Netherlands Journal of Agricultural Science 43 (1995) 143-161

Crop modelling and remote sensing for yield prediction

B.A.M. BOUMAN

DLO Research Institute for Agrobiology and Soil Fertility (AB-DLO), P.O. Box 14,
NL-6700 AA Wageningen, The Netherlands

Received 17 December 1994; accepted 7 April 1995

Abstract

Methods for the application of crop growth models, remote sensing and their integrative use
for yield forecasting and prediction are presented. First, the general principles of crop
growth models are explained. When crop simulation models are used on regional scales, un-
certainty and spatial variation in model parameters can result in broad bands of simulated
yield. Remote sensing can be used to reduce some of this uncertainty. With optical remote
sensing, standard relations between the Weighted Difference Vegetation Index and fraction
ground cover and LAT were established for a number of crops. The radar backscatter of agri-
cultural crops was found to be largely affected by canopy structure, and, for most crops, no
consistent relationships with crop growth indicators were established. Two approaches are
described to integrate remote sensing data with crop growth models. In the first one, mea-
sures of light interception (ground cover, LAT) estimated from optical remote sensing are
used as forcing function in the models. In the second method, erop growth models are ex-
tended with remote sensing sub-models to simulate time-series of optical and radar remote
sensing signals. These simulated signals are compared to measured signals, and the crop
growth model is re-calibrated to match simulated with measured remote sensing data. The
developed methods resulted in increased accuracy in the simulation of crop growth and yield
of wheat and sugar beet in a number of case-studies.

Keywords: simulation, yield forecasting, region, uncertainty, spatial variation.

Introduction

Timely and accurate crop yield forecasting and prediction on regional to (supra-)na-
tional scales is increasingly becoming important both in developing countries (e.g.
early warning systems) and in developed countries. Yield forecasting is defined here
as the estimation in advance what the yield of a certain crop will be at the end of the
growing season, whereas yield prediction is the estimation of actually realised yields
after harvest. Especially for yield forecasting, methods are being investigated that
are based on new, objective technigues such as crop growth modelling and remote
sensing. For instance in the European Union (EU), a ten year project is underway at
the Joint Research Centre for the improvement of agricultural statistics of its mem-
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ber states. This project, commonly known as MARS (Monitoring Agriculture with
Remote Sensing) aims at, among others, using remote sensing methods and crop
growth models for timely yield forecasting of the most important crops of the EU
(Meyer-Roux & Vossen, 1994). Reasons to explore new technigues for crop yield
prediction are that current yield forecasts suffer from a lack of consistency across re-
gions and countries, are subjective in many cases (“expert guesses”) and are not de-
livered on time by all member states (Heath, 1990).

In The Netherlands, crop growth modelling was initiated and developed from the
mid-sixties onwards by C.T. de Wit and his co-workers in Wageningen. After initial
emphasis on quantifying and synthesising insight in processes of crop growth, re-
search attention is now shifting to operational application possibilities, such as crop
yield prediction and forecasting. Research on the application of remote sensing to
agriculture has been stimulated in The Netherlands from the early seventies through
successive government-sponsored programs, i.e. NIWARS 1971-1976 (Metherlands
Interdepartmental Working community for the Applications of Remote Sensing tech-
nigues) and NRSP-1, 1986-1990, and -2, 1990-2000 (Mational Remote Sensing
Program). The DLO-Research Institute for Agrobiology and Soil Fertility (AB-
DLO) has participated in these programs from the early days with research on the
use of optical and radar remote sensing for crop classification, growth monitoring
and yield estimation. This paper presents some concepts and methodologies devel-
oped to apply both crop growth models and remote sensing for yield prediction.
Future prospects and consequences for further research are discussed.

Crap growth modelling

Crop growth models simulate growth and development of agricultural crops based
on an understanding of underlying physical and physiological processes. The most
simple crop growth model is of the ‘light-interception” type (Gallagher & Biscoe,
1978; Monteith, 1981):

Wy=Je.8 f.dt 8))

Where:

Wy =dry weight of the crop (g m2]

e = light use efficiency factor [gJ']

§ =incoming global irradiation [Jm=d]
f = fraction light interception [-]

t =time [d]

The driving variable of crop growth is incoming photosynthetic active radiation
(light), that is converted into biomass via a light use efficiency factor. This efficien-
cy factor £ has to be derived from field experiments and, under non-stressed condi-
tions, has shown to be rather stable for several crops. For agricultural crops, £ has
been reported to be in the order of 1-3 g MJ™' (Monteith & Elston, 1983) and
1.3-4.2 g MJ™' (Charles-Edwards, 1982). Some reported values for specific crops
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are: 1.5-2 g MJ™! for sugar beet (Steven ef al., 1983), 0.64—1.42 g tuber dry matter
MJ-! for potato (Haverkort & Harris, 1986) and 2.3-2.7 g total dry matter for potato
MI! (Spitters, 1990), about 3 g MJ™! for maize (Maas, 1988) and 2.4 g MJ™! for bar-
ley (Christensen & Goudriaan, 1993).

In the practical use of eq. 1 for yield prediction, the development of the fraction of
intercepted light by the canopy has to be known. Fraction light interception can be
measured with tube-solarimeters, estimated with grid-frames (Haverkort et al.,
1991) or calculated from Leaf Area Index (LAI):

fraction light interception = (1-exp{-k.LAI)) (2)

Where k is extinction coefficient for visible radiation (0.5-0.8, depending on crop
type). With equation 2, the problem of quantifying the fraction light interception is
transferred to that of quantifying LAI. Another way to estimate fraction light inter-
ception is by the use of remote sensing techniques (see next section). When the de-
velopment of fraction light interception in time can not be measured or estimated, it
has to be dynamically simulated.

Of course a simple formulation of crop growth such as equation 1 does not consid-
er individual processes of crop growth (e.g. photosynthesis, respiration, assimilate
partitioning, phenology), nor does it consider the (interactive) effects of other envi-
ronmental variables beside solar radiation. Complex crop growth models that de-
scribe growth processes and feed-back mechanisms on a higher level of detail have
been developed by many researchers all over the world, e.g. the CERES and CROP-
GRO models in the DSSAT system (Tsuji et al., 1994), EPIC (Williams et al., 1989),
SIMTAG (Stapper & Harris, 1989) and ARCWHEAT (Weir et al., 1984), to name
only a few. In The Netherlands, de Wit and his co-workers developed a whole series
of dynamic simulation models based on the light-interception concept (de Wit, 1965;
Penning de Vries & van Laar, 1982; van Keulen & Wolf, 1986; Penning de Vries ef
al., 1989). The basic outline of these ‘School of de Wit" models is as follows: The
light profile within a crop canopy is computed on the basis of the Leaf Area Index
and the light extinction coefficient. At selected times during the day and at selected
depths within the canopy, photosynthesis is calculated from the photosynthesis-light
response of individual leaves. Integration over the canopy layers and over time with-
in the day gives the daily assimilation rate of the crop. Assimilated matter is first
used for maintenance respiration and for the remainder converted to new, structural
plant material. This newly formed material is partitioned to the various plant organs
through partitioning factors introduced as a function of the phenological develop-
ment stage of the crop (Spitters, 1990). A diagram of this type of models is found in
the left-hand side of Figure 1, representing potential production situations (i.e. with
ample supply of nutrients and water, and with no weeds, pest or disease infestation).
This basic model has been extended to simulate water-limited production and, in
some cases, nutrient-limited production. Examples of crop models of the “de Wit
School’ are SUCROS (Spitters ef al., 1989; van Laar et al., 1992); WOFOST (van
Diepen et al., 1989) and MACROS (Penning de Vries ef al., 1989). These models
simulate growth and development of agricultural crops with time steps of one day.
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Figure . Functioning of the crop growth model SUCROS (Simple and Universal Crop Growth
Simulator) with extensions to simulate optical reflectance and radar backscatter.

Input are daily weather data (driving variables) and crop, management and soil (for
non-potential production) parameters.

Regional yield prediction and forecasting
General methodology

Crop growth models have been applied on regional scales to assess crop yield poten-
tials and land-use options in a number of studies (e.g. Buringh et al, 1979; van
Lanen, 1991; Anonymous, 1992). In the framework of the MARS project, the model
WOFOST has recently been integrated with a Geographic Information System (GIS)
into the Crop Growth Monitoring System (CGMS) by the DLO-Winand Staring
Centre for yield forecasting in the EU (Van Diepen, 1991; Meyer-Roux & Vossen,
1994). In these regional studies, the concept of “homogeneous land unit’ is followed,
Figure 2. The geographic area under study is divided into land units that are consid-
ered homogeneous in soil, weather and agricultural land use characteristics. For each
land unit, weather data are obtained from meteorological stations in the area by spa-
tial interpolation. Crop parameters should ideally be derived from dedicated field
experiments, but are often adopted from the original model developer. Soil parame-
ters are costly and time-consuming to measure and are mostly estimated from infor-
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Figure 2. Diagram of steps in applying crop simulation models on regional scales using the “homoge-
neous land unit’ concept.

mation on existing soil maps using pedotransfer functions (e.g. Van Genuchten ef
al., 1989). Management parameters, such as sowing date, are estimated from expert
knowledge or from local field enquiries. Thus, for a particular land unit, there is one
set of measured weather data, one set of experimentally derived crop parameters, and
one set of estimated soil and management parameters that are supposedly representa-
tive for the whole land unit. Using these input sets, crop growth models are run to
obtain quantitative indicators of crop growth, such as total above ground weight,
weight of storage organs, or final yield. The simulated yield at the end of the grow-
ing season can be used for yield prediction, whereas simulated crop growth indica-
tors during the growing season can be used for crop yield forecasting. In both cases,
the simulated yield/crop growth indicators need to be regressed against actually re-
alised yields for a number of years to obtain a practical crop yield predictor/forecast-
ing algorithm. Mostly, actually realised yields are taken from official yield statistics
that may be compiled from various sources of information (ranging from pure expert
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guesses to farmers’ sampling strategies). Therefore, it should be kept in mind that,
strictly speaking, most forecasting algorithms forecast yield statistics and not actual
yields.

Crop growth and final yield as simulated by crop growth models is generally not
the same as actually realised on farmers’ fields. A number of reasons exist for this
discrepancy. First, models are by definition simplifications of reality, and some
processes may be over-simplified, or even wrongly represented, to describe practical
field situations accurately. Secondly, a number of biotic (e.g. diseases) and a-biotic
(e.g. micro-nutrient deficiency) stress factors may operate on farmers’ fields that are
not incorporated in crop growth models. For instance the model WOFOST in CGMS
only simulates crop growth and development under potential and water-limited pro-
duction situations whereas all other conditions for crop growth are considered opti-
mal (i.e. optimal supply of nutrients and no pests, diseases or weeds present).
Thirdly, input data to the models may not be accurately known on the scale of appli-
cation for yield forecasting (a problem elaborated further in this paper, see below). A
critical review of the record of crop models for practical applications such as yield
forecasting has been given by Seligman (1990). In yield forecasting algorithms
based on crop model simulations, all the “distorting’ effects of over-simplification
and errors in the model and input data are supposed to be dealt with by the regres-
sion of simulated yield (and growth indicators) against the yield statistics. However,
even then, discrepancies may still exist between actually forecasted or predicted
yields and official yield estimates in statistics (e.g. for CGMS see De Koning ef al.,
1993). Crop simulation models and the methods for regional application need to be
further improved. However, it should also be realised that the quality of many offi-
cial yield statistics is hardly quantified, and that it suffers from lack of consistency
across regions and countries. This hampers an unbiased comparison between fore-
casted and statistical yields.

Effects of uncertainty and spatial variation

Some discrepancies between simulated and actual crop growth and yield on regional
scales may arisc from a too simplified approach in applying so-called point models
(here the one-dimensional crop model) on extended geographic areas. The use of a
single set of representative model parameters for a particular land unit ignores the
uncertainty that is present in the - often estimated - value(s) of these parameters on a
regional scale. For example, soil parameter values that are estimated from descrip-
tive information on soil maps are inherently uncertain. Also, there is generally spa-
tial variation in parameter values, of which the magnitude can also be uncertain.
Especially for soil properties, evidence is increasing that spatial variation can be
considerable, and its effect on crop growth simulation can no longer be neglected
(e.g. Finke, 1993), Management parameters may also vary in space. For example, in
a given land-unit, all farmers do not sow their crops on the same single date, but
sowing is spread in time according to e.g. access fo labour, local field conditions or
socio-economic factors. Sowing date, though a temporal phenomenon, can be con-
sidered here as a model input parameter of which the value varies in space. Lastly,
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even the values of some crop parameters may vary for the same crop type among
cultivars (e.g. Kooman, 1995).

An example of spatial variation in crop growth within a homogeneous land-unit is
given for winter wheat in Flevoland, The Netherlands, Figure 3. The use of average,
representative input parameters in SUCROS resulted in a fair average simulation of
development of LAI and biomass; the seasonal-average error between simulated and
actual canopy biomass over 1987 and 1988 was 1740 kg ha™'. However, the variation
in growth as expressed by the sample fields was not represented by the simulation
resulis.

Biomass (kg/ha)
20000 T
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10000 T

5000 +

0 - ¥ 1 {
100 150 00 Daymumber  55p
Figure 3. Actual and simulated biomass and LAJ of winter wheat in 1987, Flevoland, The Netherlands.

The diamonds are measurements at farmers fields, the solid line is the arca-representative SUCROS
simulation.
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To quantify the effects of uncertainty in model parameters and their spatial varia-
tion on simulated crop yield, a combination of sensitivity analysis and Monte Carlo
techniques can be used. Sensitivity analysis is first used to identify model parame-
ters that significantly affect model output (yield) in the environment under consider-
ation. For these parameters, probability distributions are constructed that represent
the uncertainty about their true values and/or spatial variation. These probability dis-
tributions can be obtained from expert knowledge, literature data or actual measure-
ments. When a large number of actual measurements have been made, the probabili-
ty distribution becomes a freguency distribution that quantifies the actual spatial
variation in the parameter values within that land-unit. Monte Carlo simulation is
then used to calculate crop vield using a large number of combinations of input para-
meters that are randomly chosen from their probability distributions. The distribu-
tion of the resulting simulated crop yields represents the probability in crop yield as
result of the uncertainty in model parameter values and their spatial variation.

An example is given for the simulation of rainfed, lowland rice yield in the
Philippines. The used crop growth model was ORYZA-W (Wopereis ef al., 1995);
daily weather data were taken from the International Rice Research Institute (IRRI)
at Los Baiios, 1979; crop data were derived from field experiments at IRRI; manage-
ment and soil data were taken from expert knowledge and field measurements. The
case-study concentrated on uncertainty and spatial variation-in soil and management
data. Sensitivity analysis revealed five parameters that had a significant effect on
simulated rice yield, and (uniform) probability distributions were constructed (Table
1}. Using Monte Carlo simulation, it was found that there was 67% probability of
complete crop failure. For the crops that “survived’, the probability distribution of
simulated yield is given in Figure 4. Given the very broad distribution of probable
yields, the accuracy of yield simulation for this land-unit is small, and can only be
increased when the uncertainty in the model parameter values is reduced by more
observations. On the other hand, when the distribution of parameter values given in
Table 1 would be a measured frequency distribution of actually occurring values,
then Figure 4 would quantify the frequency distribution of yields as caused by the -
known - spatial distribution of input parameters in that land unit. The average yield
(of successful crops) of 3.47 t ha™! would then be a simulation of the average yield
from this land-unit. For comparison, the mean yield simulated with average, repre-
sentative model parameter values for this land-unit was 4.24 t ha™.

To improve the accuracy of yield forecasting and prediction on regional scales,

Table 1. Model parameters for ORYZA-W, with ranges for a uniform probability distribution for a hy-
pothetical land-unit in the Philippines.

Parameter Range
Sowing date 150-180 days
Thickness puddled layer 15-250 mm
Days in seed-bed 10-21 days
Seepage & percolation rate 5-10 mm d™
Shrinkage of puddled layer 0.65-0.90 (<)
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Figure 4. Frequency distribution of simulated rainfed lowland rice yield in 1979, with model mput dis-
tributions as specified in Table 1.

methods must be sought to decrease the uncertainty in crop growth simulation. In
this respect, remote sensing offers techniques that can be useful.

Remote sensing

Remote sensing is the measurement of electromagnetic radiation that is reflected or
emitted from the surface of the earth. Reflected electromagnetic waves may have
been emitted by the sun (optical remote sensing) or by artificial sources (e.g. laser,
radar). In this paper, only optical and radar remote sensing are considered. In the op-
tical domain, a large number of satellites currently monitor and map the surface of
the earth (e.g. the high resolution Landsat and SPOT series). Experience has been
pained in using data from these satellites in agriculture already since the early seven-
ties. Unfortunately, frequent cloud cover is a large drawback for monitoring purpos-
es at many parts of the world. Microwaves are relatively unhindered by clouds, and
satellites such as ERS-1 and JERS-1 provide radar images of the earth on a regular
basis since the early nineties. Compared with optical remote sensing, however, meth-
ods for using radar in agriculiure are, up to know, less well developed.

Optical remote sensing

For the estimation of crop characteristics from optical remote sensing data, measure-
ments of reflected solar radiation in single wavelength bands (e.g. green, red, near-
infrared) are generally combined into so-called Vegetation Indices (VI). Many VI's
have been constructed that have a good relationship with various crop growth indica-

Netherlands Journal of Agricuftural Science 43 (1995) 151



B.A.M. BOUMAN

tors (e.g. Rouse et al., 1973; Richardson and Wiegand, 1977; Clevers, 1989). The
most interesting crop growth indicator to measure in relation to crop growth simula-
tion models is fraction light interception by the canopy. From a comparative analy-
sis, the Weighted Difference Vegetation Index (WDVI) as developed by Clevers
(1989) was found to be the most suitable VI to estimate fraction soil cover and LAI
of agricultural crops (Bouman, 1992a):

WDVI = IRc — VISc 2. @)

VISs
where:
IR, = Infrared reflectance of the crop
IR, =Infrared reflectance of the soil
V15, = Visible reflectance of the crop
VIS, = Visible reflectance of the soil

Standard relations between WDVI and fraction ground cover and LA were estab-
lished for wheat, barley, oats, sugar beet and potato from 10 years of field observa-
tions (Bouman ef al., 1992). The used data set was gathered on different locations in
The Metherlands, and spanned a range of cultivars, treatments, soil types, soil mois-
ture regimes, and growing conditions from severely stressed to near-potential
growth. Figure 5 gives an example of the relationship between WDVI and fraction

Ground cover (%)

0 & : ; | " .
0 10 20 30 40 50

WDVI 8
Figure 5. Ground cover (%6) versus WDVI of potato, early ing season. Different symbols indicate
different varieties (N = 285); the line is the regression line 97). Crop growth ranged from severely
stressed to near-potential.

152 Neitherlands Journal of Agricultural Science 43 (1995)



CROP MODELLING AND REMOTE SENSING FOR YIELD PREDICTION

Leaf Area Index ()
10,00 T

8.00 + °

o

6.00 +

4.00 +

2.00 +

“in L
L

ﬂ+m Ty W n i } F i
0.00 10.00 20,00 30.00 40.00 50.00 WDVI ﬁﬂﬂ'

Figure 6. Leaf Area Index versus WDV for barley. White diamonds are measurements in the vegetative
phase, black diamonds in the reproductive phase. Data from 5 different experiments (MN=298). The line
segments arc the regression line (r=0.95).

ground cover for potato; Figure 6 gives an example of the relationship between WD-
VI and LAT for barley. Using the developed standard relations, the estimation accura-
cy of fraction ground cover and LAI from WDVI was the same as that of measure-
ments using conventional techniques (i.e. 5% absolute accuracy for ground cover;
10-15% relative accuracy for LAL up to LAI values of 4).

Radar remote sensing

Since the early seventies, the Dutch national research group ROVE (Radar
Observation on VEgetation) measured radar backscatter of agricultural crops with
ground-based and airborne instruments (De Loor ef al., 1982). Measurements were
made at various frequencies (35 to 1.2 GHz), incidence angles (10-80°) and polari-
sations (VV, HH, VH and HV). From extensive analyses, it was concluded that radar
backscatter of agricultural crops is extremely sensitive to the structure of the canopy
and that of the underlying soil surface (with low soil cover). This sensitivity is espe-
cially large for crops with distinct vertical, elongated canopy elements such as found
in cereals: stems, leaves and ears (Bouman & van Kasteren, 1950; Hoekman &
Bouman, 1993). An example is given in Figure 7 that shows the X-band radar
backscatter of three barley crops with different row spacings. All three crops had a
comparable rate of growth as measured by biomass and LAI. Row spacing had a pro-
nounced effect on the radar backscatter. But, even more striking was the effect of ear
direction; Before day 182, the barley ears were directed towards the radar, and
backscatter was relatively low. After day 182, wind changed the direction of the ears
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180° with respect to the radar look direction, and radar backscatter increased dra-
matically. Other fluctuations in the backscatter curves were mostly caused by
changes in canopy structure as a result of wind and rain (also soil moisture). In other
observations, lodging of barley even increased radar backscatter with 10 dB!
(Bouman & van Kasteren, 1990). All these effects of canopy structure on radar
backscatter hampered the development of any useful relationship between radar
backseatter and crop growth indicators for cereals.

For crops with a “uniform’ canopy structure and relatively large and broad leaves
(compared to the wavelength of incident radiation), the sensitivity of radar backscat-
ter to canopy structure was found to be less. For example in sugar beet, a relation-
ship was found between X-band radar backscatter and the amount of water in the
canopy. Using the inverted Cloud model (Attema & Ulaby, 1978), crop water of sug-
ar beet could be estimated from radar measurements in two or more different angles
of incidence. However, realistic estimates of crop water were limited to values up to
2.5 kg m™2 only (i.e. a crop of some four weeks old, 80-100% soil cover and 2.8 t
ha™ dry matter), and fitted Cloud model parameters varied with experiments in dif-
ferent locations. :

Reducing model uncertainty with remote sensing '

Uncertainty in crop growth simulation modelling on regional scales can be reduced
by the use of remote sensing data in two ways. First, remote sensing images can be
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used to classify and geo-reference agricultural fields and crop types. Using GIS, the
classified crops can be located on soil maps, and from this, specific crop models can
be selected and combined with the geographically corresponding soil input data.
Crap classification from remote sensing data has been shown to be feasible for both
optical (e.g. Janssen, 1994) and radar techniques (Hoogeboom, 1983; Nieuwenhuis
& Scholten, 1993). Second, remote sensing can be used to estimate crop growth indi-
cators, that can be integrated with crop grow simulation models. There are two meth-
ods for this integration: direct data input, and “steering’ simulation results.

Direct data input

Time-series of estimated fraction light intercepted by the canopy are ideally suitable
to be used as input in crop growth models. For example, fraction ground cover as de-
rived from WDVI (e.g. Figure 5) can be used directly in simple models such as equa-
tion 1 for growth simulation. This approach has been worked-out by Steven ef al.
(1983), Garcia et al. (1988) and Christensen & Goudriaan (1993). With more com-
plex growth models, such as SUCROS, LAI values estimated from WDVI (e.g.
Figure 6) can be used to replace subroutines in the crop model that simulate the de-
velopment of LAI from environmental variables. This approach will lead to better
simulation results when LAI is estimated more accurately from remote sensing than
it is simulated by the model. Mode] simulations of LAI may be inaccurate because of
uncertainty in the model input data, because of the occurrence of growth-reducing
factors in the field or because of over-simplification of growth processes. In a num-
ber of case studies, it was found that the use of estimated LAI as ‘forcing function’
increased the accuracy of growth simulation. In the example of winter wheat in
Figure 3, the use of LAI values that were estimated from WDVI, as forcing function
in SUCROS for the individual fields decreased the seasonal-average error between
simulated and actual canopy biomass from 1740 kg ha™! to 1376 kg ha™' (as ‘region-
al’ average over 1987 and 1988), Figure 8. In this example, it should be noted that
SUCROS only explains potential crop growth and yield formation from weather data
(minimum and maximum temperature and solar radiation) and crop characteristics.
Two conditions must be fulfilled for the successful use of estimated LAT as forc-
ing function, First, a sufficiently large number of remote sensing observations needs
to be available with a regular frequency (e.g. weekly observations). Daily values of
LAI can then be interpolated between observations without making too much error.
A high frequency of observations is especially needed in the early growing season
when LAI increases exponentially from 0 to about 3, and at the end of the growing
season when LAI decreases again with senescence of the crop (e.g. as in cereals).
With high resolution satellites, such as the Landsat and SPOT series, a high frequen-
cy of (optical) remote sensing observations is often not realised due to cloud cover.
Low resolution (meteorological) satellites, that make daily observations, are not suit-
able because farmers fields are not individually recognized. A solution could be the
use of airborne remote sensing over selected, representative test-sites as has been
carried out by the former Soviet Union (Kleschenko; pers. comm., 1994). Second,
the starting point of crop growth in time (sowing or emergence date), should be rea-
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Figore 8. Average error in simulated canopy biomass of winter wheat in Flevoland (1987, 1988) as func-

tion of actual biomass value. White diamonds: using standard SUCROS; black diamonds: using SU-
CROS with LAI estimated from WDV as forcing function.

sonably well known. Otherwise, the externally forced LAI estimations may not be
“in phase’ with the simulated phenological development of the crop. For selected ar-
eas, such information could be collected by field-surveys or by enquiries early in
the growing season. This stresses the importance of combining multiple sources of
information in crop yield forecasting (e.g. the Regional Inventories action of the
MARS project, Meyer-Roux & Vossen, 1994).

Steering simulation resulls

When the number of remote sensing observations is limited and/or initial conditions
are not well known, remote sensing can be used to “steer’ crop growth models by
adapting the values of model parameters so that simulated time-series of LAI match
estimated time-series of LAI. For instance, the unknown value of sowing/emergence
date can be found by fitting the simulated LAI curve to the estimated LAY curve
from (optical) remote sensing (Maas, 1988). In a “multi-sensor’ approach, Bouman
(1992b) extended SUCROS with remote sensing models for optical reflectance and
for radar backscatter (right-hand side of Figure 1). The extended model simulates
crop growth and development together with optical reflectance and radar backscat-
ter. These simulated remote sensing signals can be compared with observed time-se-
ries of remote sensing signals. The values of selected model parameters can then be
optimised, within plausible ranges, so that simulated remote sensing signals match
the observed ones as good as possible. For sugar beet, this “calibration’ procedure
improved simulations of crop growth in a number of field-experiments using only
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Table 2. Seasonal-average error between measured and simulated biomass using SUCROS with “stan-
dard" input data (*Standard’ error) and using SUCROS optimised to remote sensing obscrvations
{*Optimised’ error). N-radar and N-optical imdicate the number of observations of X-band radar
backscatter and optical reflectance. From 1975 to 1983, the data pertain to one single test field; in 1987
and 198% the data are the average for three test fields. In 1980, the same test field was observed with
both radar and optical reflectance instruments.

Year M radar N optical “Standard” “Optimised”
error (kg m™) error(kg m™)

1975 20 - 451 231

1979 35 i 424 388

198D 36 - o8B0 463

1980 34 6RO 306

1980 16 34 6B0 259

1981 17 - T00 261

1983 - 32 548 227

1987 - (1] 561 286

1988 - o 386 434 -

optical, only (X-band) radar and combined optical and radar observations (Table 2).
On the average, the seasonal-average error between simulated and actual canopy bio-
mass decreased from 400-700 kg ha™ using only SUCROS (but with actual emer-
gence dates as input) to 225-475 kg ha™' using the optimisation methodology (and
without actual input on sowing date). Only in one ont of seven years did the calibra-
tion procedure result in simulation errors that were slightly larger than using SU-
CROS with ‘standard’ (i.e. non-optimised) input data. In a validation study in 1991,
simulations of tuber yield of sugar beet of ten farmers in Fleveland improved on the
average from 19% error using only SUCROS with mean sowing date for the area as
input, to 3% using the optimisation procedure with time-series of (ground-based)
WDVI (Table 3). On the same test site, a modified optimisation procedure resulted
in 4.2% average simulation error using only three airborne recordings with the
Dutch optical CAESAR. scanner (van Leenwen & Clevers, 1994).

So far, the integration of SUCROS with remote sensing data has been most suc-
cessful using optical reflectance data. Radar observations have only proven some
value in steering SUCROS for sugar beet in the very early part of the growing sea-
son, For other crops, such as cereals, the sensitivity of radar backscatter to canopy
structure might be useful when changes in radar backscatter can be linked to mor-
pho-phenological development of the crop. The simulation of phenological develop-
ment of the crop might then be steered by radar observations in the same way that
LAI simulations are steered by optical reflectance measurements.

Conclusions and discussion

Crop growth models and remote sensing techniques increasingly find their way in
regional to national yield prediction and forecasting systems, e.g. USA (Hanuschak,
1990), Canada (Goulet, 1990) and Europe (Meyer-Roux & Vossen, 1994). They are
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Table 3. Actual and simulated tuber yield of sugar beet of 10 farmers in Flevoland, The Netherlands,
1991.

Farm Yreal Ysiml Ysim2 Ysim3 N
i £7 60 694 80.0 o
2 79 60 70.6 76.7 9
3 75 60 70.3 74.3 9
4 77 60 70.6 71.5 9
g1 60 T4.6 - -
5 70 60 63.5 70.5 g
6 68 &0 63.3 65.3 11
T T0 60 65.6 69.9 12
8 61 60 58.2 68.1 i1
9 T0 60 63.6 72.2 15
10 77 60 728 75.7 12
78 60 74.8 - -
Average 743 60 68.1 722 i1

Yreal = actual farmers yield (tha™)

Ysiml = simulated farmers yield, using average sowing date of the region
Ysim2 = simulated farmers yield, using actual sowing date for each field
Ysim3 = simulated farmers yield, calibrated on optical remote sensing

N = number of remote sensing observations

part of a whole set of information and analysis tools that are used to eventually de-
termine crop yield and production estimates: actual sampling and crop measure-
ments, farmer enquiries by post, telephone or field-visits, expert-knowledge, weath-
er reports, statistical regression analyses, newspaper articles and even ‘agricultural
spies’ in foreign countries. The added value of crop models and remote sensing is
that they are objective, quantitative and consistent over large areas. However, one
should always keep in mind that any crop growth model, by its very nature, is a sim-
plification of reality and that it may contain shortcomings in the description of com-
plex, actual field conditions. Also, the quality of the simulated output depends on
the quality of model data input.

Two methods were presented to use remote sensing observations from farmers’
fields to adjust simulations made by a crop growth model to account for effects of
uncertain data input and/or possible stress factors that are not included in the model.
Though the presented methods were illustrated using SUCROS, the underlying prin-
ciples are general and can be applied using other crop growth models as well. These
integrative methods have proven their usefulness in several case-studies using
ground-based remote sensing observations, and need now to be tested using airborne
and satellite data. Follow-up projects will be carried out the coming years to investi-
gate the feasibility of using high resolution optical satellite data. A pre-requisite for
the developed integration methods is that farmers’ fields can be individually identi-
fied in satellite images. Low resolution satellite data such as AVHRR are therefore
not suitable. With radar remote sensing, capabilities of polarimetric systems to mon-
itor changes in canopy architecture, and linking those to phenological development,
should be investigated. Further research on the crop modelling part will have to fo-
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cus on improving the models to incorporate the effects of yield-reducing factors.
Because the accuracy and quality of yield statistics on regional scales is unknown,
the models should be calibrated and validated first on accurate data from experimen-
tal fields and farmers’ fields. The analysis of uncertainty and spatial variation has
demonstrated the need for a soil data base that contains measured data on physical
properties that are directly relevant for crop growth modelling. Moreover, measured
data should not be aggregated and averaged over pre-defined land units, but all orig-
inal data should be available so that probability distributions can be derived.
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