) slightly increased under drought
stress, whereas GC-SSD of control swards decreased towards harvest. The spatial stan-
dard deviation of logistically transformed GC-values (TGC-SSD) just before harvest
was not significantly different from the control. Schut & Ketelaars (2003b) found that
at GC-values between 30 and 40%, GC-SSD of deteriorated swards ranged from 12.6
to 15.0% and TGC-SSD ranged from 0.72 to 0.85. Drought-stressed swards (with simi-
lar GC-values) remained well below these values, and it is concluded that drought
stress did not significantly increase sward heterogeneity. 

Within a growth period, all absorption features visible in reflectance spectra
between 400 and 1650 nm deepened and widened. The positions of the detected
inflection points (IP) corresponded with locations of specific absorption features of
carotenoids, chlorophylls and stretching and bending of O-H, C-H and N-H bonds as
reported by Lichtenthaler (1987) and Curran (1989). The minor IPs detected in the
visible part of the spectrum correspond with intersections with the abscissa of the
second derivative found by Buschmann & Nagel (1993). The reflection curves had a
small peak around 740 nm, corresponding with the location of the chlorophyll fluores-
cence peak (Zarco Tejada et al., 2000). This resulted in a detected IP around 770 nm.

Under drought stress all absorption features became shallower and narrower
again, which is in agreement with Ripple (1986), Bowman (1989), Inoue et al. (1993)
and Penuelas & Inoue (1999). Water absorption features (with maximum absorption
around 970, 1200 and 1450 nm) responded earlier to drought stress than absorption
features in the visible wavelength range, agreeing with Carter (1991; 1993). In the visi-
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ble wavelength range, the position of IPs near 570 nm and 623 nm responded
strongest to drought stress, agreeing with Carter (1993) who found that sensitivity is
largest near 584 nm. From the moment that leaf DM content of drought-stressed
swards increased, the IPs near 960, 990, 1140, 1390 and 1500 nm of drought-stressed
swards significantly deviated from control swards. 

Moderate drought stress did not change the position of IPs in the green and red
areas of the spectrum, but clearly changed the slope near the IPs, agreeing with data of
Penuelas et al. (1994). The absorption features in visible wavelengths responded at
more advanced stages of drought when GC already decreased. This is probably due to
chlorophyll breakdown and decreased light absorption of chlorophyll (Carter, 1991).

Zarco Tejada et al. (2000) showed that chlorophyll fluorescence emission
contributes to apparent reflectance spectra of leaves with distinct peaks at 690 and
740 nm. In later growth stages leaves clearly showed an additional feature on the
reflection curve, with a maximum around 740 nm. In drought-stressed swards, this
feature was also present but detection was difficult due to changes in the character of
the underlying reflection curve. The curve in the 740–800 nm range is nearly flat for
control swards but increasing for drought-stressed swards. Carter (1991) also found
flat reflection curves in this range for fresh leaves, but increasing reflection with wave-
length for dehydrated and re-hydrated leaves. 

The position of the IPs around 485, 624 and 705 nm also responded to the N
supply level. The shift of IPs positions in the visible wavelength range during growth
and under drought stress was not as strong for low N supply as for high N supply. The
gradients at the IPs around 485, 517, 570, 624, 640 nm were lower for low N supply
than for high N supply. In the near infra red region there were no differences found in
positions and gradients of IPs between low and high N supply. 

The CAW parameter reached a maximum value of 133 nm for control swards,
corresponding with the findings of Schut & Ketelaars (2003c). In grass swards under
moderate N stress both GE as RE showed a reversed development during the second
half of a growth period, whereas GE and RE at high N showed a stable maximum
(Schut & Ketelaars, 2003b). Severe drought stress also decreased CAW, which was
strongest for high N supply. The relative yield of DS-HN fits well within the relation
between CAW and relative yield as found earlier for N stress, whereas relative yield of
DS-LN does not (Schut & Ketelaars, 2003c).

Under drought stress, the 570 nm IP position reversed in the second half of the
growth period for both low and high N in parallel with GC decrease, leaf death and
chlorophyll breakdown. Drought stress accelerated the increase of the IP position near
705 nm up to harvest. Horler et al. (1983) also reported a shift of the IP at the red edge
to longer wavelengths with leaf drying. This shift to longer wavelengths can also be
found in spectra of dehydrated leaves (Penuelas et al., 1993). Horler et al. (1983)
argued that this shift might result from changes in internal leaf structure.

In remote sensing with natural light, atmospheric absorption limits the detection
of changes in canopy water content. Therefore, applicability of most remotely sensed
indices is limited to relative water concentrations below 80–85% (Penuelas et al.,
1993). In our research, the combination of an active sensor and a limited distance
between detector and object allowed accurate reflection measurements in strongly
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water-absorbing spectral regions. In these regions early drought stress could be detect-
ed shortly before leaf water content dropped below 80%.

In the presence of a control, drought stress can be identified by comparing GC and
IP position. With measurements repeated in time, the reversed shift of the IP position
can identify drought-stressed swards. The position of the IP showed a clear evolution
during unstressed growth. Therefore, the growth stage should be taken into account
when interpreting IP positions without a control. 

The relation between the IP position near 705 and 1390 nm provided such a
growth stage reference, and with this relation unstressed swards shortly after harvest
can be differentiated from drought-stressed swards in a later growth stage.
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Appendix

List of abbreviations

BE blue edge

CAW chlorophyll-dominated absorption width

Co control

DM dry matter

DS-HN drought stressed with high N supply

DS-LN drought stressed with low N supply

GC ground cover

GCG grass ground cover

GCIL image line ground cover

GCS ground cover specular class

GC-SSD spatial standard deviation of GC

GE green edge

IC reflection intensity class

IL image line

IP inflection point

IRI index of reflection intensity

LAI leaf area index

MICS normalized spectra for each IC

MSS mean sward reflection spectra

N nitrogen

NIR near infra red

RE red edge

TGC logistically transformed value of GC

TGCIL logistically transformed value of GCIL

TGC-SSD spatial standard deviation of TGC
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