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Abstract

The impact of clustering on rank abundance, species-individual (S-N) and species-area curves was investi-

gated using a computer programme for in silico sampling. In a rank abundance curve the abundances of

species are plotted on log-scale against species sequence. In an S-N curve the number of species (S) is

plotted against the log of the total number of individuals (N) in the sample, in a species-area curve S is

plotted against log-area. The results from in silico sampling confirm the general shape of S-N and species-

area curves for communities with clustering, i.e., a curve that starts with a smaller slope but that later is

temporarily steeper than the curve expected for Poisson-distributed species. Extrapolation of S-N and

species-area curves could therefore be misleading. The output furthermore shows that sigmoid rank

abundance curves (curves of the type of a log-normal or broken stick) can be an artefact of the standard

procedure of first sorting the species in sequence of abundance in combination with clustering in the low

abundant and rare species. This makes the usual explanation given to the log-normal rank abundance

curve dubious. An extension of the negative-binomial rank abundance curve-fit model is discussed to

make it suitable for also fitting sigmoid rank abundance curves.

Additional keywords: negative-binomial rank abundance curve, species-individual curve, species-area curve,

rare species, species abundance, species-diversity index

Introduction

The species-individual curve (S-N curve) and species-area curve are largely determined
by two factors: (1) the pattern of species abundance distribution in the community, and
(2) the degree of clustering of individuals within species (He & Legendre, 2002;
Neuteboom & Struik, 2005a, b). In an S-N curve the number of species is plotted
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against the total number of individuals in the sample; in a species-area curve the
number of species is plotted against the area of the sample. With the total number of
individuals or area plotted on log-scale and assuming that number of individuals is
proportional to area, the S-N curve and species-area curve are identical curves with only
a shifted horizontal axis (Neuteboom & Struik, 2005b).

Neuteboom & Struik (2005b) stated that clustering will result in a species accumu-
lation curve (S-N curve or species-area curve) that starting with a smaller slope can
temporarily be steeper compared with the curve expected for Poisson-distributed
species. So extrapolation of such a curve could be misleading. The predicted shape of
the curve is based on the expectation that the effect of clustering will gradually decrease
with increasing sample size.

In this paper we shall verify the predicted general shape of the S-N curve and the
species-area curve, using a computer programme for in silico sampling. Also, state-
ments on the rank abundance curve made earlier (Neuteboom & Struik, 2005a, b) will
be tested. The rank abundance curve is the curve in which (as usual) the number of
individuals per species is plotted on log-scale against species sequence.

The computer programme for in silico sampling has been used before in a relatively
simple form to analyse the Dry Weight Rank (DWR) method for estimating botanical
composition of grassland (‘T Mannetje & Haydock, 1963). The analysis showed that the
DWR method works thanks to the fact that in grassland the species usually grow in
clusters of individuals (Neuteboom et al., 1998). Clustering within species is so
common that it almost inevitably must have an effect on the S-N curve and the species-
area curve. This is to be expected for two reasons: (1) the number of species counted in
a sampling area or sampling quadrat equals the sum of the probabilities of presence of
all species present in the community (Coleman, 1981), and (2) with clustering, the prob-
ability that a species will be present in a sample is expected to be lower (Greig-Smith,
1983).

Below we shall show that the predicted effects of clustering on the S-N curve and
the species-area curve are indeed confirmed. However, the output from sampling yields
another interesting effect that until now has been overlooked. The procedure of first
sorting the species in sequence of abundance – standard in making a rank abundance
curve – can lead to a sigmoid rank abundance curve when, due to clustering, part of the
low abundant and rare species in the tail of the curve are heavily underestimated or
totally missed by sampling. The resulting curve can even be a perfect log-normal rank
abundance curve. The results from sampling throw serious doubts on the ecological
explanation usually given to the log-normal rank abundance curve.

First, the outline of the sampling programme is discussed. The sampling includes
marking species as primary and secondary patch-species to assess the effects of cluster-
ing. The principles of the computer programme for in silico sampling could be used in
other applications as well. We also briefly summarize the negative-binomial rank abun-
dance curve-fit model (Neuteboom & Struik, 2005a) and shall refer to the log-normal
rank abundance curve-fit model of Wilson (1991) because we use that model for fitting
the sigmoid rank abundance curve resulting from sampling. In the discussion section
an extension of the negative-binomial rank abundance curve-fit model will be discussed
to make the model also suitable for fitting sigmoid rank abundance curves.
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Appendix 1 contains a glossary with some relevant terms, parameters and symbols used
in the present paper. The reader is also referred to the appendices of Neuteboom &
Struik (2005a, b) with additional information on the use of terms and symbols. 

Computer programme for in silico sampling

Outline of the programme 

In the computer programme for in silico sampling, plants of a given density are
randomly distributed over the computer screen and assigned individually (Poisson-
distributed species) or group-wise (patch species in randomly distributed circles) a
species name. Names are randomly drawn from an array in which each species is repre-
sented with a frequency that corresponds to its relative yield as defined by De Wit
(1960), or – assuming that all species have the same plant size and the same productiv-
ity per plant – to its mass proportion. The mass proportions of the species are calculat-
ed from the negative-binomial rank abundance curve-fit model (Neuteboom & Struik,
2005a) for given parameter values (κ, µ and c), for an in principle infinite number of
species. However, in the practical execution of the programme, species abundance
proportions are calculated up to and including a lowest proportion of 10–8. The
sampling on screen is repeated for consecutive samples. After each sample, the plants
on the screen are replaced.

Sampling is executed with a set of eight nested sampling quadrats. Recordings on
the presence of plants in the quadrats are made in sequence from the smallest to the
largest quadrat. Whether a plant is present in a quadrat, is calculated from its x and y
co-ordinates, its radius and the x and y co-ordinates (centre point) and radius of the
quadrat. A plant is recorded as present even if it only touches the edge of the quadrat.
With the consecutive quadrat sizes the effect of sample size on the rank abundance
curve can be investigated and even a species-individual (S-N) curve and a species-area
curve can be made.

Primary and secondary patch-species 

A distinction is made between primary and secondary patch-species. Primary patch-
species are used to calculate – from their total relative cover and a given patch size – the
number of patches per unit area (patch density, see below). The computer programme
asks the number of species that are assigned as primary patch-species. Assignment is at
random or in a distinct order. In the default option of the programme, species are
assigned as primary patch-species sequentially, starting with the second species (S2),
i.e., species S2, S3, S4, etc. in sequence of abundance, up to and including species Sn,
in which Sn has to be given. Secondary patch-species are all the remaining species
added as inclusions to the patches. These remaining species can also include the first
dominant species S1. But always 10% of the number of individuals of S1 remains in the
space outside patches.

From the total available primary and secondary patch-species, limited numbers



(groups) of continuously different species can be selected for allotting to the plants in
single patches. These numbers are called the numbers of primary patch-species per
patch and the numbers of secondary patch-species per patch, respectively. Drawing lots
determines which of the total available primary and secondary patch-species are
assigned to a single patch. The chance that a primary or secondary patch-species is
allotted to a patch is proportional to its abundance.

The further allotment of species from the pre-selected groups to the single plants in
a patch is at random. Primary and secondary patch-species can be allotted more than
once to a pre-selected group. Since this will happen more frequently with the more
abundant species – present among the primary as well as the secondary patch-species –
the average cluster sizes of the species are roughly correlated with their abundance
proportions.

With secondary patch-species, patch density is kept unchanged but the size of the
patches is enlarged and thus re-calculated. Working with two different categories of
patch species – with for both categories the option to vary the number of available
species per patch – allows for simulations with two groups of species with different
cluster sizes in patches. All sorts of realistic simulations with patches of mixed species
composition are possible. But also simple simulations with for instance all species
randomly distributed, or simulations with only primary patch-species in patches and all
remaining species randomly distributed in the space outside patches. The reason to
work with patches of mixed species composition is that we ultimately also want to fit for
all species the distribution of the numbers of individuals over replicate samples to the
negative-binomial distribution (Neuteboom & Struik, 2005b). That is possible only with
a sufficient amount of variation. In simulations with only one species per patch, prob-
lems can occur with the calculation of negative-binomial k-values for single species.

Calculation of the cover by patch species and patch density 

Essential is the calculation of the number of patches per unit area (patch density). Patch
density (dpatch) is calculated from the Patch Area Index (PAI), using the relation PAI =
–ln(1–cpatch), where cpatch is the relative cover by patches. As stated before, cpatch is calculat-
ed from the relative cover of primary patch-species, which, assuming that all species
have the same plant size and the same productivity per plant, equals the sum of their
relative yields or the sum of their mass proportions. Given the patch radius Rpatch, dpatch

follows from the relation dpatch = PAI/ πR2
patch

Also patches are assigned x and y co-ordinates drawn by lot from an array, and a
sequential number. For plants in the overlap zone of patches always the species name
assigned to the highest patch number applies. So species names assigned earlier can be
overruled. With secondary patch species in the simulation and dpatch kept unchanged
(see above), the enlarged area per patch (patch size) is calculated from a cpatch based on
the relative cover of the total of all primary and secondary patch-species.
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Calculation of the numbers of plants per patch for primary and secondary
patch-species

Knowing the area per patch calculated for primary patch-species (apatch1) and the re-calcu-
lated area per patch (apatch2) for the total of primary and secondary patch-species, the
average numbers of plants assigned to primary and secondary patch-species can be
calculated. Let nppp be the average number of plants per patch. Then the number of
plants that get the name of a primary patch-species (nprim) is nppp (apatch1 / apatch2). The
number of plants that get the name of a secondary patch-species (nsec) is nppp (apatch2 –
apatch1) / apatch2). Whether the system of allotments of species is right can always be
checked, because in case of a sufficient number of replicates the average species abun-
dance proportions from sampling finally must always equal the species proportions
given to the sampling programme.

Two approaches to constructing species-area curves 

Condit et al. (1996) discussed two approaches to constructing S-N and species-area
curves. The usual approach for species-area curves (approach 1) is to count species in
nested series of expanding quadrats. The other approach (approach 2) is to add species
counts from one-size sampling quadrats randomly taken from across the whole
sampled plot. Approach 1 results in a curve showing the increase of the number of
species in a geographically expanding area, the appropriate way to compare different
sites. The species accumulation curve derived from approach 2 is not comparable across
sites because, as explained by Condit et al. (1996), that curve is dependent on the size
(area) of the plot sampled. Our computer programme for artificial sampling is in line
with approach 1.

Curve-fit equations and calculation procedures

Negative-binomial rank abundance curve-fit model

In the negative-binomial curve-fit model (Neuteboom & Struik, 2005a), the abundance
proportions (p) of consecutive species are calculated in an unusual way from the expect-
ed relative frequencies of occurrence of samples with n = 0, 1, 2, 3, …., j individuals
according to the negative-binomial distribution. The frequency f(0) is used for fitting
the abundance proportion p1 of the first (dominant) species, the frequency f(1) for fitting
the abundance proportion p2 of the second species, etc., or (R is species rank):

pR  = f(R – 1) 

or, adapted for the case of curve fitting,

pR = f(R – 1) / c (1)



The method for calculating the relative frequencies f(n) from the negative-binomial
distribution was discussed by Davies (1971). First, the expected relative frequency in the
first class for n = 0 individuals is calculated from:

f(0) = 1/[1 + (m / k)]k (1.1)

The relative frequencies in the second and higher classes for n = 1, 2, 3 …., j individ-
uals (note that j is the maximum number of individuals in the sample) are then derived
from:

f(n) = f(n – 1) m (k + n – 1) / ((m + k)n) (1.2)

Here, parameters m and k are the mean of the negative-binomial distribution and a
measure of the amount of clustering, respectively. They determine the shape of the
fitted rank abundance curve. With abundance proportions plotted on log-scale, parame-
ter c corrects for a level difference between the fitted curve and the points from observa-
tion. Parameter c is calculated from the mean of the calculated relative frequencies (λf)
from curve fit and the mean of the species abundance proportions (λp) from the data
according to:

c = λf /λp (1.3)

Correction for level difference is carried out at each step of the iteration before
calculating the least squares of the deviancies between the data and the fitted curve. The
value of c can also be found by treating it as a third iterable parameter. But that requires
a lot more calculation time.

However, as stated before (Neuteboom & Struik, 2005a), in the way they are used in
the negative-binomial rank abundance curve-fit model, parameters m and k have fully
lost their meaning as ‘mean’ of a series of samples and ‘dispersion factor’, respectively.
Both are degraded in the negative-binomial rank abundance curve-fit model to pure
curve-fit coefficients without any further statistical meaning and are therefore given a
different name. In order to distinguish them from the original m and k in the negative-
binomial distribution they will be referred to in the remaining of this paper, like before
(Neuteboom & Struik, 2005a, b), as µ and κ.

Fitting proportions and numbers of individuals
The nature of the negative-binomial curve-fit model makes that the fit is on propor-
tions. However, the abundance proportions observed and those expected from curve fit
(pR) can always be converted or re-converted into numbers of individuals by multiplying
them by the total number (N) of individuals in the sample. So the numbers of individu-
als from curve fit (z) are (see also Neuteboom & Struik, 2005a):

zR = pRN (2)
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Calculation of E(S(1,∞)) as site discriminant and species-diversity index
From the fitted rank abundance curve the expected number of singleton species in an
infinitely large sample E(S(1,∞)) can be calculated. Its calculation is based on the fact
that in the asymptotically ending tail of the concave rank abundance curve the calculat-
ed relative frequencies f(n) from Equation 1.2 ultimately differ by a constant factor 
v = µ / (κ + µ). From that point on the number of singleton species E(S(1)) that can be
calculated from the fitted curve and the Poisson-distribution for a theoretical single
sample becomes a constant. E(S(1,∞)) is independent of clustering and could therefore
be used as a site discriminant and species-diversity index (Neuteboom & Struik, 2005a).

E(S(1,∞)) is calculated from (Neuteboom & Struik, 2005a):

R′ = ∞
E(S(1, ∞)) = Σ [z0v(R′–1) exp{–z0v(R′–1)}] (3)

1

where z0 is a number set at 30 (see Neuteboom & Struik, 2005a) and R’ a species number
in a series of fictitious sequential species ranging from 1 to infinite; v = µ / (κ + µ).

The single sample rank abundance curve
A rank abundance curve is usually made by totalizing per species the numbers of indi-
viduals in a series of ‘replicate’ samples after which these totalized numbers are plotted
on log-scale against the species’ rank in sequence from most to least abundant. As
explained before (Neuteboom & Struik, 2005a), the ‘total’ rank abundance curve is with
a level difference the same as the curve for the average numbers of individuals per
species per sample (the ‘average’ rank abundance curve) and like the latter curve in
principle independent of clustering. The number of species that is plotted against the
total number of individuals in an S-N curve or species-area curve is the number of
species in an average single sample (Neuteboom & Struik, 2005b). That number can be
theoretically derived from the average rank abundance curve using a function describ-
ing the pattern of distribution of the numbers of individuals within species over repli-
cate samples. We use as before (Neuteboom & Struik, 2005b) the Poisson-distribution,
and for detecting clustering the negative-binomial distribution (distinct from the nega-
tive binomial rank abundance curve fit model) with separately fitted k-values per
species. Both distribution functions calculate from the average numbers of individuals
per species the contribution of each species to the theoretically expected numbers of
species with n = 1, 2, 3, …., j individuals in an average single sample (Neuteboom &
Struik, 2005b). The frequency distribution obtained can be compared with the frequen-
cy distribution of the actual average numbers of species in log2-classes of numbers of
individuals per species according to the method of Preston (1948). With the χ2-test it
can be tested whether there is a statistically significant difference.

The frequency distribution ‘expected’ can be transformed into a rank abundance
curve in the usual graphical presentation with the abundance per species plotted on log-
scale against species sequence (the ‘single sample’ rank abundance curve). In case indi-
viduals within species actually behave as Poisson-distributed, the ‘single sample’-rank
abundance curves expected for Poisson- and negative-binomial-distributed individuals
will both coincide with the curve for the actual mean numbers of individuals per
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species from sampling. In case of clustering, the curve for negative-binomial-distributed
individuals will deviate (Neuteboom & Struik, 2005b).

Log-normal distribution; the general log-normal
Wilson (1991) fitted a general log-normal to data by iteratively adjusting the mean and
standard deviation (σ) of the ln-transformed species abundances of what he calls an
abundance-class log-normal curve. For details of the curve-fit model we refer to the
original paper. We applied Wilson’s log-normal curve-fit  model to data from sampling
with clear indications of a log-normal rank abundance curve

Output from sampling 

Rank abundance curve, species-individual (S-N) curve and species-area curve

Rank abundance curve
Figure 1 shows for an arbitrary case of clustering the output from sampling. Species are
assigned as primary and secondary patch-species for allotting to the plants in patches.
Primary patch-species are species S2 up to and including S10. Secondary patch-species
are all remaining species excluding 10% of the individuals of species S1. The plant
density is 6 plants dm–2 (point-sized plants). The area per patch after re-calculation for
secondary patch-species is 50.5 dm2. The average number of plants per patch is 303.
The average number of plants sampled with the largest quadrat 8 is 769. The number
of primary patch-species per patch is 1. The secondary patch-species are randomly
distributed over the total space occupied by patches.

Presented in Figure 1a are (1) the rank abundance curve given to the sampling
programme and calculated from the negative-binomial rank abundance curve-fit model
(Neuteboom & Struik, 2005a) for κ = 0.5, µ = 3 and c = 1 (curve 1), and (2) the numbers
of individuals per species from sampling (�). The numbers of individuals are the total
numbers of individuals per species in 500 samples taken with the largest of the set of 8
nested sampling quadrats (128 dm2). Figure 1b shows (1) the numbers of individuals
(�) per species after sorting the species in sequence from most to least abundant, and
(2) the re-fitted ‘total’ rank abundance curve using the negative-binomial rank abun-
dance curve fit model (curve 2). Figure 1c shows the average numbers (�) of individu-
als per species per sample, the same re-fitted rank abundance curve (curve 2, now given
as ‘average’ rank abundance curve) and the ‘single-sample’ rank abundance curve (curve
3). Calculation and meaning of the ‘total’ and ‘average’ rank abundance curve have been
explained in Neuteboom & Struik (2005a), the ‘single-sample’ rank abundance curve
has been explained in Neuteboom & Struik (2005b). The single-sample rank abundance
curve was calculated from the ‘average’ rank abundance curve using the negative-bino-
mial distribution with separately fitted negative-binomial k values per species (see
Neuteboom & Struik, 2005b). 

The conclusion from Figures 1b and 1c is that, as expected (Neuteboom & Struik,
2005a, b), clustering in the common species S2, S3, …, S10 hardly affected the ‘total’
and ‘average’ rank abundance curve. Both the ‘given’ (curve 1) and the re-fitted rank
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Figure 1. Species abundances from artificial sampling, sampling quadrat 8 (128 dm2). Plant density d = 6 plants

dm–2, point-sized plants. Species in patches of 50.5 dm2 with species S2, S3, ….., S10 assigned as primary patch-

species and all remaining species (S11, S12,….., Sn and 90% of species S1) assigned as secondary patch-species. (a),

(b) and (c) Patches with 1 primary patch-species and secondary patch-species randomly distributed over the total

space occupied by patches. (a) and (b) show the totalized species individual numbers (�) in 500 replicate samples,

unsorted (a) and after sorting the species in sequence of abundance (b). (c) shows in ‘�’ the average numbers of

individuals per species per sample. Curve 1 in (a) and (b) is the rank abundance curve from which the given species

abundance proportions in the sampled community were calculated. The curve is calculated from the negative-bino-

mial curve-fit model for κ = 0.5, µ = 3 and c = 1. The total number of species in the sampled community (calculated

from the negative-binomial curve-fit model up to and including a theoretically lowest proportion for species abun-

dance defined at 10–8) is 107. Curve 2 in (b) and (c) is the curve refitted through the data by the negative-binomial

rank abundance curve-fit model. Curve 3 in (c) and (d) is the ‘single sample’ rank abundance curve calculated from

the contributions per species to the expected numbers of species with 1, 2, 3, …., etc. individuals in an average

single sample. The contributions per species were calculated from the ‘average’ rank abundance curve using the

negative binomial distribution with separately fitted negative-binomial k values per species. Curve 3 is confirmed by

the species abundances (�) derived from the frequency distribution of the average numbers of species per sample

actually found from sampling and classified in log2-classes of numbers of individuals. (d) Single-sample rank abun-

dance curves for 1 primary patch-species and 1 (curve 3) and 3 secondary patch-species (curve 4) per patch. Curve 5

in (d) is the curve in case all species would have had Poisson-distributed individuals.



abundance curve (curve 2) had approximately the same value for E(S(1,∞)) (6.49 and
6.80, respectively). However, clustering strongly affected the ‘single-sample’ rank abun-
dance curve (Figure 1c). The validity of that curve (curve 3) is sustained by the points
(O) derived from the frequency distribution of the actually sampled average numbers of
species in log2-classes of numbers of individuals.

Figure 1d shows what happens if we let the number of primary patch-species per
patch increase from 1 (curve 3) to 3 (curve 4). The single sample rank abundance curve
becomes less concave and approaches the shape of the curve for Poisson-distributed
species (curve 5). Clustering results in a lower number of species: 23 (curve 3) vs. 27
(curve 5).

Species-individual (S-N) curve and species-area curve
Figures 2a and 2b confirm (see Neuteboom & Struik, 2005a) that for Poisson-distrib-
uted species the expected number of singleton species (E(S(1))) calculated from the
fitted rank abundance curve (via the single-sample curve) for consecutive values of N, is
the slope of the S-N curve. The points marked with a large dot in Figure 2a present the
mean numbers of species plotted against the mean numbers of individuals (N) sampled
in each of the 8 nested sampling quadrats (quadrats Q1, Q2,….Q8; quadrat sizes 1, 2, 4,
8, 16, 32, 64 and 128 dm2, respectively); curve 1 shows the theoretical numbers of
species calculated from the ‘given’ rank abundance curve for consecutive values of N.
The points marked with a large dot in Figure 2b are the slope values calculated as
tangent at the consecutive curve positions Q2, Q3, …., Q7 in Figure 2a. They fully coin-
cide with the curve for E(S(1)) calculated from the rank abundance curve. The calcula-
tion of the slope as tangent is explained in the caption of Figure 2. E(S(1,∞)) in Figure
2b is the theoretical slope of the S-N curve for an infinitely large sample. 

Figures 3a, 3c, 3b and 3d show the consequences of clustering for the shape and the
slope of the species accumulation curve. The simulation conditions are the same as
those in Figure 1. However, the patches are smaller. The area per patch after re-calcula-
tion for secondary patch-species is 5.61 dm2. Like in Figure 2, the data of the complete
set of 8 nested sampling quadrats are used. The species accumulation curve is present-
ed now as a species-area curve.

The curves in Figure 3a (note that the slope values were calculated as tangent in
Figure 3b) are for Poisson-distributed species (curve 1) and for species in patches with 1
(curve 2), 3 (curve 3) and 9 primary patch-species per patch (curve 4). All remaining
species (except 10% of the individuals of S1) are randomly distributed as inclusions
(secondary patch-species) in the patches. In Figure 3c (note that the slope values were
calculated as tangent in Figure 3d) the curves are for Poisson-distributed species (curve
1) and for species in patches with 1 primary patch-species and 98 (curve 2), 10 (curve 3),
3 (curve 4) and 1 (curve 5) secondary patch-species per patch. Curves 2, 3, 4 and 5 in
Figure 5c may be seen as approaching realistic mixtures with all species occurring in
smaller (the low abundant and rare secondary patch-species) or larger clusters of indi-
viduals (primary patch-species).

Figures 3a, 3b, 3c and 3d confirm the earlier statement made (Neuteboom & Struik,
2005b) that clustering can result in a species-accumulation curve (S-N curve or species-
area curve) that starting with a smaller slope can temporarily be steeper compared with
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the curve expected for Poisson-distributed species. So extrapolating species-area curves
for calculating numbers of species for larger samples can be misleading (curve 2’ in
Figure 3c). Figures 3b and 3d show that with clustering, the slope of the curve can even
temporarily exceed the value of E(S(1,∞)), the theoretical value of the slope for an infi-
nitely large sample. According to the negative-binomial rank abundance curve-fit model
(Neuteboom & Struik, 2005a) all curves in Figures 3a and 3c will finally end with a
value for the slope equal to E(S(1,∞)). In case the low abundant and rare species
(secondary patch-species) are approximately Poisson-distributed (Figure 3a), the curve
for clustering will ultimately merge with the theoretical curve for Poisson-distributed
species.

The sigmoid rank abundance curve

Figure 4 shows what happens if the number of primary patch-species and the number
of secondary patch-species are both reduced to one species per patch. The conditions
with regard to plant density, plant size, patch size, κ and µ values of the ‘given’ rank
abundance curve, and the total number of available primary patch-species (9 species,

The effect of clustering on the log-normal rank abundance curve
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Figure 2. (a) S-N curves theoretically calculated with expected numbers of species E(S) for consecutive

sample sizes in terms of total numbers of individuals N (curve 1 and marker •) and, numbers of species (S)

observed (�) versus total numbers of individuals N, obtained from sampling with 8 nested sampling

quadrats: Q1(1 dm2), Q2 (2 dm2), Q3 (4 dm2), Q4 (8 dm2), Q5 (16 dm2), Q6 (32 dm2), Q7 (64 dm2) and Q8

(128 dm2). (b) Slope values theoretically calculated as expected numbers of singleton species E(S(1)) for

curve 1 and slope values calculated as tangent at consecutive positions along the suggested curve through

data from observation. The slope values as tangent were calculated from (SQ3 – SQ1)/ (ln NQ3 – ln NQ1),

(SQ4 – SQ2) / (ln NQ4 – ln NQ2), etc. E(S(1,∞)) in (b) is the theoretically expected number of singleton species

in an infinitely large sample, calculated from Equation 3 (see text). 

E (S (1,∞))
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Figure 3. Effect of clustering on the species-area curve. Parameters and sampling conditions as in Figure 1,

but the patches are smaller, i.e., after re-calculation for secondary patch-species, 5.61 dm2. Like in Figure 2,

the data of the complete set of 8 nested sampling quadrats are used. (a) All species with Poisson-distrib-

uted individuals (curve 1) and species in patches with 1 (curve 2), 3 (curve 3) and 9 primary patch-species

per patch (curve 4). All remaining species (except 10% of the individuals of S1) are randomly distributed as

inclusions (secondary patch-species) in the patches. (b) Slope values of the curves in (a) calculated as

tangent. (c) Poisson-distributed species (all species, curve 1) and species in patches with 1 primary patch-

species and 98 (curve 2), 10 (curve 3), 3 (curve 4) and 1 (curve 5) secondary patch-species per patch. (d)

Slope values of the curves in (c) calculated as tangent.

E (S (1,∞))

E (S (1,∞))



species S2, S3,….., S10) are the same as in Figure 1. The points marked � in Figure 4a
are the species individual numbers obtained from sampling. The same points � in
Figure 4b are the numbers of individuals per species after first sorting the species in
sequence of abundance, i.e., the standard procedure in making a rank abundance curve.
The result is a sigmoid rank abundance curve. The enforced downward curvature in the
tail of the curve is caused by the fact that due to strong clustering, part of the low abun-
dant and rare species in the system are strongly underestimated or totally lacking in the
samples. The resulting curve after sorting the species in sequence of abundance is,
fitted with Wilson’s log-normal curve fit model (Wilson, 1991), a perfect log-normal
rank abundance curve with (given the S and given the abundance proportions from
sampling) a standard deviation σ = 2.82.

Figure 5 presents a second example of a sigmoid rank abundance curve resulting
from first sorting the species in sequence of abundance when the rare species in the tail
of the curve show strong clustering. The ‘given’ rank abundance curve is calculated
from the negative-binomial curve-fit model for κ = 0.3, µ = 3 and c = 1. However, now
all (162) species present in the system, except all individuals of species S1, act as
primary patch-species while the number of primary patch-species per patch of 28.26
dm2 (patch radius = 3 dm) is 1, i.e., now all species are present in large clusters. This in
fact also applies to species S1 since species force clustering upon each other.

Sampling was again executed with the largest of the set of 8 nested sampling
quadrats (quadrat area = 128 dm2). Given a plant density of 3 plants dm–2, the average
number of plants per quadrat was 384. Taken were 1000 samples. The total numbers of
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Figure 4. Output from artificial sampling, sampling quadrat 8. Sampling and system parameters as in

Figure 1, but primary as well as secondary patch-species reduced to one species per patch. The points

marked ‘�’ in (a) are the species individual numbers obtained directly from sampling. The same points in

(b) are the numbers of individuals per species after first sorting the species in sequence of abundance,

standard procedure in making a rank abundance curve. Curve 1 in (a) and (b) is the rank abundance curve

‘given’ to the sampling programme. Curve 2 in (b), fitted with Wilson’s log-normal rank abundance curve-

fit model, is a perfect log-normal rank abundance curve (Wilson, 1991).



individuals per species are plotted as usual on log-scale against species sequence. The
species abundances in Figures 5a (Poisson-distributed species) and 5b (all species except
S1 in equally sized patches) are the abundances directly from sampling, those plotted in
Figures 5c (Poisson-distributed species) and 5d (species in patches) are the abundances
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Figure 5. Output from artificial sampling (sampling quadrat 8) for point-sized plants and a plant density of

3 plants dm–2. The given species abundances in the sampled community are calculated from the negative-

binomial rank abundance curve-fit model using κ = 0.3, µ = 3 and c = 1. Different from Figure 4 now all

species present in the sampled community exclusive of the total species S1 (Poisson-distributed in the

space outside patches), act as primary patch-species. The radius per patch is 3 dm (patch area = 28.27 dm2).

The simulated case is for 1 primary patch-species per patch, which means that all species (except species

S1) occur in large patches. (a) and (c) Species with Poisson-distributed individuals; (b) and (d) Species in

patches. The points marked � in (a) and (b) are the species individual numbers direct from sampling. The

same points in (c) and (d) are the numbers of individuals per species after first sorting the species in

sequence of abundance. Curve 1 in (a), (b), (c) and (d) represents the rank abundance curve of the commu-

nity ‘given’ to the sampling programme. Curve 2 in (d) is fitted with Wilson’s log-normal rank abundance

curve-fit model (Wilson, 1991), a perfect log-normal rank abundance curve.



after first sorting the species in sequence of abundance. Curve 1 in Figures 5a, 5b, 5c
and 5d represents the ‘given’ rank abundance curve as calculated from the negative-
binomial curve-fit model (E(S(1,∞)) = 10.6). Curve 2 in Figure 5d, fitted with Wilson’s
log-normal curve-fit model (Wilson, 1991), is an almost perfect log-normal curve with
(given the S and given the abundance proportions from sampling) a standard deviation
of 2.65.

Figures 4b and 5d show that the strong clustering in all species especially had an
effect in the tail of the rank abundance curve. The reason that clustering hardly affected
the upper part of the curve can be explained from the fact that for the dominant and
common species it does not matter so much whether one cluster more or one cluster
less is caught in the samples. On the other hand, one cluster more or one cluster less
can have a strong effect on the low abundant and rare species because this can lead to a
strong under- or overestimation and even to a total absence from sampling.

Discussion

The output from in silico sampling confirms that the ‘total’ and ‘average’ rank abun-
dance curves are in principle independent of clustering but that clustering has a strong
effect on the ‘single sample’ rank abundance (Figure 1). The single sample rank abun-
dance curve is the curve from which the number of species is calculated for plotting in
an S-N curve or species-area curve, which means that also these two curves are strongly
affected by clustering. The output confirms that clustering results in a species-accumu-
lation curve (S-N curve or species-area curve) that starts with a smaller slope, but which
can temporarily be steeper than the curve expected for Poisson-distributed species
(Figures 3a, 3b, 3c and 3d). The temporarily steeper slope is due to an effect of catching
up caused by the fact that the effect of clustering gradually decreases with increasing
sample size. The sampling programme appears to confirm the conclusion (Neuteboom
& Struik, 2005b) that clustering can make the slope of the S-N curve and species-area
curve unsuitable for site characterization and for use as species-diversity index.

The output from sampling also clearly shows that the sigmoid rank abundance
curve can be an artefact of the standard procedure of first sorting the species in
sequence of abundance in combination with clustering in the low-abundant and rare
species. The actual curve for clustered species without sorting (Figures 4a and 5b) is a
concave rank abundance curve. The curve after first sorting the species can even be a
perfect log-normal curve (Figures 4b and 5d). This is something totally different from
the frequently cited view (e.g. May, 1975; Magurran, 1988) that the log-normal pattern
of species abundance distribution arises as the response to the statistical properties of
large numbers and as a consequence of the central limit theorem. The central limit
theorem states that when a large number of factors act to determine the value of a vari-
able, random variation in those factors will result in that variable being normally
distributed. In case of a log-normal pattern of species abundance distribution, the vari-
able and the determining factors are conceived as the number of individuals per species
and all the processes that govern the community, respectively.

The log-normal distribution was first applied to abundance data by Preston (1948).
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Preston also presented the canonical log-normal (Preston, 1962a, b) that later was given
an ecological explanation in Sugihara’s sequential breakage model (Sugihara, 1980).
The canonical log-normal is seen as a special form in which the mode of the individuals
curve coincides with the abundance of the most abundant species. The canonical log-
normal has a standard deviation that is constrained between narrow limits. Sugihara’s
model is one of the resource-partitioning models used for explaining patterns of species
abundance distribution. The idea behind these models is that the species abundances
are a reflection of niches in the sampled community.

A log-normal rank abundance curve is often associated with communities in equi-
librium with competitive species interactions (May, 1975a, b; Sugihara, 1980; Gray,
1987). The log-normal model could be used in this respect in combination with other
rank abundance models for monitoring disturbance (Hill et al., 1995; see for an exten-
sive discussion on the subject Basset et al., 1998). However, the deceiving effect of the
standard procedure of first sorting the species in sequence of abundance seems to
invalidate the log-normal as a useful descriptor of the pattern of species abundance
distribution in a community. Lambshead & Platt (1985) stated that the log-normal is
never found in genuine ecological samples. They argue that data sets fitting the log-
normal are not true samples but collections or amalgamations of non-replicate samples.
Our results from artificial sampling might support their view because samples from
totally different origins put together in one large sample more or less behave as repli-
cate samples from a community with strong clustering. Sigmoid rank abundance curves
are occasionally fitted with the broken stick model of MacArthur (1957). For the same
reasons as given above, that model too could be deceiving as descriptor of the species
abundances in a community.

The shape of the species-area relation predicted from artificial sampling and the
factors determining it clearly indicate that the most common models used to fit species-
area curves, i.e., Gleason’s exponential model (Gleason, 1922) and Arrhenius’ power
function model (Arrhenius, 1921) can only yield a rough fit. Gleason’s exponential
model fits the approximately linear part of the species-area curve for large samples as a
straight line using S = ε log A + δ. Arrhenius’ power function model fits the entire
curve as a straight line, using log S = ρ log A + log τ. According to Preston (1960;
1962a, b) and May (1975a), the power function for the species-area relation can be
mathematically derived from the log-normal pattern of species abundance distribution.
But as stated before, that pattern probably does not exist. That in turn would imply that
the power function model would lose its justification in the log-normal.

Figure 6 illustrates that an alternative explanation of the better fit of a log S-log area
equation could be an in origin S-log area relation for Poisson-distributed species that is
changed by clustering. The species-area curves presented are the same as in Figure 3c.
The power function model transforms the exponential part of an S-log area curve into a
linear curve. That part is stretched out over the horizontal axis by clustering. The result
is that particularly curve 5 with the strongest clustering has changed into an almost
linear curve (Figure 6, curve 5’).

In vegetation science, species-area curves are usually constructed on the basis of
presence recordings of species in sampling quadrats. The mere touching of the
quadrat’s edge is usually enough for a species to be recorded as present. In that case



also plant size (plant area) is a determining factor in the shape of the curve, at least in
the range of small samples. Moreover, a limited (maximum) number of species (Smax)
present in the sampled system will cause a levelling off at the end of the curve
(Neuteboom & Struik, 2005b). Plant size and Smax are not the issues in this paper.
Nevertheless we have briefly summarized their effects with a further analysis from arti-
ficial sampling for the case of Poisson-distributed species (Figure 7). A larger plant size
(plant radius) does not change the rank abundance curve (not shown in a graphical
presentation). Nor does it alter the shape of the S-N curve (Figure 7a). But it changes
the shape of the species-area curve by giving a higher number of species in the range of
small samples (Figure 7b). In conclusion, in principle at least the following factors
seem to determine the shape of the species-area curve: (1) the pattern of species abun-
dance distribution, (2) clustering of individuals within species, (3) plant size, and (4) the
number of species present in the sampled system. These factors can be included in a
formal equation for the species-area curve (J.H. Neuteboom & P.C. Struik, unpublished
data).

Remains the question what could be done with the information from sigmoid rank
abundance curves. One possibly could make use of the suggestion from Figures 4b and
5d that the first part of the sigmoid curve with the dominant and common species is
hardly affected by clustering. That suggests that in principle for that part of the curve an
E(S(1,∞)) can be calculated, using the negative-binomial rank abundance curve fit model
(Neuteboom & Struik, 2005a).

We are investigating an extension of the negative-binomial rank abundance curve fit
model that separates the basic concave curve component with the E(S(1,∞)) from the
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Figure 6. The same species-area curves from artificial sampling as in Figure 3c. But now with both S and

area plotted on log-scale. Curve 5 is now approximately a straight line (curve 5’). For further explanation see

text. 



sigmoid rank abundance curve. One option is to extend the curve fit model by adding
a term T to Equation 1: pR = [f(R–1) – T] / c in which T = R (1 – e–t). Application of the
extended model to sampling data can work reasonably well as is demonstrated in
Figure 8. Fitted are the same data as used for the log-normal curve in Figure 5d. Curve
1 of Figure 8 is the rank abundance curve ‘given’ to the sampling programme. Curve 2
is the complete curve fitted by the extended model; curve 3 is the curve stripped of the
(fitted) effect of t. The functioning of t is further illustrated in curve 4 that shows the
increase of the component T/c with species sequence.

Fitted values for κ, µ and c (Figure 8) were 0.328, 3.126 and 1.027074, respectively.
Values fitted for t are always very low; in this case t = 0.0000005385. For v of the
stripped curve (curve 3) calculated from µ / (κ + µ) and needed in Equation 3, a value
was calculated of 0.905038. The value ultimately calculated for E(S(1,∞)) (Equation 3)
was 10.03, which was close to the value E(S(1,∞)) = 10.492) calculated from the κ and
µ given to the sampling programme.

We have further tested the extended model using species abundance data from the
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Figure 7. (a) Species-individual curves (S-N curves) and (b) Species-area curves with numbers of species (S)

from a sampling with 8 nested sampling quadrats: Q1 = 1 dm2, Q2 = 2 dm2, Q3 = 4 dm2, Q4 = 8 dm2, Q5 =

16 dm2, Q6 = 32 dm2, Q7 = 64 dm2 and Q8 = 128 dm2. Poisson-distributed species with in both (a) and (b)

two cases: 1 (�), all species in the sampled community with a plant radius of 0.0001 cm, and 2 (�) all

species in the sampled community with a plant radius of 3 cm. Curve 1 in (a) is the theoretical S-N curve

and curve 1 in (b) the theoretical species-area curve with E(S)-values calculated from the rank abundance

curve given to the sampled community, using κ = 0.5, µ = 3 and c = 1. For the plant radius of 3 cm in (b)

two points are added for S sampled in smaller quadrats (0.25 and 0.5 dm2); these points were obtained by

changing a scaling parameter in the programme. Curve 2 marked ‘�’ in (b) is the curve expected for a

maximum number of species (Smax) present in the sampled community; Smax = 50. 



literature with clear indications of a sigmoid rank abundance curve. The extended
model appeared in all cases to fit the data better than the log-normal or the broken stick
model (not shown because it can easily be checked). However, a problem could be that
in principle the effects of κ, µ and t, and thus the effects of E(S(1,∞)) and t are
confounded. Whether this really causes a problem with the interpretation of E(S(1,∞))
as species-diversity index needs further investigation. The extended model could at least
provide a way to test whether there really is a significant downward curvature in the tail
of the rank abundance curve.

Overview and concluding remarks

Our series of three papers on rank abundance, species-individual and species-area rela-
tions (Neuteboom & Struik, 2005a, b and the current paper) can be briefly summarized
as follows.

The negative-binomial rank abundance curve-fit model presented by Neuteboom &
Struik (2005a) fits linear to deeply concave rank abundance curves and expresses
species diversity in one index, the E(S(1,∞)), defined as the number of singleton species
in an infinitely large sample. The rank abundance curve is in our approach the usual
curve made by totalizing per species the numbers of individuals in a series of replicate
samples. The curve fit is on proportions. The species abundance proportions from
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Figure 8. The same data from artificial sampling as in Figure 5d, but fitted now with an extension of the

negative-binomial rank abundance curve-fit model. The fitted species abundance proportions in Equation 1

(see text) are not calculated from pR = [f(n)R–1)] / c but from pR = [f(n)R–1) – T] / c where T = R (1 – e–t). Curve

1 is the rank abundance curve ‘given’ to the sampling programme. Curve 2 is the complete rank abun-

dance curve fitted by the extended negative-binomial rank abundance curve-fit model. Curve 3 is the curve

stripped of the (fitted) effect of t. The functioning of t is illustrated in curve 4 that shows the increase of

the component T/c with species sequence.



curve fit are re-converted into numbers of individuals by multiplying them by the total
number of individuals in the totalized replicate samples, or by the average number of
individuals (totalized for all species) per replicate sample. The resulting curves are the
‘total’ rank abundance curve and the ‘average’ rank abundance curve, respectively. Both
are curves with species individual numbers on a continuous scale and in principle inde-
pendent of clustering.

The advantage of the new model over the log-series model is that it can fit a much
broader range of concave rank abundance curves. Moreover, its species-diversity index
[the E(S(1,∞)] can also be calculated for cases in which the abundances of the species
are available only in terms of proportions. The new model links the geometric series
and log-series model and is more flexible than any of the existing curve-fit models for
linear or concave rank abundance curves.

New in Neuteboom & Struik (2005b) are the analysis of the variation in rank abun-
dance replicate samples and the calculation of the ‘single-sample’ rank abundance curve
with discrete species individual numbers as the link between the ‘average’ rank abun-
dance curve and the S-N curve or species-area curve. The ‘single-sample’ rank abun-
dance curve is calculated from the ‘average rank’ abundance curve, using the negative-
binomial distribution for quantifying the amount of variation in species individual
numbers in replicate samples. That variation can be expressed in one common nega-
tive-binomial k for all species. The single-sample rank abundance curve yields the
number of species from curve fit for plotting in an S-N curve or species-area curve. All
three, the single-sample rank abundance curve, the S-N curve and the species-area
curve are strongly affected by clustering. Neuteboom & Struik (2005b) clearly showed
(1) that the slope of the S-N and species-area curves calculated as tangent is not constant
and therefore unsuitable as species-diversity index and site discriminant, and (2) that
extrapolating S-N curves or species-area curves can be misleading.

In the current paper, the conclusions with regard to the S-N and species-area curves
are confirmed by means of a computer programme for in silico sampling. This paper
also shows the deceiving effect of the procedure of first sorting the species in sequence
of abundance, standard in making a rank abundance curve. Until now this effect has
been overlooked but it makes clear that giving ecological explanations to the shape of
the rank abundance curve without information on the amount of clustering in the
sampled community is premature.

The extended negative-binomial rank abundance curve-fit model reduces all types of
rank abundance relations (inclusive the log-normal and broken stick) to a linear to
concave curve and could therefore be seen as a first step towards a universal rank abun-
dance curve-fit model. Such a universally applicable model could be a useful tool in the
context of macro-ecology, the new discipline aiming at explaining patterns of species
diversity on different scales varying from the level of a single community to the level of
landscapes and higher (see Nee, 2002). Our paper demonstrates the benefit of a
computer-sampling programme for the analysis of theoretical questions with regard to
rank abundance and species-area curves.
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Appendix 1

Glossary of terms, parameters and symbols relevant to this paper. See also
appendices of Neuteboom & Struik (2005a, b)

Primary patch-species  Species used to calculate patch density (dpatch).
Secondary patch-species Species allotted as inclusions to patches; on the basis of the 

abundance proportions of secondary patch-species the area
per patch is re-calculated.

apatch1 Area per patch calculated for primary patch-species.
apatch2 Re-calculated area per patch for the total of primary and secondary

patch-species.
cpatch Relative cover by patches.
dpatch Patch density.
nppp Number of plants per patch.
nprim Number of plants of primary patch-species per patch.
nsec Number of plants of secondary patch-species per patch.
PAI Patch Area Index.
Rpatch Patch radius.
Sn Species rank when assigned as primary patch-species.
Smax Maximum number of species present in the sampled system.
T Term in the extended negative-binomial rank abundance curve-fit

curve model.
t Element of T.
x and y Patch co-ordinates in in silico sampling programme.

δ, ε Coefficients in Gleason’s equation for the species-area curve.
ρ Coefficient in Arrhenius’ equation for the species-area curve.
σ Standard deviation.
τ Coefficient in Arrhenius’ equation for the species-area curve.
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