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Abstract

This paper compares two ways of representing some of the existing growth functions, i.e.,
the exponential, the monomolecular or Mitscherlich, the logistic or autocatalytic, the Gom-
pertz, and the Richards equations. A second order exponential polynomial will be discussed
as well. In the first expression growth is expressed in the parameters mass at time zero W0,
mass at time infinity Wf, and a measure for the relative growth rate k. In the second expres-
sion different parameters are used because of robust parameter optimization (e.g., by the sta-
tistical software package Genstat). This paper shows the relationships between these fitted
parameters and the parameters W0¸Wf and k. This paper addresses the properties of these
models, such as physical meaning of the parameters, properties at the point of inflection (if
existing), and the growth rate in the limit W → 0. The second order exponential polynomial
is rewritten in such way that use is made of a proportionality constant, being equal to the
relative growth rate at point of inflection. Application of the growth models is demonstrated
using data of lettuce grown on nutrient film. Finally, it is shown that, except for the exponen-
tial polynomial, all growth equations originate from one single equation.

Keywords: growth rate, relative growth rate, analytical growth equation, exponential growth,
monomolecular or Mitscherlich growth, logistic or autocatalytic growth, Gompertz growth,
Richards or general logistic growth, exponential polynomial growth, point of inflection

Introduction

Growth of a crop involves uptake of water and nutrients. Because nutrients are taken
up by the plant to be incorporated in new plant material, study of the increase in
plant mass gives a first idea of the need of nutrients by the plant. In case a nutrient
constitutes a constant fraction of the plant mass, the uptake rate is proportional to
the growth rate of the plant.

Descriptions of growth rate, i.e. increase in plant mass with time, can be given ei-
ther by physiological mechanistic models or by empirical or mathematical functions.
Mechanistic models are mostly used to predict growth, while mathematical functions
are mostly used to describe afterwards observed increase in mass. By fitting the ob-
served data to the relatively simple mathematical functions, the parameters appear-
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ing in these functions are optimized. It appears that there are several ways to repre-
sent the same mathematical function. That means that the parameters appearing in
each representation of the same function are linked to each other. This paper de-
scribes a few mathematical growth functions that appear in the literature. These
functions are formulated using parameters with a physiological meaning that can be
identified as mass at time zero, mass at time infinity, and a proportionality constant
that is a measure for the relative growth rate. These functions appear also in a specif-
ic statistical package (i.c. Genstat 5; Anon., 1993), but then they are formulated in a
different way, for reasons of robust parameter optimization. The aim of this paper is
to show how the parameters appearing in the two descriptions of the same mathemat-
ical function are related, and to show some of the properties of these functions. As a
demonstration, examples of fitting growth and nutrient uptake data to some of these
functions are presented. Finally it is shown that most of the growth functions used in
this paper belong to one family of equations. This paper is not meant to give a re-
view of existing growth functions; such reviews can be found in existing handbooks
(e.g., Charles-Edwards et al., 1986; France and Thornley, 1984; Hunt, 1978, 1982).

Mathematical growth models

All growth models considered in this study explicitly express the plant mass as a
function of time. They are, however, empirical models, i.e., growth is not explained
in terms of physiological processes. Only later the parameters of these growth equa-
tions can be given a physiological meaning. For this study use is made of standard
references (Charles-Edwards et al., 1986; France and Thornley, 1984; Hunt, 1978,
1982).

In general, the growth rate will be the starting point, i.e. the change in plant mass
W (M) with time t (T) dW/dt, or the growth rate per unit plant mass (1/W)(dW/dt),
known as the relative or specific growth rate or sometimes proportional growth rate.
Here growth is considered to be a function of the plant mass already formed:

dW
––– = f (W). (1)
dt

Now the question remains how this function f (W), which relates dW/dt and W, looks
like. Several functions f (W) will be considered, typically those that are present in
Genstat 5 (Anon., 1993). For each of the functions the following expressions and
properties will be determined.
A The main part of the model is the expression for W(t), which is obtained by inte-

grating the expression for dW/dt between the limits t = 0, W = W0 and t = t, W =
W. The main parameters appearing in these equations are given a physiological
meaning, such as the weight W0 at t = 0, the weight Wf at t → ∞, and the growth
rate proportionality constant k, which is a measure for the relative growth rate.

B Some of the models have an inflection point. The plant mass W* and time t* at
the inflection point are obtained by solving d2W/dt2 = 0 for W and t, respectively.
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Substituting W* into the expressions for growth rate and relative growth rate
yields values for these rates at the inflection point, (dW/dt)* and ((1/W)(dW/dt))*,
respectively.

C One expects the growth rate for W → 0 to be finite. To check this, the limit for
W → 0 of dW/dt is determined, and for comparison also the limit for W → 0 of
(1/W)(dW/dt) is given.

The aspects of A are described in the forthcoming sections. The six models considered
are: exponential, monomolecular or Mitscherlich, logistic or autocatalytic, Gompertz,
Richards or general logistic, and second order exponential polynomial growth. The
common parameters appearing in all models will be distinguished by the subscripts e,
m, l, g, r, and p, respectively. For convenience, all main symbols with their dimensions
are described in Table 1 and not in the text, and the expressions for W(t) are summa-
rized in Table 2. The properties mentioned in B and C are listed in Table 3, and will not
be discussed in the text. Finally, for all models graphical representations are given of
W, lnW, dW/dt and (1/W)(dW/dt) as a function of t, and of dW/dt and (1/W)(dW/dt) as a
function of W. In all models the lower asymptote is absent.

Exponential growth

The growth rate is proportional to the amount of plant mass already formed. Growth
is irreversible and stops at a certain time, tf (T), e.g. when one of the growth factors
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Figure 1. Exponential growth: (A) We and ln We as a function of t, (B) dWe/dt and (1/We)(dWe/dt) as a
function of t, and (C) as function of We; with We0 = 1 g, Wef = 100 g, ke = 0.2 d–1.
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Table 1. Description of symbols used in text including their dimensions (M: mass, T: time, 1: dimen-
sionless).

Symbol Description Dimension

A Dummy parameter (Eq. (63), and Appendix A) 1
B Dummy parameter (Appendix A) Mn–1

W Plant mass M
Y Plant mass M
a,b,c,d Constants in exponential polynomial (non-subscripted) 1, T–1, T–2, T–3

a,b,c Parameters in section ‘Equivalent expressions for growth models’
(subscripted); a represents the lower asymptote, (a+c) represents the 
upper asymptote, and b is a measure for the slope M, T–1, M

k Proportionality constant T–1

kl’ Proportionality constant (for logistic growth only) M–1T–1

kg Non-constant proportionality constant (for Gompertz growth only) T–1

m Time of inflection T
n Dimensionless constant 1
p Dimensionless constant 1
r Dimensionless parameter 1
t Time T
tf Time when growth stops (for exponential growth only) T
tmi Last time of measurement interval T
ts The second order exponential polynomial is symmetrical at time t = ts T
y Expected value of Y M
α, β, γ Parameters in universal growth equation (Eq. (61)); dimensions depend on

choice of growth function (see, e.g., Table 6)
ε Constant (used in ln-transformation of exponential polynomial growth) 1
µ, ν Curve shape parameters 1, T–1

σ A stochastic deviation M

Sub- and superscripts

* Property at inflection point
0 Property at t = 0
1 Referring to some time at start of growth period
2 Referring to some time at end of growth period
e Reference to the exponential growth function
f Property for t → ∞; for exponential growth: t = tf

g Reference to the Gompertz growth function
l Reference to the logistic or autocatalytic growth function
m Reference to the monomolecular or Mitscherlich growth function (not in tm)
p Reference to the exponential polynomial growth function
r Reference to the Richards growth function
t ln-transformed data (exponential polynomial growth)

Mathematical operators

d Derivative operator
e, exp Natural base
lim Limit operator
f() Any functional relationship
ln Natural logarithm
∫ Integral operator



becomes depleted (c.f. Liebig’s law of the minimum) (Figure 1). The growth rate is
given by

dWe  keWe 0 ≤ t < tf–––– =  , (2)
dt  0 tf ≤ t

and the relative growth rate is given by

1 dWe  ke 0 ≤ t < tf––– –––– =  . (3)
We dt  0 tf ≤ t

Integrating Eq. (2) yields (Figure 1)

 We0eket 0 ≤ t < tfWe(t) =  . (4)
 Wef tf ≤ t

From Eq. (4) expressions for tf or ke can be derived.

Monomolecular or Mitscherlich growth

The mathematical representation of monomolecular growth is borrowed from physi-
cal-chemistry, where it describes a first order irreversible chemical reaction. In plant
nutrition and soil fertility it is also known as the Mitscherlich growth (Mitscherlich,
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Table 2. Names, expressions for W(t), and reference to equation number in text for the growth equation
used in this paper.

Model Expression for W(t) Eq.

Exponential (4)

Monomolecular or Mitscherlich (7)

Logistic or autocatalytic (10)

Gompertz (15, 17)

Richards or general logistic (23)

Second order exponential polynomial (43)

 We0eket 0 ≤ t < tf
We(t) = 

 Wef tf ≤ t

Wm(t ) = Wmf – (Wmf – Wm0)e–kmt. 

Wl0Wlf
Wl (t) = –––––––––––––––––––––

Wl0 + (Wlf – Wl0)e–kl t

Wg(t) = Wg0e =

kg0  
–––  1–e–kgt
kg  

Wgf e

kg0
– ––– e–kgt

kg

Wr0Wrf
Wr (t) =––––––––––––––––––––––––––, n ≥ –1

(W n
r0 + (W n

rf – W n
r0)e–kr t)

1–n

Wp(t ) = Wp0ek2
pt (ts–0.5t ) = Wpf e–0.5k2

pt (ts–t )2
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1928). Growth is irreversible, and the growth rate is proportional to the difference
between the asymptotic maximum plant mass Wmf and the plant mass already formed
Wm according to (Figure 2)

dWm–––– = km(Wmf – Wm), (5)
dt

and the relative growth rate is given by

1 dWm  Wmf 
––– –––– = km  –––– – 1 . (6)
Wm dt  Wm 

Integrating Eq. (5) yields (Figure 2)

Wm(t ) = Wmf – (Wmf – Wm0)e–kmt. (7)

The proportionality constant km can be expressed in terms of the parameter Wmf

(Table 3).

Logistic or autocatalytic growth

The growth rate of the logistic growth model is a combination of the growth rates of
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Figure 2. Monomolecular or Mitscherlich growth: (A) Wm and ln Wm as a function of t, (B) dWm/dt and
(1/Wm)(dWm/dt) as a function of t, and (C) as a function of Wm; with Wm0 = 1 g, Wmf = 100 g, km = 0.2 d–1.



the exponential and the monomolecular growth models. The growth rate is irre-
versible and it is proportional to Wl and the difference between the asymptotic maxi-
mum Wlf and Wl (Figure 3):

dWl  Wl 
–––– = kl′Wl (Wl f –  Wl )  =  klWl  1 – –––  . (8)
dt  Wlf 

The relative growth rate is given by

1 dWl  Wl 
––– –––– = kl′(Wl f –  Wl )  =  kl  1 – –––  , (9)
Wl dt  Wlf 

where kl = kl′/Wlf . Integrating Eq. (8) (see Appendix A) yields (Figure 3)

Wl0WlfWl (t) = ––––––––––––––––––––– . (10)
Wl0 + (Wlf – Wl0)e–kl t

Logistic growth has an inflection point (Table 3). From Eqs. (8) or (9) with Wl = Wl*
it follows that kl is a measure for the (relative) growth rate at the point of inflection
(Table 3).
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Figure 3. Logistic growth: (A) Wl and ln Wl as a function of t, (B) dWl/dt and (1/Wl)(dWl/dt) as a function
of t, and (C) as a function of Wl; with Wl0 = 1 g, Wlf = 100 g, kl = 0.2 d–1.



Gompertz growth

B. Gompertz introduced in 1825 (as mentioned by Hunt, 1982) a growth model, in
which the growth factors are non-limiting. The growth rate is proportional to Wg and
the relative growth rate decreases with time according to first-order kinetics (expo-
nential decrease)

dWg–––– = kg′Wg , (11)
dt

where kg′ decreases exponentially in time (e.g., due to aging or differentiation) ac-
cording to

dkg′–––– = –kgkg′ , (12)
dt

where kg is a proportionality constant (T–1). The result of integrating Eq. (12) between
the limits t = 0, kg′ = kg0 and t = t, kg′ = kg′ introduced in Eq. (11) yields (Figure 4)

dWg–––– = kg0Wge–kg t, (13)
dt

and the relative growth rate is given by

ANALYTICAL GROWTH EQUATIONS AND THEIR GENSTAT 5 EQUIVALENTS
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Figure 4. Gompertz growth: (A) Wg and ln Wg as a function of t, (B) dWg/dt and (1/Wg)(dWg/dt) as a
function of t, and (C) as a function of Wg; with Wg0 = 1 g, Wgf = 100 g, kg = 0.1 d–1.



1 dWg––– –––– = kg0e–kg t. (14)
Wg dt

Integrating Eq. (13) yields (Figure 4)

(15)
Wg(t) = Wg0e .

Since for t → ∞, Wg = Wgf it follows that

(16)
Wgf = Wg0e .

Introducing Eq. (16) into Eq. (15) yields (Figure 4)

(17)
Wg(t) = Wgf e .

Equation (17) can also be obtained directly by integrating Eq. (13) between the lim-
its t = t, Wg = Wg and t = tf → ∞, Wg = Wgf. From Eq. (16) it follows that

 Wgf 
kg0 = kgln  ––––  . (18)

 Wg0 

Equation (13) is still not of the form of Eq. (1), i.e. a function of Wg only, because
time t is still included. This can be obtained by extracting an expression for exp(–kgt)
from Eq. (15) and substituting this result into Eq. (13) yielding (without or with
using Eq. (16); Figure 4)

dWg   Wg   Wgf 
–––– = Wg  kg0 – kgln  ––––  = kgWgln  ––––  , (19)
dt   Wg0   Wg 

and the relative growth rate is given by

1 dWg  Wg   Wgf ––– –––– = kg0 – kgln  –––– = kgln  –––– . (20)
Wg dt  Wg0   Wg 

Gompertz growth has an inflection point (Table 3). From Eqs. (19) or (20) with Wg =
Wg* it follows that kg is a measure for the (relative) growth rate at the inflection
point (Table 3).

Richards or general logistic growth

Richards (1959) introduced a generalization of the above mentioned logistic model
(Figure 5)

kg0
– ––– e–kgt

kg

kg0–––
kg

kg0  
–––  1–e–kgt
kg  
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dWr W n
rf – W n

r kr   Wr  n 
–––– = krWr ––––––––– = –– Wr  1–  ––––   , (21)
dt nW n

rf n   Wrf  
and the relative growth rate is given by

1 dWr W n
rf – W n

r kr   Wr  n 
––– –––– = kr ––––––––– = ––  1–  ––––  , (22)
Wr dt nW n

rf n   Wrf  

where the dimensionless constant n must be larger than –1, since then the growth
rate in the limit Wr → 0 is finite (see below). Integrating Eq. (21) (see Appendix A)
(Figure 5) yields

Wr0WrfWr (t) = –––––––––––––––––––––––––– , n ≥ –1. (23)
(W n

r0 + (W n
rf – W n

r0)e–kr t)

The Richards growth equation includes some special cases. For n = 1 Eq. (23) re-
duces to the logistic model (Eq. (10)). Substituting n = –1 in Eq. (23) and using sim-
ple algebra one obtains the monomolecular or Mitscherlich growth curve (Eq. (7)).
For n = 0 it represents the Gompertz model, as is shown next. By taking the limit
n → 0 of dWr /dt and by using the expansion series for xn (with x = Wr/Wrf), it can be
shown that this limit corresponds to Eq. (19):

1–n
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Figure 5. Richards or general logistic growth: (A) Wr, (B) ln Wr, (C) dWr/dt, and (D) (1/Wr)(dWr/dt) as a
function of t, and (E) dWr/dt and (F) (1/Wr)(dWr/dt) as a function of Wr; with Wr0 = 1 g, Wrf = 100 g, kr =
0.2 d–1 for several values of the dimensionless n parameter: n = –1, –0.5, 0, 0.5, 1, 1.5, 2.



dWr  1 1  Wr  n 
lim –––– = lim krWr  – – –  –––   . (24)
n→0 dt n→0  n n  Wrf  

The expansion for xn is

nlnx (nlnx)2 (nlnx)3

xn = enlnx = 1 + ––––– + ––––––– + ––––––– + ... , (25)
1! 2! 3!

so that Eq. (24) can be written analogous to Eq. (19), i.e.,

dWr   Wr  n   Wr  2 n ln  Wr  3   Wrf lim –––– = – krWr ln  ––– + –– ln  –––  + –– ln  –––  + ...= krWrln  –––  . (26)
n→0 dt   Wrf  2!   Wrf      3!ln  Wrf    Wr 

The Richards model has an inflection point (Table 3; Figure 6; n > –1). For n = 1
and n = 0 the inflection points of the logistic and the Gompertz model are obtained.
For n > –1, the limit Wr → 0 of dWr/dt equals

dWr krlim –––– = – ––––– lim W r
n+1 = 0, n > –1. (27)

Wr→0 dt nW n
rf. Wr→0
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Figure 6. (A) The normalized plant mass at inflection point, Wr*/Wrf, and the normalized time of inflec-
tion, kr tr*, as a function of n, and (B) the growth rate, (dWr/dt)*, and the relative growth rate,
((1/Wr)(dWr/dt))*, at inflection point as a function of the dimensionless n parameter in the Richards
growth model.



For n < –1 this limit is undefined, and for n = –1 this limit yields krWrf (monomolec-
ular growth).

From Eqs. (21) or (22) with Wr = Wr* it follows that kr is a measure for the (rela-
tive) growth rate at the inflection point (Table 3).

Exponential polynomial growth

Exponential polynomials do not have any physiological meaning from which they
can be derived. Only afterwards the parameters of these polynomials can be given a
physiological meaning. The general form of exponential polynomials equals

Wp(t ) = ea + bt + ct2 + dt3 + ... . (28)

The first order exponential polynomial reads

Wp(t ) = ea + bt = a′ebt, (29)

where a′ = ea. Equation (29) is analogous to exponential growth (cf. Eq. (4)).
The second order exponential polynomial reads (Figure 7)

Wp(t ) = ea + bt + ct2 . (30)
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Figure 7. Second order exponential polynomial growth: (A) Wp and ln Wp as a function of t, (B) dWp/dt
and (1/Wp)(dWp/dt) as a function of t, and (C) as a function of Wp; with Wp0 = 1 g, Wpf = 100 g, ts = 40 d,
kp = 0.075871 d–1.



For t = 0 the parameter a is a measure for Wp0:

a = lnWp0 . (31)

The form of the second order exponential polynomial depends on the values of b and
c. For our purposes b > 0 and c < 0 is the most interesting case. Equation (30) is
symmetrical around t = ts, with a positive growth rate between t = 0 and t = ts. This is
the time interval which is considered, and we require ts to be the time at the end of
the growth period at which Wp = Wpf . The growth rate is obtained by differentiating
Eq. (30) with respect to t yielding (Figure 7)

dWp–––– = (b + 2ct )ea + bt + ct2 = (b + 2ct )Wp , (32)
dt

and the relative growth rate is given by

1 dWp––– –––– = (b + 2ct ). (33)
Wp dt

From Eq. (33) it can be seen that b equals the relative growth rate at t = 0. The maxi-
mum of the curve is obtained by solving dWp/dt = 0 for t yielding ts:

b
ts = – ––– . (34)

2c

At ts Wp = Wpf , and an expression for Wpf follows from Eq. (30) using Eq. (34):

(35)
Wpf = e = Wp0e .

From Eqs. (34) and (35) expressions for the two unknown parameters b and c in
terms of the quantities Wp0, Wpf and ts can be derived as

2  Wpf  1  Wpf 
b = – ln  –––– , and c = – – ln  ––––  . (36)

ts  Wp0  t 2
s  Wp0 

The inflection point inside the time interval [0,ts] occurs at (Table 3)

1  1 
t*p = ts – √ – ––– = ts  1 – –––––––––––  . (37)

2c  
 
 √ 

Evaluating Eqs. (30), (31), (36), and (37) at the point of inflection results in an ex-
pression for Wp

* (Table 3). From Eqs. (34) and (37) it follows that b and c are mea-
sures for the difference between ts and tp

*:

 Wpf 
2ln  ––––

 Wp0 

b2

– –––
4c

b2

a  – –––
4c
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ts 1
b = –––––––– , and c = – ––––––––– . (38)

(ts – tp
*)2 2(ts – tp

*)2

Parameters b and c can not be expressed in terms of Wpf and Wp
*, since one can

imagine that at different (ts – tp
*) the same difference in Wpf and Wp

* can be obtained.
In Eq. (32) dWp/dt is not explicitly given as a function of Wp only, because t is in-

cluded. From Eq. (30) an expression for t, within the interval [0,ts], can be obtained
yielding (using Eq. (36))

 
  
 t = ts  1 – –––––––––  . (39)
    

Substituting Eq. (39) into Eq. (32), using Eq. (36), yields (Figure 7)

dWp Wp  Wpf   Wpf 
–––– = 2 ––– √ ln  ––– ln  –––  , (40)
dt ts  Wp   Wp0 

and the relative growth rate is given by

1 dWp 2  Wpf   Wpf 
––– –––– = –– √ ln  ––– ln  –––  . (41)
Wp dt ts  Wp   Wp0 

Since the logistic, Gompertz and Richards growth models have a proportionality
constant k which is a measure for the relative growth rate at the point of inflection, it
is interesting to see if we can define a similar parameter kp. We define kp as the rela-
tive growth rate at the inflection point. Evaluating Eq. (41) at the inflection point
using the expression of W * (Table 3) yields

1  Wpf  b
kp = –– √2ln  ––– = √–– = √–2c . (42)

ts  Wp0  ts

Now we can write expressions for Wp(t), dWp/dt and (1/Wp)(dWp/dt) in terms of the
parameters Wp0, Wpf and kp. Substituting Eqs. (31), (36), and (42) in Eq. (30) yields

Wp(t ) = Wp0ek2
pt (ts–0.5t ) = Wpf e–0.5k2

p (ts–t )2
. (43)

Differentiating Eq. (43) to t, or substituting Eq. (42) in Eq. (40), yields

dWp  Wpf 
–––– = Wpk2

p(t s – t )  =  k p W p √2ln  ––– . (44)
dt  Wp 

 Wpf 
ln  ––––

 Wp0 

 Wpf 
ln  ––––

 Wp 
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The relative growth rate follows from Eq. (44) as

1 dWp  Wpf 
––– –––– = k2

p(t s – t )  =  k p √ 2ln  ––– . (45)
Wp dt  Wp 

France and Thornley (1984) advise not to use higher order exponential polynomi-
als, because of possible “overfitting” of the measured data.

Equivalent expressions for the growth models

The statistical processing program Genstat (Anon., 1993) uses equivalent expres-
sions for the non-linear – in terms of the unknown parameters – growth equations
presented above (as listed in Table 2). The exponential and monomolecular growth
equations are both described by

Yem(t ) = aem + bemrt. (46)

The logistic growth equation is described by

cl
Yl (t) = al + –––––––––––– , (47)

1 + e–bl ( t–ml )

the Gompertz equation by

Yg(t ) = ag + cge–e–bg(t–mg). (48)

and the Richards equation by

cr
Yl (t) = ar + ––––––––––––––– , (49)

1 + pe–br ( t–mr )

The variable Y represents the plant mass W. The parameters a and (a+c) in Eqs. (46)
to (49) represent the lower and upper asymptotes, respectively. As in the previous
section, a will be absent in Eqs. (47)-(49). The parameters b are measures of the
slopes of the curves, the parameters m represent the time of inflection, i.e. m = t*,
and p and r are dimensionless parameters. It is clear that for the Richards model p =
n. In Genstat’s directive FITCURVE the choice of the model can be given as an op-
tion. Genstat determines estimators for the parameters a, b, c, m, p and r for given
measured data. The relation between the unknown parameters in Eqs. (4), (7), (10),
(15)+(17) and (23) and the Genstat parameters will be given below. For convenience,
the relationships are listed in Table 4.

The second order exponential polynomial, i.e. Eq. (30) or Eq. (43), can be fitted
via linear regression after ln-transformation.

1–p
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Exponential growth
With the substitution r = exp(ke) and the assumption aem = 0, Eq. (46) becomes

Yem(t ) = beme ket. (50)

Equation (50) is equivalent to Eq. (4) for bem = We0 and lnr = ke.

Monomolecular or Mitscherlich growth
With the substitution r = exp(–km) Eq. (46) becomes

Yem(t ) = aem + beme –kmt. (51)

Equation (51) is equivalent to Eq. (7) for aem = Wmf, aem + bem = Wm0 and ln(1/r) = km.
In Genstat it is possible that the program uses the restriction r > 1. This yields a neg-
ative value for aem, and this means that Wmf becomes negative, which is impossible.
In that case Genstat assumes exponential growth.

Logistic or autocatalytic growth
In Eq. (10) Wlf is the asymptotic maximum for Wl, which is represented by cl in Eq.
(47), i.e. cl = Wlf. With bl = kl and ml = tl

*, and using the definition of tl* (Table 3) Eq.
(47) becomes

Wlf Wl0Wlf
Yl (t) = ––––––––––––– = ––––––––––––––––––––––– . (52)

1 + ekl  t
*
le –kl t Wl0 + (Wlf – Wl0)e –kl t
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Table 4. The relation between the parameters k, Wf, W0 kg0 and n of the exponential (Eq. (4)), monomole-
cular (Eq. (7)), logistic (Eq. (10)), Gompertz (Eqs. (15) + (17)), Richards (Eq. (23)), and second order
exponential polynomial (Eq. (43)) growth models, and the estimated parameters a, b, c, m, r, and p of
equivalent expressions by Genstat.

Model k Wf W0 kg0 n

Exponential lnr bem

1
Monomolecular ln – aem aem + bemr

clLogistic bl cl ––––––––
1 + eblml

Gompertz bg cg cge–ebgmg bge
bgmg

crRichards br cr –––––––––––– p
(1 + pebrmr)

1
p

b b2

Second order exponential √ –– , or √–2c a – –– ea

polynomial
ts e 4c



Under the given conditions, Eq. (47) is equivalent to Eq. (10) (= Eq. (52)). Wl0 fol-
lows from the definition of tl* (Table 3) and the given conditions:

cl
Wl0 = –––––––– . (53)

1 + ebl  ml

Gompertz growth
In Eq. (17) Wgf is the asymptotic maximum for Wg, which is represented by cg in Eq.
(48), i.e. cg = Wgf. With bg = kg and mg = tg

*, and using the definition of tg* (Table 3)
Eq. (48) becomes

(54)
Yg(t) = Wgf

–ekgtg*e–kgt

= Wgf e .

Under the given conditions, Eq. (48) is equivalent to Eq. (17) (= Eq. (54)). kg0 fol-
lows from the definition of tg* (Table 3) and the given conditions:

kg0 = bge bgmg. (55)

Wg0 follows from Eq. (16) and Eq. (55) under the given conditions:

Wg0 = cge –ebgmg. (56)

Richards or general logistic growth
In Eq. (23) Wrf is the asymptotic maximum for Wr, which is represented by cr in Eq.
(49), i.e. cr = Wrf. With p = n, br = kr and mr = tr

* , and using the definition of tr*
(Table 3) Eq. (49) becomes

Wrf Wr0Wrf
Yr (t) = ––––––––––––––––– = –––––––––––––––––––––––––– . (57)

(1 + nekrt*re –krt)1
n (W n

r0 + (W n
rf – W n

r0)e–krt)1
n

Under the given conditions, Eq. (49) is equivalent to Eq. (23) (= Eq. (57)). Wr0 fol-
lows from the definition of tr* (Table 3) and the given conditions:

cr
Wr0 = ––––––––––– . (58)

(1 + ebrmr)1
n

Exponential polynomial growth
The parameters of the second order exponential polynomial cannot be estimated di-
rectly using standard fit-procedures in Genstat (Anon., 1993). After ln-transforming
Eq. (30) a linear equation – in terms of the parameters – is obtained

lnWp = a + bt + ct2. (59)

kgo
– ––– e–kgt

kg

M. HEINEN

84 Netherlands Journal of Agricultural Science 47 (1999)



Equation (59) can be solved directly using linear regression giving estimates of a, b
and c. A disadvantage of the ln-transformation method is that the fitted curve may
show its optimum within the measurement interval [0,tmi] (the lower Wp values “pull
stronger” at the curve to be fitted), with tmi the last time of the measurement interval.
For the exponential polynomial (as described above) we assumed that the maximum
occurs at the end of the growth period, i.e. at t = ts = tmi. The method of transforma-
tion determines the place of this optimum. Therefore, it is advised to transform the
data as follows

Wp,t = ln(Wp(t) +ε), ε > 0. (60)

In that case the optimum is a function of the constant ε. It is proposed that in case
the data show a S-shape-like distribution, ε is chosen such that the optimum occurs
at t = ts = tmi. That means that the parameters b and c are restricted according to Eq.
(34).

Example

To demonstrate the use of the models described above, the dry weight data of lettuce
heads of Heinen et al. (1991) were fitted to the logistic, Gompertz, Richards, and
second order polynomial growth equations (Figure 8A). It goes beyond the scope of
this report to discuss the observations, since similar discussions are given in Heinen
et al. (1991). The estimated parameters of the logistic, Eq. (47), Gompertz, Eq. (48),
Richards, Eq. (49), and second order exponential polynomial, Eq. (60), models were
used to calculate the parameters in Eqs. (10), (15) + (17), (23), and (43) respectively,
according to Table 4 (Table 5). The value of ε in Eq. (60) was iteratively estimated as
0.05823, in which case the optimum of the exponential curve occurs at the last time
of the measurement interval. Similarly, the cumulative uptake by the lettuce heads of
N, P and K were fitted to the logistic model (Table 5). These fitted data were scaled
by dividing them by the fitted maximum value Wf (Figure 8B).

The question remains which of the functions is the best. The answer will depend
on the researcher and his/hers interests and ideas about the growth of the crop.
Judgement of a good fit is mostly done based on high correlation coefficient r2 com-
bined with a visually good fit, and the choice of the function with the least number
of parameters or the function that comes closest to the concept of growth used by the
researcher. Here, one could say that the logistic function is preferred: highest r2 and
the least number of parameters. It is recognized that the fit is biased by measurement
errors. For the data used in this example no measurement errors are known, since da-
ta refer to a single sample obtained from several plants. Moreover, if the crop has
distinct growth stages, such as vegetative growth and flowering, for each growth
stage a growth function may be used. For example, Hammond and Kirkham (1949)
used exponential growth functions for three growth periods of soybeans and four
growth periods of corn.
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One model fits all

As was mentioned before, the Richards growth model includes the logistic, the
monomolecular or Mitscherlich, and the Gompertz growth equations. In fact, these
four models and the exponential growth equation can be represented by the follow-
ing family of equations, which is analogous to Eq. (46) (Hunt, 1982)
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Figure 8. (A) Dry weight data of lettuce head from Heinen et al. (1991) fitted to the logistic, Gompertz,
Richards and second order exponential polynomial models. (B) Cumulative uptake data of N, P and K
by lettuce head from Heinen et al. (1991) fitted to the logistic model.



Y = α + βγt, (61)

where Y is a function of W, and the parameters α, β and γ depend on the kind of
growth model under consideration (Table 6).

For completeness, it is mentioned here that in Genstat a procedure is available
called FITSCHNUTE. It can be used to fit data according to the growth model of
Schnute (1981). It is available in the CBW-DLO Genstat-procedures-library which
can be downloaded from the Internet (visit www.cpro.dlo.nl/cbw; CBW stands for
Centre for Biometry Wageningen and DLO stands for the Dutch Agricultural Re-
search Organization). The procedure is described in detail by Keen (1988). The mod-
el reads

Y = y + σ, (62)

where y is a function of t according to

1 – e–v(t–t
1
)

Y(t) = (y1
µ + (y2

µ – y1
µ) –––––––––– )

1
µ
. (63)

1 – e–v(t
2
–t

1
)
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Table 5. The estimated and calculated parameters (PM) of the logistic (L, Eq. (10)), Gompertz (G, Eqs.
(15) + (17)), Richards (R, Eq. (23)) and second order exponential polynomial (EP, Eq. (30) or (43))
models for the dry weight data (g per lettuce head), and the estimated and calculated parameters for the
cumulative uptake data (mmol per lettuce head) of nitrogen (N), phosphorus (P) and potassium (K) for
the logistic model. The correlation coefficient is given as by r2. For the estimated parameters the stan-
dard errors, as given by Genstat, are listed between brackets.

PM L G R EP

dry N P K dry dry dry

W0 (g or mmol) 0.100 0.218 0.044 0.111 0.0 0.067 0.115
Wf (g or mmol) 18.78 68.97 6.65 47.46 20.81 19.04 18.94

(0.669) (1.60) (0.422) (1.05) (1.55) (1.25)
k (d–1) 0.2054 0.2244 0.1660 0.2409 0.1145 0.1854 0.0761

(0.0208) (0.0160) (0.0178) (0.0178) (0.0189) (0.0716)
t* (d) 25.47 25.63 30.16 25.14 23.24 25.12 28.86

(0.646) (0.407) (1.10) (0.387) (0.972) (1.65)
n 0.785

(0.761)
kg0 (d–1) 1.6396
a -2.1661

(0.0742)
b (d–1) 0.24319

(0.00827)
c (d–2) –0.002895

(0.000189)
ε 0.05823
r2 99.9 99.9 99.8 99.9 99.9 99.8 99.9



The y1 and y2 parameters are the values of y at t1 and t2, respectively. S-shaped curves
are obtained for ν > 0 and µ > 1 (Keen, 1988). At given µ, parameter ν determines
the measure of curvation of the upper and lower curves. Parameter µ regulates the
curvature of the upper curve in relation to the lower curve. The Schnute model en-
compasses eleven submodels, including the exponential (ν < 0, µ = 1), monomolecu-
lar (ν > 0, µ = 1), logistic (ν > 0, µ = –1), Gompertz (ν > 0, µ = 0), and Richards (ν >
0, µ < 0) growth models. 
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Table 6. Expressions for the parameters y, α, β and γ of Eq. (61) to obtain the exponential, the
monomolecular, the logistic, the Gompertz and the Richards growth models.

Model y α β γ

Exponential We 0 We0 eke

Monomolecular Wm Wmf Wm0 – Wmf e
_km

Logistic Wl
–1 Wlf

–1 Wl0
–1 – Wlf

–1 e
_kl

Wgf kg0Gompertz lnWg lnWgf ln –––– = – ––– e
_kg

Wg0 kg

Richards Wr
–n Wrf

–n W r0
–n – Wrf

–n e
_kr



Appendix A
The partial fractioning method is demonstrated by integrating the Richards growth
equation Eq. (21) (leaving out the subscript r for convenience)

dW W nf – W n

––– = kW –––––––– . (A-1)
dt nW nf

Integrating Eq. (A-1) over t = 0, W = W0 and t = t, W = W yields

w
nW nf

t

∫ ––––––––– dW = ∫ k dt = kt. (A-2)
w0

W nf – W n
o

The left integral of Eq. (A-2) can be written as follows (partial fractioning)

w
nW nf

w
A B∫ ––––––––– dW = n ∫ (––– + –––––––––). dW. (A-3)

w0
W nf – W n

w0
W W nf – W n

Values for A and B can be obtained from

A(W nf – W n) + BW = W nf , (A-4)

yielding A = 1 and B = Wn–1. The left integral of Eq. (A-2) can now be written as

w
nW nf

w
1 W n–1

w
1

w
W n–1

∫ ––––––––– dW = n ∫ (–––+ –––––––––)dW = n . ∫ ––– dW + n ∫ –––––––––– dW.
w0

W nf – W n
w0

W W nf – W n
w0

W w0
W nf – W n

(A-5)

With dWn = nWn–1dW the left integral of Eq. (A-2) now becomes

w
nW nf

w
1

w
1∫ ––––––––– dW = n ∫ –– dW – ∫ ––––––––– dW n. (A-6)

w0
W nf – W n

w0
W w0

W n – W nf

The solution of the left integral of Eq. (A-2) follows easily from Eq. (A-6)

w
nW nf W W n – W nf W n W0

n – W nf∫ ––––––––– dW = nln ––– – ln ( –––––––––)= ln ( ––––––––––––––) . (A-7)
w0

W nf – W n W0 W0
n – W nf W0

n W n – W nf

From Eq. (A-2) and Eq. (A-7) it follows that

W n W0
n – W nf–––– –––––––––– = ekt. (A-8)

W0
n W n – W nf

Equation (A-8) can be solved simply for W yielding Eq. (23).
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