Migration, Intensification, and Diversification as Adaptive Strategies
Article Full Text (PDF)

Supplementary Files

Supplementary Material A
Supplementary Material B

Keywords

agent-based modelling
migration
intensification

Abstract

Agent-based modeling (ABM) has transformed the century-old field of mechanistic migration modeling, by shifting the unit of analysis from the city (in the gravity model) to the individual decision maker. Various efforts over the past decade have leveraged ABM tools to integrate competing labor opportunities, climatic shocks, and sharing across networks into decision-based models of migration patterns. We present the MIDAS (Migration, Intensification, and Diversification as Adaptive Strategies) framework, which draws on the ‘push-pull-mooring’ (PPM) theory of migration to integrate the influences of social networks, climatic shifts, and opportunities for livelihoods diversification on migration in a single framework. We demonstrate some of the strategic responses to opportunities that are possible in a true PPM modeling framework, including substitution of income streams, the choice to specialize or diversify, as well as to migrate in response to shocks. We observe what may be the emergence of a distinct class of agents within one of our experiments, highlighting the value of tools like MIDAS to capture migration and adaptive behaviors under conditions for which analogs do not yet exist in census datasets or otherwise. Importantly, we show how adaptation decisions depend strongly on a small number of behavioral parameters, key among them preferences for risk, for different forms of utility, and for time.

https://doi.org/10.18174/sesmo.2019a16102
Article Full Text (PDF)

References

Adams, H., & Adger, W. N. (2013). The contribution of ecosystem services to place utility as a determinant of migration decision-making. Environmental Research Letters, 8(1), 15006. http://doi.org/10.1088/1748-9326/8/1/015006

Adger, W. N., Arnell, N. W., Black, R., Dercon, S., Geddes, A., & Thomas, D. S. G. (2015). Focus on environmental risks and migration: causes and consequences. Environmental Research Letters, 10(6), 60201. http://doi.org/10.1088/1748-9326/10/6/060201

Adger, W. N., Dessai, S., Goulden, M., Hulme, M., Lorenzoni, I., Nelson, D. R., Naess, L. O., Wolf, J., & Wreford, A. (2009). Are there social limits to adaptation to climate change ? Climatic Change, 93, 335–354. http://doi.org/10.1007/s10584-008-9520-z

Agrawal, A., Brown, D. G., Rao, G., Riolo, R., Robinson, D. T., & Bommarito, M. (2013). Interactions between organizations and networks in common-pool resource governance. Environmental Science and Policy, 25, 138–146. http://doi.org/10.1016/j.envsci.2012.08.004

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211. http://doi.org/10.1016/0749-5978(91)90020-T

Anderson, J. E. (2010). The Gravity Model (NBER Working Paper Series No. 16576). Cambridge, MA. Retrieved from: http://www.nber.org/papers/w16576.pdf

Barnett, J., & Webber, M. (2010). Accommodating Migration to Promote Adaptation to Climate Change (Policy Research Working Paper No. 5270). Washington, DC. Retrieved from http://ipcc-wg2.gov/njlite_download2.php?id=9888

Barrett, C. B., Reardon, T., & Webb, P. (2001). Nonfarm income diversification and household livelihood strategies in rural Africa: Concepts, dynamics, and policy implications. Food Policy, 26(4), 315–331. http://doi.org/10.1016/S0306-9192(01)00014-8

Bell, A. (2016). MIDAS (Migration, Intensification, and Diversification as Adaptive Strategies). http://doi.org/10.5281/zenodo.154738

Bell, A. R. (2017). Informing decisions in agent-based models: A mobile update. Environmental Modelling and Software, 93, 310–321. http://doi.org/10.1016/j.envsoft.2017.03.028

Bell, A. R., Robinson, D. T., Malik, A., & Dewal, S. (2015). Modular ABM development for improved dissemination and training. Environmental Modelling & Software, 73, 189–200. http://doi.org/10.1016/j.envsoft.2015.07.016

Bell, A., Ward, P., Killilea, M., & Tamal, M. E. H. (2016). Real-time social data collection in rural Bangladesh via a “microtasks for micropayments” platform on Android smartphones. PLoS ONE, 11(11), e0165924. http://doi.org/10.1371/journal.pone.0165924

Bert, F. E., Podestá, G. P., Rovere, S. L., Menéndez, Á. N., North, M., Tatara, E., Laciana, C. E., Weber, E. & Toranzo, F. R. (2011). An agent based model to simulate structural and land use changes in agricultural systems of the argentine pampas. Ecological Modelling, 222(19), 3486–3499.

Blumenstock, J., Cadamuro, G., & On, R. (2015). Predicting poverty and wealth from mobile phone metadata. Science, 350(6264), 1073–1076. http://doi.org/10.1126/science.aac4420

Blumenstock, J., Eagle, N., & Fafchamps, M. (2016). Airtime transfers and mobile communications: evidence in the aftermath of natural disasters. Journal of Development Economics, 120, 157–181. http://doi.org/10.1016/j.jdeveco.2016.01.003

Bogue, D. J. (1969). Principles of demography. Wiley. Retrieved from https://books.google.com/books?id=QRszAAAAMAAJ

Bollig, M. (2016). Adaptive cycles in the savannah: pastoral specialization and diversification in northern Kenya. Journal of Eastern African Studies, 10(1), 21–44. http://doi.org/10.1080/17531055.2016.1141568

Borjas, J. (1987). Self-Selection and the Earnings of Immigrants. American Economic Review, 77(4), 531–553.

Cannon, T. (2013). Rural livelihood diversification and adaptation to climate change Terry. In J. Ensor, R. Berger, & S. Huq (Eds.), Community Based Adaptation to Climate Change: emerging lessons (pp. 55–75). Practical Action Publishing.

Dave, C., Eckel, C., Johnson, C., & Rojas, C. (2010). Eliciting Risk Preferences: When is Simple Better ? Journal of Risk and Uncertainty, 41(3), 219–243.

Enenkel, M., See, L., Karner, M., Álvarez, M., Rogenhofer, E., Baraldès-Vallverdú, C., Lanusse, C., & Salse, N. (2015). Food security monitoring via mobile data collection and remote sensing: Results from the Central African Republic. PLoS ONE, 10(11), e0142030. http://doi.org/10.1371/journal.pone.0142030

Espindola, A., Silveira, J., & Penna, T. (2006). A Harris-Todaro Agent-Based Model to Rural-Urban Migration. Brazilian Journal of Physics, 36(3A), 603–609. http://dx.doi.org/10.1590/S0103-97332006000500002.

Feder, G. (1980). Farm Size, Risk Aversion and the Adoption of New Technology under Uncertainty. Oxford Economics Papers, 32(2), 263–283.

Filho, H. S. B. (2011). Migration and Social Networks - An Explanatory Multi-evolutionary Agent-Based Model.

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H., Weiner, J., Wiegand, T., & DeAngelis, D. L. (2005). Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science, 310(5750), 987–991. http://doi.org/10.1126/science.1116681

Grossman, G., Humphreys, M., & Sacramone-Lutz, G. (2014). “I wld like u WMP to extend electricity 2 our village”: On Information Technology and Interest Articulation. American Political Science Review, 108(3), 688–705. http://doi.org/10.1017/S0003055414000331

Hare, M., & Deadman, P. (2004). Further Towards a Taxonomy of Agent-Based Simulation Models in Environmental Management. Mathematics and Computers in Simulation, 64, 25–40. https://doi.org/10.1016/S0378-4754(03)00118-6

Hassani-Mahmooei, B., & Parris, B. W. (2012). Climate change and internal migration patterns in Bangladesh: An agent-based model. Environment and Development Economics, 17, 763–780. http://doi.org/10.1017/S1355770X12000290

Hong, G. 2015. Examining the role of amenities in migration decisions: A structural estimation approach. Papers in Regional Science, 95(4).

Hussein, K., & Nelson, J. (1998). Sustainable Livelihoods and Livelihood Diversification. IDS Working Paper (Vol. 69). Retrieved from http://opc-prd.ubib.eur.nl:8080/DB=3/LNG=EN/PPN?PPN=236411659/

INEGI (2017). Encuesta Nacional de Ocupación y Empleo (ENOE), población de 15 años y más de edad. Retrieved from http://www.beta.inegi.org.mx/proyectos/enchogares/regulares/enoe/

ITU (2016). Key ICT indicators for developed and developing countries and the world (totals and penetration rates). Retrieved from https://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2016/ITU_Key_2005-2016_ICT_data.xls

Janssen, M. A., & Ostrom, E. (2006). Empirically Based, Agent-based models. Ecology and Society, 11(2), 37.

Kahneman, D. (2003). Maps of Bounded Rationality: Psychology for Behavioral Economics. The American Economic Review, 93(5), 1449–1475.

Kennan, J., & Walker, J. (2011). The effect of expected income on individual migration decisions. Econometrica, 79(1), 211–251. http://doi.org/10.3982/ECTA4657

Klabunde, A., & Willekens, F. (2016). Decision-Making in Agent-Based Models of Migration : State of the Art and Challenges. European Journal of Population, 32(1), 73–97. http://doi.org/10.1007/s10680-015-9362-0

Kniveton, D. R., Smith, C. D., & Black, R. (2012). Emerging migration flows in a changing climate in dryland Africa. Nature Climate Change, 2(6), 444–447. http://doi.org/10.1038/nclimate1447

Kniveton, D., Smith, C., & Wood, S. (2011). Agent-based model simulations of future changes in migration flows for Burkina Faso. Global Environmental Change, 21, S34–S40. http://doi.org/10.1016/j.gloenvcha.2011.09.006

Kuipers, E. (2014). The differentiated impact of agricultural transformations on livelihood strategies.

Lu, X., Wrathall, D. J., Sundsøy, P. R., Nadiruzzaman, M., Wetter, E., Iqbal, A., Qureshi, T., Tatem, A., Canright, G., Engø-Monsen, K., & Bengtsson, L. (2016). Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh. Global Environmental Change, 38, 1–7. http://doi.org/10.1016/j.gloenvcha.2016.02.002

Magliocca, N. R., Brown, D. G., & Ellis, E. C. (2013). Exploring agricultural livelihood transitions with an agent-based virtual laboratory: global forces to local decision-making. PloS One, 8(9), e73241. http://doi.org/10.1371/journal.pone.0073241

Mastrorillo, M., Licker, R., Bohra-Mishra, P., Fagiolo, G., D. Estes, L., & Oppenheimer, M. (2016). The influence of climate variability on internal migration flows in South Africa. Global Environmental Change, 39(July), 155–169. http://doi.org/10.1016/j.gloenvcha.2016.04.014

Moon, B. (1995). Paradigms in migration research: exploring “moorings” as a schema. Progress in Human Geography, 19(4), 504–524. http://doi.org/10.1177/030913259501900404

Mueller, V., Gray, C., & Kosec, K. (2014). Heat Stress Increases Long-term Human Migration in Rural Pakistan. Nature Climate Change, 4(3), 182–185. http://doi.org/10.1038/nclimate2103

Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, H., Schwarz, N. (2013). Describing human decisions in agent-based models - ODD+D, an extension of the ODD protocol. Environmental Modelling and Software, 48, 37–48. http://doi.org/10.1016/j.envsoft.2013.06.003

Munshi, K. (2003). Networks in the Modern Economy : Mexican Migrants in the U.S. Labor Market. The Quarterly Journal of Economics, 118(2), 549–599.

Munshi, K., & Rosenzweig, M. (2016). Networks and Misallocation : Insurance, Migration, and the Rural-Urban Wage Gap. American Economic Review, 106(1), 46–98.

Naivinit, W., Le Page, C., Trébuil, G., & Gajaseni, N. (2010). Participatory agent-based modeling and simulation of rice production and labor migrations in Northeast Thailand. Environmental Modelling and Software, 25(11), 1345–1358. http://doi.org/10.1016/j.envsoft.2010.01.012

Nawrotzki, R. J., Riosmena, F., Hunter, L. M., & Runfola, D. M. (2015). Amplification or suppression: Social networks and the climate change-migration association in rural Mexico. Global Environmental Change, 35, 463–474. http://doi.org/10.1016/j.gloenvcha.2015.09.002

Ravenstein, E. (1885). The Laws of Migration. Journal of the Statistical Society of London, 48(2), 167–235.

Roy, A. (1951). Some Thoughts on the Distribution of Earnings. Oxford Economics Papers, 3(2), 135–146.

Rubinstein, A. (1998). Modeling Bounded Rationality. MIT University Press, Cambridge, MA.

Scheffran, J., Marmer, E., & Sow, P. (2012). Migration as a contribution to resilience and innovation in climate adaptation: Social networks and co-development in Northwest Africa. Applied Geography, 33(1), 119–127. http://doi.org/10.1016/j.apgeog.2011.10.002

Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M. A., Mcallister, R. R. J., Müller, B., Orach, K., Schwarz, N. & Wijermans, N. (2017). A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecological Economics, 131, 21–35.

Smith, C. D. (2014). Modelling migration futures: development and testing of the Rainfalls Agent-Based Migration Model – Tanzania. Climate and Development, 6(1), 77–91. http://doi.org/10.1080/17565529.2013.872593

Sociedad Hipotecaria Federal (2018). SHF - Sociedad Hipotecaria Federal, S.N.C. Institucion de Banca de Desarrollo. Retrieved August 14, 2018, from https://www.shf.gob.mx/avaluos/extranet

Steele, J. E., Sundsøy, P. R., Pezzulo, C., Alegana, V. A., Bird, T. J., Blumenstock, J., Bjelland, J., Engø-Monsen, K., de Montjoye, Y.-A., Iqbal, A.M., Hadiuzzaman, K.N., Lu, X., Wetter, E., Tatem, A.J., & Bengtsson, L. (2017). Mapping poverty using mobile phone and satellite data. Journal of The Royal Society Interface, 14(127), 20160690. http://doi.org/10.1098/rsif.2016.0690

Stimson, R. J., & McCrea, R. (2004). A push-pull framework for modelling the relocation of retirees to a retirement village: The Australian experience. Environment and Planning A, 36(8), 1451–1470.

Sun, Y., Liu, D., Chen, S., Wu, X., & Shen, X. (2017). Understanding users’ switching behavior of mobile instant messaging applications : An empirical study from the perspective of push-pull- mooring framework. Computers in Human Behavior, 75, 727–738. http://doi.org/10.1016/j.chb.2017.06.014

Tacoli, C. (2009). Crisis or adaptation? Migration and climate change in a context of high mobility. Environment and Urbanization, 21(2), 513–525. http://doi.org/10.1177/0956247809342182

Trulia (2018) All United States Real Estate Guides by State. Retrieved August 14, 2018, from https://www.trulia.com/home_prices/

Tsai, Y., Zia, A., Koliba, C., Bucini, G., Guilbert, J., & Beckage, B. (2015). An interactive land use transition agent-based model (ILUTABM): Endogenizing human-environment interactions in the Western Missisquoi Watershed. Land Use Policy, 49, 161–176. http://doi.org/10.1016/j.landusepol.2015.07.008

US Bureau of Labor Statistics (2017). Quarterly Census of Employment and Wages. Retrieved from https://www.bls.gov/cew/

U.S. Embassy & Consulates in Mexico (2018). Visas | U.S. Embassy & Consulates in Mexico. Retrieved August 14, 2018, from https://mx.usembassy.gov/visas/.

Van der Windt, P., & Humphreys, M. (2016). Crowdseeding in Eastern Congo : Using Cell Phones to Collect Conflict Events Data in Real Time. Journal of Conflict Resolution, 60(4), 748–781. http://doi.org/10.1177/0022002714553104

World Bank (2017). Remittance Prices Worldwide: Making markets more Transparent. Retrieved December 20, 2017, from https://remittanceprices.worldbank.org/en

Zillow, Inc. (2018). United States Home Prices & Home Values | Zillow. Retrieved August 14, 2018, from https://www.zillow.com:443/home-values/

Bert, F. E., G. P. Podestá, S. L. Rovere, Á. N. Menéndez, M. North, E. Tatara, C. E. Laciana, E. Weber, and F. R. Toranzo. 2011. An agent based model to simulate structural and land use changes in agricultural systems of the argentine pampas. Ecological Modelling 222(19):3486–3499.

Dave, C., C. Eckel, C. Johnson, and C. Rojas. 2010. Eliciting Risk Preferences: When is Simple Better ? Journal of Risk and Uncertainty 41(3):219–243.

Feder, G. 1980. Farm Size , Risk Aversion and the Adoption of New Technology under Uncertainty. Oxford Economics Papers 32(2):263–283.

Hong, G. 2015. Examining the role of amenities in migration decisions: A structural estimation approach. Papers in Regional Science 95(4).

Kahneman, D. 2003. Maps of Bounded Rationality: Psychology for Behavioral Economics. The American Economic Review 93(5):1449–1475.

Moon, B. 1995. Paradigms in migration research: exploring “moorings” as a schema. Progress in human geography 19(4):504–524.

Müller, B., F. Bohn, G. Dreßler, J. Groeneveld, C. Klassert, R. Martin, M. Schlüter, J. Schulze, H. Weise, and N. Schwarz. 2013. Describing human decisions in agent-based models - ODD+D, an extension of the ODD protocol. Environmental Modelling and Software 48:37–48.

Rubenstein, A. 1998. Modeling Bounded Rationality. Page (K. G. Persson, editor) Southern Economic Journal. MIT University Press, Cambridge, MA.

Schlüter, M., A. Baeza, G. Dressler, K. Frank, J. Groeneveld, W. Jager, M. A. Janssen, R. R. J. Mcallister, B. Müller, K. Orach, N. Schwarz, and N. Wijermans. 2017. A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecological Economics 131:21–35.

Stimson, R. J., and R. McCrea. 2004. A push-pull framework for modelling the relocation of retirees to a retirement village: The Australian experience. Environment and Planning A 36(8):1451–1470.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.