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Abstract

A new, flexible curve-fit model for linear to concave rank abundance curves was conceptualized and validat-

ed using observational data. The model links the geometric-series model and log-series model and can also

fit deeply concave rank abundance curves. The model is based – in an unconventional way – on the nega-

tive-binomial distribution and calculates (like the log-series model) a species-diversity index. The index is

defined as the expected number of singleton species (species present with one individual) in an infinitely

large sample. The new model could satisfy the need for more flexible curve-fit models with which differ-

ences and changes in the shape of the rank abundance curve can be more accurately investigated. The

common rank abundance curve-fit models are lacking that flexibility.

Additional keywords: species-individual curve, species-area curve, geometric-series model, log-series model,

species-diversity index

Introduction

In biodiversity research, a usual way of graphical presentation of data includes the abun-
dance of species plotted on a log scale against the species’ rank, in order from most
abundant to least abundant species (see e.g. Magurran, 1988; see also Figure 1). Many
species abundance relations thus presented show a linear or concave descending curve.
Concave curves are common, for example, in entomological research (Taylor, 1978) and
are preferably fitted with the log-series model (Fisher et al., 1943). However, the quality
of fit is not always satisfactory. Reason for an imperfect fit is often the rigid shape of the
always shallow log-series rank abundance curve. Wilson (1991) used the Zipf model and
the Zipf-Mandelbrot model for fitting concave rank abundance relations. However, also
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with these two models the quality of fit is often unsatisfactory.
In this paper, we shall show that for fitting concave rank abundance relations the

negative-binomial distribution has the potential of an ideal curve-fit model if it is used in
an unconventional way by taking the relative frequency for zero individuals f(0) as quan-
tifier for the abundance proportion of the first (dominant) species, the f(1) for the abun-
dance proportion of the second species, the f(2) for the abundance proportion of the third
species, etc. The resulting model can fit with only two iterable parameters and a third
parameter that follows from a level difference (see later), a variety of rank abundance
curves ranging in shape from linear (geometric-series model) via shallow-concave (log-
series model) to deeply concave. When used in combination with the Poisson-distribu-
tion (see below), the model can even calculate a species-diversity index. The new model
links the geometric series model and log-series model and could solve the problem
discussed by Hughes (1986) that there are no statistical models that can fit deeply
concave rank abundance curves.

Curve fitting with the new model is done in two steps. In the first step, species abun-
dance proportions (see below) are fitted. Next, the proportions from curve fit are re-
converted into numbers of individuals by multiplying them with the total number of
individuals in the sample. This results in a rank abundance curve with species individual
numbers on a continuous scale. In the second step that curve is converted, using the
Poisson-distribution, into a curve with discrete numbers of individuals for species. This
second step assumes that the species individual numbers in replicate samples follow a
Poisson-distribution and thus that replication is from a homogeneous population. The
same assumption is made in Fisher’s log-series model (Fisher et al., 1943) and might be
valid for very large samples, as will be discussed later. The assumption is needed for
calculating the proposed species-diversity index defined as the number of species with
one individual (‘the number of singleton species’) in an infinitely large sample. Below,
the model will be explained in detail and validated using observational data from 
literature.

This paper is the first of a series of three papers in which we present new insights
into species-abundance relations and species-area relations. In the second paper
(Neuteboom & Struik, 2005a), the validity of the assumption of Poisson-distributed
numbers of individuals within species in replicate samples will be further investigated.
The assumption might approximately be true for very large samples but is unlikely to
also hold for the relatively small sample sizes current in biodiversity research because
species almost always occur in clusters of individuals. Clustering can have strong impli-
cations for the shape of both the species-individual curve (S-N curve) and the species-area
curve in which the number of species is plotted against the size of the sample (sample
size expressed as total number of individuals or area of the sample, respectively). In the
third paper (Neuteboom & Struik, 2005b), the effect of clustering on rank abundance
curves, S-N curves and species-area curves is further investigated using a computer
programme for in silico sampling. In that paper we also shall explain why sigmoid rank
abundance curves (log-normal and broken-stick types of curves) are deceptive as descrip-
tors of the species abundances in a community as the rank abundance curve is basically
concave.

The new curve-fit model could satisfy the need for more flexible models with which
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differences in the shape of the rank abundance curve can be investigated more accurate-
ly. The common rank abundance curve-fit models are lacking that flexibility. 

Existing curve-fit models

Before discussing the new curve-fit model based on the negative-binomial distribution,
we discuss some models that are currently used for fitting linear to concave curves, i.e.,
the geometric-series model and log-series model. We shall link our new model to these
existing models. 

Appendix 2 contains a glossary with terms, parameters, acronyms and symbols used
in this paper. 

Geometric-series model

According to the geometric-series model, the abundance proportion pR,geom of a species
with rank R is calculated from:

pR,geom = q (1 – q) (R–1) (1)

where q is the abundance proportion of the first (dominant) species. 

Log-series model

According to Fisher’s log-series model (Fisher et al., 1943) the expected number of
species with n individuals in a single sample (E(S(n))) is calculated from:

E(S(n)) = (α / n) xn n = 1, 2, 3, …, j (2)

in which α (α > 0) and x (0 < x < 1) are constants. 
Parameters α (called the species-diversity index) and x (a ‘constant’ approaching

unity with increasing sample size) are related to the number of species (S) and the total
number of individuals in the sample (N) according to:

S = –αln(1 – x) (3)

N = αx / (1 – x) (4)

α is calculated after x is found by iteration from:

S / N – [(1 – x) / x][–ln(1 – x)] = 0 (5)

From Equation 2 it follows that for an infinitely large sample (x = 1), α equals the
number of singleton species.



Negative-binomial rank abundance curve-fit model 

Outline of the model

The new rank abundance curve-fit model is based – in an unconventional way – on the
parameters of the negative-binomial distribution. First, proportions are fitted and thus
expected abundance proportions for consecutive species are calculated from curve fitting.
These proportions can be multiplied by the total number (N) of individuals in the sample
to obtain the expected abundances of species in terms of numbers of individuals. These
numbers are numbers on a continuous scale. Using the Poisson-distribution these
numbers can be converted into discrete numbers of individuals. The resulting discrete
‘Poisson-curve’ or ‘single-sample rank abundance curve’ and the log-series curve have in
common (Fisher et al., 1943) that, with extrapolation, the calculated expected number of
singleton species (species present in the sample with one individual) approaches a
constant value when the total number of individuals becomes very large. We shall show
why. It is the basis for calculating the number of singleton species for an infinitely large
sample as a new species-diversity index. It can be shown that the number of singleton
species is the slope of the species – individual (S-N) curve in which, like in Fisher’s log-
series model (Fisher et al., 1943), the number of species (S) is plotted against the loga-
rithm of the size (N) of the sample.

Equations

In this section we first discuss the negative-binomial distribution as the basis of our rank
abundance curve-fit model. Discussed is also how to generate a ‘Poisson-curve’ (single-
sample rank abundance curve) for graphical presentation. 

Negative-binomial distribution
The negative-binomial distribution can be used for fitting the pattern of distribution of the
numbers of individuals within species over replicate samples. The distribution is
described by two parameters, the mean number of individuals per sample m and the expo-
nent k. k is a measure of the degree of clustering and is often referred to as the ‘dispersion
parameter’. The expected relative frequencies (f(n)) of sampling units containing n = 0, 1,
2, 3 …., j individuals are calculated with the following equation (Davies, 1971):

f(n) = [(k + n – 1)! / n!(k – 1)!] (m/k)n / [1 + (m/k)](k+n) (6)

Methods for calculating (fitting) k and m are discussed by Southwood (1978). Davies
(1971) gives a computerized calculation of k, based on the maximum likelihood method
of Fisher (1953) and Blisss & Fisher (1953). In Davies’ (1971) programme the expected
relative frequencies of samples containing n = 0, 1, 2, 3…, j individuals are calculated by
first determining the expected relative frequency in the first class for n = 0 individuals
from:

f(0) = 1 / [1 + (m / k)]k (7a)
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The relative frequencies in the second and higher classes for (n = 1, 2, 3 …., j individuals
(note that j is the maximum number of individuals in the sample) are derived from:

f(n) = f(n – 1) m (k + n – 1) / ((m + k)n) (7b)

Use of the parameters of the negative-binomial distribution for a curve-fit model, curve-fit
coefficients m and k

By varying m and k a large diversity of curve types can be generated of which, plotted
on a log scale, the calculated relative frequencies can very satisfactorily describe the
course of the abundance proportions of species in sequence of abundance. The relative
frequency f(0) is used for the purpose of fitting the abundance proportion p1 of the first
(dominant) species, the relative frequency f(1) to fit the abundance proportion p2 of the
second species, the relative frequency f(2) to fit the abundance proportion p3 of the third
species, etc., or (R is species rank):

pR = f(R – 1) (R = 1, 2, 3,...., o) (8a)

or, adapted for the case of curve fitting:

pR = f(R – 1) / c (R = 1, 2, 3, ....o) (8b)

Parameter c will be further explained in the validation of the model, using observa-
tional data. In many curve-fit cases, c will turn out to be approximately 1, which means
that often c has little effect. For the moment we shall therefore ignore c in the further
theoretical considerations. Parameter c does not affect the essentials of the paper, such as
the calculation of the E(S(1,∞)) as site discriminant and species diversity index (see
below).

However, the way in which they are used in the negative-binomial rank abundance
curve-fit model, parameters m and k have fully lost their meaning as ‘mean’ of a series of
samples and ‘dispersion factor’, respectively. They are degraded in the new curve-fit
model to pure curve-fit coefficients without any further statistical meaning and should
therefore be given a different name. In order to distinguish them from the original m
and k in the negative-binomial distribution we shall refer to them in the remaining of
this paper as µ and κ, respectively.

Abundance in terms of proportions and numbers of individuals
The nature of the negative-binomial curve-fit model makes that the fit is on proportions.
However, the abundance proportions observed and those expected from curve fit (pR) can
be converted or re-converted into numbers of individuals by multiplying them by the
total number (N) of individuals of all species in the sample. That is, the number of indi-
viduals (zR) from curve fit for each species is:

zR = pR N (9)
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Relation to the geometric series curve-fit model
One reason why the negative-binomial distribution works so well as the basis for a curve-
fit model, is that in many data sets the abundance proportion of the dominant species
has an extremely high value, just like the relative frequency f(0) from the negative-bino-
mial distribution for k < 1. Using f(0) for p1 has the further advantage that the abundance
proportions of all species from curve fit add up to 1, such that the linearly declining curve
found for k = 1 automatically reflects a geometric-series distribution (see above). That in
turn means that the negative-binomial curve-fit model can be used for testing whether
observational data follow a geometric-series distribution. Even the q-value of the geomet-
ric series can be calculated because it equals the value of the calculated first proportion.
That is, from Equation 7a for k = 1 it follows that (see also above):

q = 1 / (1 + m) (10)

The flexibility of the negative binomial curve-fit model is illustrated in Figure 1 by a
number of curves calculated for different values of κ and µ.

Calculation of the expected numbers of species in a single sample 
The numbers of individuals per species from curve fit are numbers on a continuous
scale, from which – using the Poisson-distribution – the expected numbers of species
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Figure 1. Curves demonstrating the flexibility of the negative-binomial curve-fit model. Parameter κ deter-

mines whether the curve is concave (κ < 1) or linear (κ = 1). Curves can even be convex (κ > 1; not shown

because not used). Parameters µ and κ determine together the steepness and the degree of concavity of the

curve and the height of the abundance proportion of the first (dominant) species. (a): curves for κ = 1, κ =

0.4 and κ = 0.1, for µ = 20. (b): curves with the same values of κ, for µ = 50.



with n = 1, 2, 3, …., j individuals in a theoretical single sample can be calculated. That is,
the expected number of species S with n individuals in a single sample is:

R = ∞   e–zR (zR)n

E(S(n)) = Σ ––––––––––    (11)
R = 1         n!

The expected total number of species in a single sample is:

n = ∞
E(S) = Σ E(S(n)) (12)

n = 1

For each expected number of species E(S(n)) (Equation 11) its contribution to the
expected total number of individuals, E(N(n)), can be calculated from:

E(N(n)) = E(S(n))n (13)

The expected total number of individuals of all species E(N) in a single sample is:

n = ∞
E(N) = Σ E(N(n)) (14)

n = 1

For rank abundance curves fitted with Equation 8a, N must equal the actual total
number of individuals from sampling.

The expected total number of species (E(S)) can also be derived directly from the 
probabilities of absence of the consecutive species in a single sample. The probability 
of absence of a species is e–zR. That means that the probability that a species will be 
present with at least one individual is 1 – e–zR. The expected total number of species in a
sample (E(S)) is the sum of the probabilities of presence of all species (Coleman,
1981), or:

R = ∞
E(S) = Σ (1 – e–zR) (12)

R = 1

Effect of sample size and calculation of the number of singleton species 
Varying N in the equations (N in Equation 9) makes it possible to investigate the theoret-
ical relation between the number of species and the size of the sample, and to calculate
E(S(1)) (the expected number of singleton species E(S(n)) for n = 1 in Equation 11) for
larger samples. Below we shall show that E(S(1)) approaches a constant value for large N.
For Poisson-curves derived from the extrapolated continuous rank abundance curve
fitted by the negative-binomial curve-fit model for κ = 1 (a geometric-series rank abun-
dance curve) it even becomes exactly constant. For that type of curve it can be mathemat-
ically derived that the number of singleton species is the slope of the number of species -
number of individuals curve (S-N curve), with number of individuals (horizontal axis) on
a logarithmic scale (see below). 
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Procedure to generate a theoretical rank abundance curve for expected
numbers of individuals of sequential species; ‘Poisson-curve’ and log-series
rank abundance curve

The philosophy behind the calculations in Equation 11 is that each z contributes to the
expected number of species (E(S(n))) for each of the theoretically possible numbers of
individuals n. As z steadily decreases, the contributions finally become so small that for
each n, E(S(n)) is fixed. In that case also the expected number of species (E(S)) calculated
from Equation 12 or Equation 15 is fixed. For graphical presentation of a ‘Poisson’-rank
abundance curve, the numbers n are plotted on a logarithmic scale (vertical axis) against
the accumulated expected numbers of species E(S(n)) as species sequence (horizontal
axis). The first n in the plotting is the highest theoretical plant number with an arbitrarily
chosen lowest expected relative frequency of 10–3.

Since expected numbers of species for consecutive numbers of individuals are also
calculated from the log-series model (Equation 2), exactly the same procedure can in
principle be followed for generating a log-series rank abundance curve.

E(S(1)) and sample size; calculation of E(S(1)) for an infinitely large sample,
E(S(1,∞)) 

The expected number of singleton species E(S(1))for large samples is constant only in
case of a linear rank abundance relationship fitted by the negative-binomial curve-fit
model with κ = 1. This is a geometric-series rank abundance curve. For concave rank
abundance curves (continuous curves) fitted by the negative binomial with κ < 1, E(S(1))
only approaches constancy for large samples. E(S(1)) is the tangent of the slope of the
number of species - log number of individuals curve (S-log(N) curve).

We shall address the following questions: (1) why does E(S(1)) become constant for
large samples, and (2) how to calculate E(S(1)) for an infinitely large sample for cases with
κ < 1?

Geometric-series rank abundance curve 
Figure 2a shows for a fictitious linear rank abundance curve (curve 1) the calculated
numbers of individuals of sequential species ranked from most to least abundant. The
curve is generated from a curve on proportions for κ = 1 and µ = 9. This is a geometric-
series rank abundance curve for q = 0.1 (Equation 10). The ultimate numbers of individuals
per species were obtained by multiplying the calculated proportions by a total number of
individuals of N = 100. The calculated numbers are numbers on a continuous scale. Curve
2 in Figure 2a shows the course of the contributions per species to the expected number of
singleton species E(S(1)) as calculated from the term e–zz (Equation 11 for n = 1). Curves 1
and 2 coincide in the range of rare species due to the fact that for very small values of z (z
approaching zero), the term e–z z (the contribution per species) becomes equal to z.

In case of a geometric-series relationship, the abundance proportions of the consecu-
tive species differ by a constant factor (1 – q). That is, for each species SR it holds that its
abundance proportion is a factor (1 – q) smaller than that of its predecessor SR–1 (Equation
1). The consequence is that from a certain point onwards (the species sequence number
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where curves 1 and 2 coincide) for each N always the same series of sequential z-values
will be calculated, so that the number of singleton species becomes constant. The z-
values contributing (according to the Poisson-distribution) to the number of singleton
species are approximately values smaller than or equal to 6 or, to be on the safe side,
values smaller than or equal to 30.

In the concrete procedure for calculating the expected number of singleton species
E(S(1)) for an infinitely large sample (E(S(1,∞))), first the consecutive values of z of R’
fictitious sequential species are calculated from:

zR′ = zo (1 – q) (R′ – 1) (16)

where z0 is the start-value for the abundances per species, which thus for safety is set at
30.

Next, the contributions e–z z per species R′ to E(S(1)) (with z = zR′) are calculated and
finally these contributions are totalized in a comparable way as in Equation 11 for n = 1.
The calculation of zR′-values for R’ ranging from 1 to infinite stops when the sum of the
contributions is constant at an arbitrarily chosen precision of 10–6.

Concave rank abundance curve 
Curves 1 and 2 in Figure 2b show the course of the numbers of individuals (curve 1) and
the contributions per species to the expected number of singleton species (curve 2) in an
average sample for a fictitious rank abundance curve calculated from the negative-bino-
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Figure 2. Curve 1: Rank abundance curve calculated from the negative-binomial curve-fit model for the

abundances per species. Curve 2: Contribution per species to the expected number of singleton species.

The abundances per species in (a) were calculated for µ = 9, N = 100 and κ = 1, those in (b) were calculated

for µ = 9, N = 100 and κ = 0.2.



mial curve-fit model for µ = 9 and a very low value for κ of 0.2. This is a deeply concave
rank abundance curve. Also here, the curves seem to coincide. However, the factor differ-
ence in abundance between the sequential species, given by the term [µ / (κ + µ)] (κ + n
– 1)/n in Equation 7b, will only approach constancy if n is so large that the right hand
part [(κ + n – 1)/n] almost equals 1. The number of singleton species for an infinitely
large sample E(S(1,∞)) can be calculated by taking that part equal to 1. That means that
for infinitely large n, the multiplication factor for the sequential abundances per species
defined in Equation 16 as (1 – q) is now a constant equal to:

v = µ / (κ +µ) (17)

The calculation of E(S(1,∞)) can be summarized in one equation:

R′ = ∞
E(S(1, ∞)) = Σ [z0v(R′–1) exp{–z0v(R′–1)}] (18)

1

where z0 is set at 30.

Properties of the S-N curve derived from a geometric series rank 
abundance curve

For the linear rank abundance curve calculated for κ = 1 and µ = 9 (a geometric series
curve for q = 0.1; Figure 3a) Table 1 shows that as soon as with increasing sample size
(N), E(S(1)) from the discrete Poisson-curve becomes constant, there are fixed ratios
between the numbers of species with 1, 2, …, 6 individuals. Presented in the table are the
calculated expected numbers of species with 1, 2, ……., 6 individuals [E(S(1)), E(S(2)),….,
E(S(6))] of Poisson-curves calculated for the total numbers of individuals in the sample N
= 25, 50, 100, 200, 400 and 800, respectively. The table shows that the expected
numbers of species E(S(2)), E(S(3)), E(S(4)), .…, E(S(n)) finally end up in a constant ratio
to E(S(1)) of exactly 1/2, 1/3, 1/4, …, 1/n, respectively (see also Figure 3c). That means that
for a large sample (large N) the total expected number of species (E(S)), is:

E(S) = E(S(1)) + E(S(2)) + E(S(3)) + ....... + E(S(n))

or
E(S) = E(S(1))  (1 + –12 + –13 + ....... + –1n )

or
n = h

E(S) = E(S(1)) Σ (1 / n) (19)
n = 1

The expected total number of individuals (E(N)) is:

n = h
E(N) = E(S(1)) Σ (1 / n)n

n = 1
or

E(N) = E(S(1)) h (20)

where h is the expected number of individuals of the most abundant (dominant) species.
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The S-N curve 1 in Figure 3d shows the result of calculations with Equations 19 and 20.
For large N, the curve appears to perfectly fit the points (open squares) for S and N calcu-
lated from the Poisson-curves (the values in Table 1 and some more from supplementary
calculations). Presented in Table 1 are also the slope-values of the S-N curve calculated as
tangents from the single S- and N-values of the Poisson-curves. That is, the slope at N =
50 calculated as tangent (best estimate) from [E(SN100) – E(SN25)] /[ ln(N100) – ln(N25)], the
slope at N = 100 calculated as tangent from [E(SN200) – E(SN50)] / [ln(N200) – ln(N50)], etc.
These slope-values are all very similar to the values of E(S(1)) indeed, which thus
confirms that E(S(1)) is the slope of the S-N curve.

Equation 19 explains why the curves for the expected numbers of species with at least
2, or at least 3, or at least i individuals against log N have the same slope as the curve for
the total number of species (Figures 3b). The series in Equation 19 is the harmonic
series, which apparently follows from the specific properties of the Poisson-distribution.
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Table 1. Numbers of species expected from Poisson-curves calculated from a rank abundance curve with κ = 1 and µ = 9 for different

numbers of individuals N. Calculated are the expected total numbers of species E(S) and the expected numbers of species with 1

[E(S(1))], 2 [E(S(2))], 3 [E(S(3))], 4 [E(S(4))], 5 [E(S(5))] and 6 [E(S(6))] individuals. Presented are also values for the slope of the S-N

curve calculated as tangent from the numbers of species found at consecutive values of N. For example: the slope at N = 50 is 

calculated as {E(SN100) –E(SN25)} / {ln(N100) – ln(N25)}, at N = 100 as {E(SN200) – E(SN50)} / {ln(N200) – ln(N50)}, etc. Calculated are also

the ratios E(S(1))/E(S(1)), E(S(2))/E(S(1)), E(S(3))/E(S(1)) …… E(S(6))/E(S(1)), etc., see text.

Number of individuals (N)

25 50 100 200 400 800

E(S) 14.87243 21.26184 27.83285 34.41164 40.99045 47.56927

Slope 9.348963 9.485577 9.491207 9.491222 9.491222

E(S(1)) 8.812036 9.442932 9.490982 9.491222 9.491222 9.491222

E(S(2)) 3.509340 4.593649 4.744217 4.745611 4.745611 4.745611

E(S(3)) 1.551079 2.837092 3.158299 3.163740 3.163741 3.163741

E(S(4)) 0.643787 1.830141 2.356743 2.372803 2.372805 2.372805

E(S(5)) 0.241438 1.149816 1.859970 1.898233 1.898244 1.898244

E(S(6)) 0.081243 0.681900 1.505057 1.581826 1.581870 1.581870

E(S(1))/E(S(1)) 1 1 1 1 1 1

E(S(2))/E(S(1)) 0.398244 0.486464 0.499866 0.500000 0.500000 0.500000

E(S(3))/E(S(1)) 0.176018 0.300446 0.332768 0.333333 0.333333 0.333333

E(S(4))/E(S(1)) 0.073058 0.193811 0.248314 0.250000 0.250000 0.250000

E(S(5))/E(S(1)) 0.027399 0.121765 0.195972 0.199999 0.200000 0.200000

E(S(6))/E(S(1)) 0.009220 0.072213 0.158578 0.166662 0.166667 0.166667
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Figure 3. (a) Negative-binomial rank abundance curve (curve 1) and Poisson-curve (curve 2) calculated for κ

= 1, µ = 9 and N = 10,000. (b) Total number of species (curve 1), number of species with at least 2 individ-

uals (curve 2) and number of species with at least 3 individuals (curve 3) versus log N. (c) Number of

singleton species [E((S(1)), curve 1], number of species with 2 individuals [E(S(2)), curve 2] and number of

species with 3 individuals ([E(S(3)), curve 3] versus log N. (d) Total number of species [E(S)] versus log

N. � : data from the single Poisson-curve calculations. Curve 1 is based on calculations using the values in

Table 1 (see text) and on supplementary calculations; curves 2 and 3 were calculated from Equation 22,

including γ and stripped of the effect of γ, or from Equation 23 including w and stripped of the effect of w,

respectively. For the equations see text.



A versatile curve-fit model for rank abundance curves

179NJAS 53-2, 2005

An alternative expression for Equation 19

For very large h the progression                may be approached by (Abramowitz & Stegun,
1995):

n = h

Σ (1/n) = ln(h) + γ (21)
n = 1

which means that Equation 19 can be written as (see also Equation 20):

E(N)
E(S) = E(S(1))[ln(–––––––– ) + γ] (22)

E(S(1))

where γ is the Euler-Mascheroni constant, equal to 0.577216. 
The curve calculated from Equation 22, is the linear curve 2 in Figure 3d. Curve 3 in

the same figure shows the linear curve that would have resulted when leaving out γ.
Parameter γ causes that the linear part of the S-N curve is shifted to the left.

Equation 22 may also be written as:

E(N) E(N)
E(S) = E(S(1))[ln(–––––––– ) + ln(eγ)] = E(S(1)) ln(–––––––– eγ)

E(S(1)) E(S(1))

or as   

E(N)
E(S) = E(S(1))[ln(–––––––– ) w), (23)

E(S(1))

in which w = eγ = 1.781073.

S-N relationships for concave rank abundance curves

For concave rank abundance curves (Figure 4a) calculated from the negative-binomial
model for κ < 1, the numbers of species with 1, 2, 3, …, n individuals ultimately only
approach constant ratios of also 1, 1/2, 1/3, 1/4, ..., 1/n for large N (Figure 4b). E(S(1)),
which in principle can be calculated (via the procedure of Poisson-curve calculations) for
each sample size (N), resulting in a specific value for w, is the slope of the S-N curve at
consecutive points along the curve.

The curves in Figure 4 were calculated from species abundance proportions calculat-
ed from the negative-binomial curve-fit model for κ = 0.5 and µ = 9. The fitted continu-
ous rank abundance curve (curve 1) and the discrete Poisson-curve (curve 2) in Figure 4a
were calculated for N = 10,000. The value for w iterated from Equation 23 for N = 16,384
(214), with E(S) = 109.599 and E(S(1)) = 17.008, is 0.652766. w < 1 causes a shift of the
approximately linear part of the S-N curve to the right (Figure 4c; compare curve 2
(inclusive-) with curve 3 (exclusive of the effect of w)). The straight line 4 in Figure 4b
represents the value of E(S(1)) for an infinitely large sample [E(S(1,∞)) = 18.495].

Both E(S(1)) and w are dependent on N and become constant in the range of large
samples. E(S(1)) is linearly related to µ for given N and given κ (Figure 5), w is curvilin-
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Figure 4. (a) The same type of curves as in Figure 3a but with µ = 9, κ = 0.5 and N = 10,000. (b) The same

type of curves [curve 1, E(S(1)), curve 2 E(S(2)) and curve 3 E(S(3))] as in Figure 3c. Curve 4 shows the

number of singleton species for infinitely large N, E(S(1,∞)). (c) E(S) versus log N curves (see Figure 3d and

text). Curves 2 and 3 were calculated from Equation 23 (see text), including w and stripped of the effect of

w, respectively. The black dots in (b) and the open squares in (c) are the data from the single Poisson-curve

calculations.
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Figure 5. Relation between E(S(1)) and µ for the following cases: κ = 0.3 and N infinitely large (curve 1a), κ

= 0.3 and N = 16,384 (curve 1b), κ = 0.5 and N infinitely large (curve 2a), κ = 0.5 and N = 16,384 (curve 2b),

κ = 0.7 and N infinitely large (curve 3a), and κ = 0.7 and N = 16,384 (curve 3b). The dots in curve 2a are

from the single Poisson-curve calculations.

Figure 6. (a) Relation between w and κ for given values of µ, and N constant at 16,384; cases µ = 9 (curve

1), µ = 18 (curve 2) and µ = 36 (curve 3). (b) Relation between w and κ for different given values of N, and µ

constant at 18; cases N = 1024 (curve 1); N = 2048 (curve 2); N = 4096 (curve 3); N = 8192 (curve 4); N =

16,384 (curve 5) and N = 32,768 (curve 6). The dots in curve 3 in (a) and in curve 1 in (b) are based on the

single Poisson-curve calculations. The curves through the calculated points in both figures were fitted by a

6-term polynomial multiple linear regression.



early related to κ for given N (Figure 6a) and given µ (Figure 6b). The curves in Figures
6a and 6b were fitted using a 6-term polynomial multiple linear regression.

Relation to log-series α

For w = 1, Equation 23 looks very similar to the log-series equation for S (Fisher et al.,
1943):

(24)

and in case of a very large sample it should almost equal it because in that case the value
‘1’ in the equation can be neglected. Calculations showed that this is true. From a rank
abundance curve for κ = 0.679, µ = 18, and N = 16,384 (214), i.e., a combination satisfy-
ing w = 1, we calculated values for E(S) and E(S(1)) of 165.5 and 25.62, respectively. The
same values for E(S) and N yielded a log-series E(S(1)) and log-series α (using Equations
2–5) of 25.62 and 25.61, respectively, with an x from iteration (Equation 5) of 0.998439.
The value for κ was calculated from curve 5 (µ = 18, N =16,384) in Figure 6b at the value
for w = 1.

κ for w = 1 slightly decreases with decreasing sample size (N) and increasing µ but
usually will not reach values lower than 0.5 (Figure 6b), which confirms that the log-
series model can only fit relatively shallow rank abundance curves. Parameter w causing
the part of the S-N curve for large N to shift along the horizontal axis to the left (Figure
3d) or to the right (Figure 4c) could be called the ‘shifting’ factor.

For further explanation of the similarities and differences between the parameters of
the S-N curve according to Fisher’s log-series model and our negative-binomial curve-fit
model we have created Figure 7. The S-N curve in Figure 7a is generated from rank abun-
dance curves for κ = 0.679, µ = 18 and consecutive values for N. The ‘Poisson’- rank
abundance curve from which E(S) for N = 16,834 was calculated (curve not presented) is a
curve satisfying w = 1, and thus a log-series rank abundance curve. The linear curve 2 in
Figure 7a is calculated from Equation 23, using the ‘Poisson’-E(S(1)) for N = 16,834.
Figure 7b shows the course of the ‘Poisson’-E(S(1)) (curve 1) and the level of E(S(1,∞))
(curve 2). It also shows the course of the log-series E(S(1)) (curve 3) and log-series α (curve
4) as calculated from the S-N curve in Figure 7a by iterating x for each of the S-N combi-
nations, using Equation 5. Moreover, it shows the log-series α (curve 5) as best fitting
value from iteration using Equation 24 in a direct log-series fit of the entire S-N curve in
Figure 7a. Curve 6 finally shows the course of the log-series E(S(1)) as calculated by iterat-
ing x using Equation 5 for each S-N combination of the log-series S-N curve created from
that α.

From the fact that curves 1, 3 and 6 almost coincide it may be concluded that the
E(S(1)) we calculated has the same meaning as the E(S(1)) of the log-series model. E(S(1))
is the tangent of the S-N curve and depends on the size of the sample for which it is
calculated. Fisher’s log-series α soon becomes independent of sample size. The E(S(1,∞))
of the new model is the extrapolated E(S(1)) for an infinitely large sample, calculated
from Equation 18. Since it can be calculated for each fitted concave rank abundance
curve independent of the given size of the sample, it could replace log-series α as a more

)1ln(
α

α
N

S +=  
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suitable site discriminant. It has the additional advantage that it can also be calculated in
case the species abundances are given in terms of proportions because, as follows from
Equation 18, no N and no S are needed for its calculation.

Procedure of curve fitting and criteria for goodness of fit

Curve fitting with the new model is on proportions, which means that in case the abun-
dances of species are given in terms of numbers of individuals, these numbers first have
to be converted into proportions. Best fitting values for κ and µ are found by iteration,
using the method of the least squares of the deviations between the points from observa-
tion (species abundances on log scale) and those on the fitted curve. Wilson (1991) used
this method for fitting rank abundance data to the log-normal model and the broken-
stick model. However, he calculated the least sum of squares as criterion for best fit. We
prefer to use the least mean square of the deviations (mean least square deviance, Dlsq)
because that enables a better comparison of data sets with different sample sizes. Best
fitting value for c in case of Equation 8b can also be found by iteration. However, its
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Figure 7. (a) Number of species (E(S)) versus the total number of individuals (N) (curve 1) with values for

E(S) calculated from ‘Poisson’- rank abundance curves for κ = 0.679 and µ = 18 by varying N. The ‘Pois-

son’- rank abundance curve yielding the E(S) for N = 16,834 (curve not shown) is a curve satisfying w = 1,

and thus a log-series rank abundance curve. Curve 2 was calculated from Equation 23 using the ‘Poisson’-

E(S(1)) for N = 16,834. (b) The ‘Poisson’-E(S(1)) (curve 1), the level of E(S(1,∞)) (curve 2), the log-series

E(S(1)) (curve 3), log-series α (curve 4) calculated from the S-N curve in (a) by iterating x for each S-N

combination using Equation 5, log-series α (curve 5) as best fitting value using Equation 24 in a direct log-

series fit of the entire S-N curve in (a), and the log-series E(S(1)) (curve 6) calculated by iterating x for each

S-N combination of the latter curve, using Equation 5. For the equations see text.

α



value can be determined much faster from a level difference, as will be explained below
in the validation of the model with observational data.

A mean square deviance versus the data from observation can also be calculated for
the Poisson-curve derived from the continuous curve fitted by the negative-binomial
curve-fit model and for a theoretical rank abundance curve generated from the log-series
model. However, to that end first the continuous scale of the horizontal axis with total-
ized expected species frequencies (Equation 12) has to be converted into a scale with
discrete sequential species. This is done by interpolation. The procedure is that the
frequencies are totalized, starting with the expected number of species for the highest
theoretical plant number (for safety reasons set at n = 10,000 in Equation 11). As soon as
the totalized frequency is 1, the numbers of individuals belonging to the last and to the
second last added frequency are read from an array. The expected number of individuals
for species 1 (the dominant species) is assumed to lie between these two values, and can
thus be calculated by interpolation. Totalizing the frequencies is continued until the
totalized frequency is 2 (enabling the calculation of the best estimate of the expected
number of individuals for species 2), etc. Since the sum of all frequencies can end up in
a value with a digit behind the decimal point, the ultimate expected number of species
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Figure 8. (a) Rank abundance curves. Curve 1 is the continuous curve fitted through the data (�) by the

negative-binomial curve-fit model. P1 is the Poisson-curve derived from curve 1 with discrete numbers of

individuals versus the accumulated species frequencies, i.e., the accumulated numbers of species calculat-

ed for consecutive values of n in Equation 11, as species rank. The calculated numbers of species with 1, 2,

3 and 4 individuals are indicated in the graph as E(S(1)), E(S(2)), E(S(3)) and E(S(4)), respectively. The six

black dots on the continuous curve indicate the values for species 25 up to and including 30. (b) P2 is the

Poisson-curve with discrete numbers of individuals for discrete sequential species (for explanations see

text). The black dots on the curve are calculated through interpolation (see text). The P2-curve can be used

for calculating a mean least square deviance versus the data from observation. 
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indicated by the last species is determined by rounding off. Examples of Poisson-curves
with numbers of species (horizontal axis) on a continuous scale and on a scale with
discrete numbers of species are given in Figures 8a and 8b, respectively.

To compare the quality of fit of different models the calculated mean squares of the
deviations can be used in an F-test. Another possibility is to use a χ2-test applied to the
frequency distributions of the actual and expected numbers of species in log2-classes of
numbers of individuals according to the method of Preston (1948). However, as was
explained by Hughes (1986) and Wilson (1991), a χ2-test leads to loss of information and
is therefore much less accurate. 

Model validation

Parameter c

With Equation 8a we try to find the best fitting curve with abundance proportions from
curve fit that add up to 1. With Equation 8b the best shape of the curve is fitted with
abundance proportions that after correcting for a level difference on log scale between
the fitted curve and the points from observation can add up to a value larger or smaller
than 1. The consequence is that after re-conversion of the abundance proportions from
curve fit into numbers of individuals (Equation 9) the re-calculated total number of indi-
viduals can be higher or lower. However, that is no problem as it only suggests that the
actual numbers of individuals per species in the sampled plant community are higher or
lower indeed, which is quite well possible. Adding c improves the quality of fit as is
demonstrated in Table 2 where parameter values are presented of curves fitted with both
Equation 8a (c = 1) and Equation 8b.

Adding parameter c does not invalidate the calculation of E(S(1,∞)) as site discrimi-
nant. As explained before, the latter is based on the moment in the fitted curve where the
subsequently calculated species abundance proportions start to differ by a constant factor
v = µ / (κ + µ), see Equation 17. That moment can be calculated for each asymptotically
ending concave rank abundance curve, regardless of whether or not the curve is correct-
ed for a level difference versus the points from observation.

Since parameter c (Equation 8b) is the factor that corrects for the level difference
between the abundance proportions on log scale [Note that log(pR) = log(f(R–1) – log(c)],
its value can be determined as such; c can be calculated from the mean of the relative
frequencies (λf) calculated from the submitted values of µ and κ at the subsequent steps
of the iteration and the mean of the abundance proportions (λp) from data according to:

c = λf / λp (25)

Correction for level difference is carried out at each step of the iteration before calcu-
lating the mean least square of the deviances (Dlsq) between the points from observation
and those from the fitted curve. Determining c that way is much faster than finding the
best fitting value for it by treating it as an independent third iterable variable.
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Figure 9. Numbers of moths caught in light-traps using Robinson mercury-vapour lamps. (a) � : data from

sampling. Continuous curve fitted by the negative-binomial curve-fit model (curve 1) using Equation 8b

and Poisson-curve (curve 2) derived from it. (b) Curve 3 is from a direct log-series fit to the data. Data from

Taylor & French (1974).

Figure 10. Numbers of individuals versus species rank for Coleoptera specimens trapped in five rectangu-

lar plots in a pasture on ‘Pietersberg’, Zuid Limburg, The Netherlands. � : data from sampling. (a) Contin-

uous curve fitted by the negative-binomial curve-fit model (curve 1) using Equation 8b (see text), and Pois-

son-curve (curve 2) derived from it. (b) Curve 3 is from a direct log-series fit to the data.



Fitting data from observations

Four sets of rank abundance data with clear indications for a concave curve were used to
test the negative-binomial curve-fit model: (1) a data set (Figure 9) from Taylor & French
(1974) (numbers of moths obtained from light-trap samples using Robinson mercury-
vapour lamps), (2) a data set (Figure 10) from Coleoptera (ground beetles) research
(Coleoptera specimens counted by pitfall trapping in 5 rectangular plots in a grassland on
‘Pietersberg’, Zuid Limburg, The Netherlands), (3) a data set (Figure 11a) from Patrick
(1968) (diatom specimens counted in 4 experimental boxes placed in part of the flow of
Darby Creek, Pennsylvania, USA, experiment-1966), and (4) a data set (Figure 11b) from
Basset & Kitching (1991) (species abundance of arboreal arthropods associated with an
Australian rainforest tree).

Parameter values and statistics of the fitted curves using both Equation 8a (c = 1) and
Equation 8b (c iterated or determined as level difference) are summarized in Table 2.
Given are also Fisher’s α and Dlsq from a direct log-series fit. In the moth case (Taylor &
French, 1974) the log-series model fitted the data reasonably well (Figure 9b; Dlsq =
0.0771). However, the curve fitted by the new model was slightly better (Figure 9a; values
for Dlsq 0.0530 and 0.0405 (Equation 8a) or 0.0530 and 0.0401 (Equation 8b), respective-
ly); log-series α = 16.1 versus E(S(1)) = 17.1 (Poisson-curve) and E(S(1,∞)) = 19.1. As illus-

J.H. Neuteboom and P.C. Struik

188 NJAS 53-2, 2005

Figure 11. Rank abundance curves. (a) Diatom specimens counted in four experimental boxes placed in

part of the flow of Darby Creek, Pennsylvania, USA (Patrick, 1968; experiment 1966). (b) Arboreal arthro-

pods associated with an Australian rainforest tree (Basset & Kitching, 1991). � : data from sampling.

Continuous curves fitted by the negative-binomial curve-fit model (curve 1), using Equation 8b (see text),

and Poisson-curve (curve 2) derived from it. 



trated for the Coleoptera data in Figure 10b, the log-series model could not fit the data of
the three remaining data sets. All three (all cases with a low value for κ) were well fitted by
the new curve-fit model [see Figures 10a, 11a and 11b and the relatively low values for Dlsq

in Table 2 varying from 0.0488 to 0.0877 (continuous curve) or from 0.0477 to 0.1013
(Poisson-curve)]. In all four data sets (Table 2) the Poisson-curve resulted in a reasonable
estimate of the actual number of species in the sample. The re-calculated total numbers of
individuals (Recalc-N) from curve fit using Equation 8a (c = 1) equalled the actual total
numbers of individuals in the sample. This indicates that in Equation 11 a sufficient
number of species (R) and in Equation 12 a sufficient number (n) of Poisson-terms had
been included in the calculations. Along with sometimes relatively large differences in
fitted values for µ and κ, relatively small differences were found between the values for
E(S(1)) and E(S(1,∞)) when Equations 8a and 8b were used. However, in case of differ-
ences, best fit was always obtained with Equation 8b. This equation with parameter c
should always be applied, as is illustrated for a specific case in Appendix 1.

Discussion and conclusions

With the log-series model (Fisher et al., 1943), rank abundance data are fitted by iterating
only one parameter (x in Equation 5). With the new model, curves are fitted with two
iterable parameters (κ and µ, see k and m in Equations 7a, b). This could explain why,
even in cases with an acceptable log-series fit, the fit obtained with the new model is
nearly always better.

The new model links the geometric-series model and log-series model and can also
fit deeply concave rank abundance curves. Moreover, it can calculate a species-diversity
index (the number of singleton species in an infinitely large sample, E(S(1,∞)). The new
model could solve the problem discussed by Hughes (1986) that deeply concave curves
cannot be fitted by any of the existing rank abundance models. The log-series model
(Fisher et al., 1943) is not suitable because that model can only fit shallow rank abun-
dance curves whereas the Zip-Mandelbrot model used by Wilson (1991) as another alter-
native for concave curves is inaccurate. Hughes (1986) suggested using his iterative
dynamics model as a more flexible alternative for curve fitting. However, that model is
too complex and lacks the ability to calculate a species-diversity index. Moreover, it is not
really a statistical model and cannot fit proportions.

It may be questioned whether the basic assumption of the model of Poisson-distrib-
uted numbers of individuals within species in replicate samples is realistic because clus-
tering is likely to occur always. On the other hand, the model may be realistic for very
large samples because whether or not clustering will have an effect on the recorded
numbers of individuals of a species in a sample depends on the cluster size to sample
size ratio. That is, a species with strong clustering can be completely dominant or be
totally absent in small samples whereas in a very large sample its recorded number of
individuals will probably hardly differ from that of an equally abundant species with
Poisson-distributed individuals. With the further, reasonable assumption that the
number of species in the sampled community is finite, the calculation of the E(S(1,∞))
for an infinitely large sample as site discriminant seems therefore justified. Adding the
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condition of a finite number of species is needed as in that case it may be assumed that
in an infinitely large sample of even the rarest species a sufficient number of clusters
will be present to make that the number of individuals is almost fixed. Kempton &
Taylor (1974) used the Poisson-distribution for transforming a continuous log-normal
rank abundance curve into a curve with discrete numbers of individuals for species (the
‘Poisson’- log-normal). And as stated before, also Fisher’s log-series model (Fisher et al.,
1943) is based on the assumption of Poisson-distributed numbers of individuals in repli-
cate samples.

Table 2 shows that despite the possible effects of clustering with small samples, even
for the Coleoptera data set with a total of only 1231 individuals, the expected number of
species (E(S) = 44.8) re-calculated from the Poisson-curve still reasonably agreed with the
actually counted number of species (S = 42). The latter number was the total of five repli-
cate samples with a fairly large variation. Possibly due to the bulking of randomly distrib-
uted replicate samples to one large sample, the majority of all occurring species can still
be caught. However, using that value of S in an S-N curve is one option. In vegetation
science the numbers of species are usually counted in series of nested expanding
quadrats for making an S-N curve or species-area curve. The S plotted that way against N
or against area in case of replicates is the S of an average single sample of increasing size
(Condit et al., 1996). The way in which S is calculated will be discussed in a next paper
(Neuteboom & Struik, 2005a). S calculated as the mean number of species per sample is
strongly dependent on clustering.

A rank abundance curve is usually made by totalling the numbers of individuals per
species in a series of replicate samples. With numbers of individuals plotted on log scale
against species sequence, the resulting curve is the same as the curve for the average
species individual numbers per sample, with only a level difference. Since the mean
number of specimens of a species is not affected by clustering, the curve for the average-
(the ‘average’ rank abundance curve) and thus the curve for the total number of individu-
als per species (the ‘total’ rank abundance curve) is not affected by clustering. This
means that the continuous rank abundance curve fitted by the negative-binomial curve-
fit model represents in principle a curve that is free from clustering. Clustering could
lead to a larger standard error. However, taking more samples can reduce that error.

Basset & Kitching (1991) stated that they could not fit their data with the log-series
model. The same applies to the presented Patrick-data (experiment 1966) (Table 2).
Patrick (1968) stated that the structure of diatom communities simulates a log-normal
curve and for large samples a truncated log-normal. In our opinion the Basset & Kitching
data (Figure 11b) and the Patrick data (Figure 11a) represent deeply concave rank abun-
dance curves with a high species diversity as expressed by high values of E(S(1,∞)).

By taking the relative frequency f(0) for the abundance proportion of the first (domi-
nant) species, the f(1) for the second species, etc., we use in fact the negative-binomial
distribution as a series, like the geometric series, in which after extrapolation the propor-
tions of all species add up to 1. Since in the first instance proportions are fitted (even in
case the abundances of species are given in numbers of individuals), the model can be
used for fitting numbers of individuals as well as abundance proportions of species. As
stated before, the model can calculate E(S(1,∞)) for both cases without the need to know
N or S.
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Application of the equation for the S-N curve developed from the new model (Equation
23) shows that depending on the concavity of the rank abundance curve of the sampled
community, the part of the S-N curve for large N is shifted along the x-axis to the left
(Figure 3d) or to the right (Figure 4c). That effect is quantified in a ‘shifting’ parameter
w. The log-series model applies to communities with a shallow rank abundance curve for
which w = 1 in the new equation for the S-N curve. Fisher’s log-series equation for the S-
N curve (Equation 24) is lacking a shifting parameter and is therefore incomplete. A final
conclusion could be that a species-diversity index (Fisher’s α) as an integral property of
the rank abundance and S-N curve is a specific property of the log-series model and only
valid for communities with a typical shallow log-series rank abundance curve.
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Appendix 1

Details on parameter c in Equation 8b

For curve fitting, the species abundances are first transformed into proportions adding
up to 1. Things may especially go wrong with Equation 8a if a substantial part of the low-
abundant and rare species is missing. Figures 2.1a–2.1c illustrate this. Given in Figure
2.1a is a Poisson-rank abundance curve created by the negative binomial curve-fit model
for µ = 3, κ = 0.3 and a total number of individuals in the sample of N = 12,000 (curve 1).
Suppose that the curve is based on real data (sample 1), and next that only species S1–S5
are present in the sample with 5845, 1594, 942, 656 and 492 individuals, respectively
(curve 2, sample 2). The total number of individuals N is 9529, and the abundance
proportions of species S1–S5 calculated on that basis are 0.613, 0.167, 0.099, 0.069 and
0.052, respectively (Figure 2.1b, curve 2). These proportions are logically higher than the
respective proportions 0.487, 0.133, 0.078, 0.055 and 0.041 for species S1–S5 in sample 1
(Figure 2.1b, curve 1) while the fitted rank abundance curve with µ = 1.795 and κ = 0.436,
using Equation 8a, is unsatisfactory (Figure 2.1c, curve 2a). Curve fitting with Equation
8b results in a perfect fit with the original µ = 3 and κ = 0.3 and a value for c of 0.795
(Figure 2.1c, curve 2b). However, the abundance proportions from curve fit calculated for
an infinite number of species now add up to a value larger than 1 (sum of proportions =
1.258). The latter is no problem because multiplying the proportions from curve fit by the
lower N of 9529 results in the original numbers of individuals for species S1–S5 with a
re-calculated N from curve fit of 12,000. As stated before, including parameter c in Equa-
tion 8a does not affect the validity of calculating an E(S(1,∞)) as site discriminant.
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Figure 2.1. (a) Sample 1 (dots, curve 1); species individual numbers in a fictitious sample with 58 species.

The numbers of individuals are the numbers from a Poisson-rank abundance curve created by the nega-

tive-binomial rank abundance curve-fit model for µ = 3, κ = 0.3 and N = 12,000. Sample 2 (open squares,

curve 2); a sample with only the species S1–S5 with the same numbers of individuals per species. (b) The

numbers of individuals per species in samples 1 and 2 transformed into proportions totalling 1. (c) Fitted

rank abundance curves using Equation 8a for sample 1 (curve 1) and sample 2 (curve 2a), and Equation 8b

with parameter c for sample 2 (curve 2b). Equation 3b fits best. For the equations see text.



A versatile curve-fit model for rank abundance curves

195NJAS 53-2, 2005

Appendix 2 

Glossary of terms, parameters and symbols frequently used

Clustering Phenomenon that species occur in clusters of individuals.
In silico sampling Virtual sampling making use of computer software.
Poisson-curve Synonym for the single sample rank abundance curve

derived from the average rank abundance curve using the
Poisson distribution.

Rank-abundance curve Curve fitted through the relation between species abun-
dance and species rank.

Total rank abundance curve Rank abundance curve with the per species accumulated
numbers of individuals in a series of replicate samples plot-
ted on log scale against species rank.

Average rank abundance Rank abundance curve with the sample means (means per 
curve replicate sample) for the numbers of individuals per species

plotted on log scale against species rank.
Single sample rank Rank abundance curve with the species individual numbers
abundance curve theoretically expected in an average single sample plotted

on log scale against species rank.
Singleton species Species present in the sample with one individual.
Species-diversity index Index expressing species richness of the sampled system in

one value. Examples are Fisher’s α and E(S(1,∞)) of the
negative-binomial rank abundance curve fit model.

Species-individual curve Curve with the number of species plotted against the loga-
rithm of the total number of individuals of all species in the
sample. Synonyms are S-N curve and S-log(N) curve.

Species-area curve Curve with the number of species plotted against the loga-
rithm of the area of the sample.

c Constant in the negative-binomial curve-fit model.
Dlsq Mean least square deviance as calculated versus the actual

data from sampling.
e Exponential base (2.7183)
E(N) Expected total number of individuals in an average single

sample.
E(N(n)) Contribution of the expected number of species with n indi-

viduals to the expected total number of individuals in an
average single sample.

E(S) Expected total number of species in an average single sample.
E(S(1,∞)) Expected number of singleton species in an infinitely large

sample.
E(S(n)) Expected number of species present with n individuals in

an average single sample. For n = 1, 2, 3, … etc., E(S(n)) is
written as E(S(1)), E(S(2)), E(S(3)), … etc. Note that E(S(1)) is



the expected number of singleton species in an average
single sample.

f(n) In the negative-binomial distribution the expected relative
frequency of sampling units containing n individuals.

h Expected number of individuals of the most abundant
(dominant) species; see Equations 19 and 20.

k Dispersion parameter of the negative-binomial distribution
expressing the amount of clustering.

m Parameter of the negative binomial distribution for the
mean of a series of data.

Poiss. Following the Poisson-distribution.
pR Fitted abundance proportion of the Rd species from curve

fit with the negative binomial rank abundance curve fit
model.

pR,geom Fitted abundance proportion of the Rd species from curve
fit with the geometric series rank abundance curve fit
model.

q Abundance proportion of the first (dominant) species in the
geometric-series model.

R Species number in a series of species from sampling after
sorting in rank of abundance.

R’ Species number in a series of fictitious sequential species
ranging from 1 to infinite, used for calculating E(S(1,∞)).

N Total number of individuals of all species in a single sample
or in the accumulated total of a series of replicates samples.

S Number of species in a single sample or in the accumulated
total of a series of replicate samples.

SR Species with rank number R in a series of species ranked
from most to least abundant.

S(n) Number of species present with n individuals in a single
sample or in a series of replicate samples. For n = 1, 2, 3, …
etc., S(n) is written as S(1), S(2), S(3), …. etc. Note that S(1)
is the number of singleton species from sampling.

v Factor used for calculating E(S(1,∞)); v = µ / (κ + µ).
w The so-called ‘shifting’ factor calculated for the S-logN curve

in the negative-binomial rank abundance curve-fit model.
For S-logN curves derived from negative-binomial rank
abundance curves with κ = 1 (geometric series rank-abun-
dance curves), w = ey = 1.781073.

x Constant in Fisher’s log-series model approaching unity
with increasing sample size.

zR Number of individuals of species R from curve fit with the
negative-binomial rankabundance curve-fit model.

z0 Start value used in the calculation of E(S(1,∞)), and set 
at 30.
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α Species-diversity index in Fisher’s log-series model.
γ Euler-Mascheroni constant (0.577216).
κ Parameter of the negative-binomial rank abundance curve-

fit model.
λf Mean of the calculated relative species frequencies from

curve fit.
λp Mean of the species abundance proportions from sampling.
µ Parameter of the negative-binomial rank abundance curve-

fit model.

Note: j, n, o are numerators
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