Where should livestock graze? Integrated modeling and optimization to guide grazing management in the Cañete basin, Peru
Article Full Text (PDF)

Supplementary Files

Supplementary Material (PDF)


grazing management
watershed services program
InVEST models

How to Cite

Hamel, P., Blundo-Canto, G., Kowal, V., Bryant, B. P., Hawthorne, P. L., & Chaplin-Kramer, R. (2019). Where should livestock graze? Integrated modeling and optimization to guide grazing management in the Cañete basin, Peru. Socio-Environmental Systems Modelling, 1. https://doi.org/10.18174/sesmo.2019a16125


Integrated watershed management allows decision-makers to balance competing objectives, for example agricultural production and protection of water resources. Here, we developed a spatially-explicit approach to support such management in the Cañete watershed, Peru. We modeled the effect of grazing management on three services – livestock production, erosion control, and baseflow provision – and used an optimization routine to simulate landscapes providing the highest level of services. Over the entire watershed, there was a trade-off between livestock productivity and hydrologic services and we identified locations that minimized this trade-off for a given set of preferences. Given the knowledge gaps in ecohydrology and practical constraints not represented in the optimizer, we assessed the robustness of spatial recommendations, i.e. revealing areas most often selected by the optimizer. We conclude with a discussion of the practical decisions involved in using optimization frameworks to inform watershed management programs, and the research needs to better inform the design of such programs.

Article Full Text (PDF)


Abell, R., Asquith, N., Boccaletti, G., Bremer, L., Chapin, E., Erickson-Quiroz, A., Higgins, J., Johnson, J., Kang, S., Karres, N., Lehner, B., McDonald, R., Raepple, J., Shemie, D., Simmons, E., Sridhar, A., Vigerstøl, K., Vogl, A. & Wood, S. (2017). Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection. Arlington, VA, USA.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. Rome, Italy.

Anderson, M., Vandenberghe, L., & Dahl, J. (2004). CVXOPT: Python Software for Convex Optimization.

Bartl, K., Gamarra, J., Gómez, C. A., Wettstein, H.-R., Kreuzer, M., & Hess, H. D. (2009). Agronomic performance and nutritive value of common and alternative grass and legume species in the Peruvian highlands. Grass and Forage Science, 64(2), 109–121. https://doi.org/10.1111/j.1365-2494.2008.00675.x

Bekele, E. G., & Nicklow, J. W. (2005). Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms. Water Resources Research, 41(10). https://doi.org/10.1029/2005WR004090

Bilotta, G. S., Brazier, R. E., & Haygarth, P. M. (2007). The Impacts of Grazing Animals on the Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands. Advances in Agronomy, 94, 237–280. https://doi.org/10.1016/S0065-2113(06)94006-1

Bilotta, G. S., Brazier, R. E., & Haygarth, P. M. (2007). The Impacts of Grazing Animals on the Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands (D. L. B. T.-A. in A. Sparks, Ed.). https://doi.org/https://doi.org/10.1016/S0065-2113(06)94006-1

Bryant, B. P., Borsuk, M. E., Hamel, P., Oleson, K. L. L., & Schulp, C. J. E. (2018). Transparent and feasible uncertainty assessment adds value to applied ecosystem services modeling. Ecosystem Services, 33, 103–109. https://doi.org/10.1016/J.ECOSER.2018.09.001

Burfening, P. J., & Chavez, C. J. (1996). The criollo sheep in Peru. Animal Genetic Resources Information, 17, 115–125. https://doi.org/DOI: 10.1017/S1014233900000638

Bustinza, A. V, Burfening, P. J., & Blackwell, R. L. (1988). Factors affecting survival in young alpacas (Lama pacos). Journal of Animal Science, 66(5), 1139–1143.

Buytaert, W., Célleri, R., Bièvre, B. De, Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the Andean páramos. 79, 53–72. https://doi.org/10.1016/j.earscirev.2006.06.002

Cibin, R., & Chaubey, I. (2015). A Computationally Efficient Approach for Watershed Scale Spatial Optimization. Environmental Modelling & Software, 66(C), 1–11. https://doi.org/10.1016/j.envsoft.2014.12.014

Coleman, S. W., & Moore, J. E. (2003). Feed quality and animal performance. Field Crops Research, 84(1), 17–29. https://doi.org/https://doi.org/10.1016/S0378-4290(03)00138-2

Crespo, P. J., Feyen, J., Buytaert, W., Buecker, A., Breuer, L., Frede, H.-G., & Ramirez, M. (2011). Identifying controls of the rainfall-runoff response of small catchments in the tropical Andes (Ecuador). Journal of Hydrology, 407(1–4), 164–174. https://doi.org/10.1016/j.jhydrol.2011.07.021

CSIRO. (1990). Feeding Standards for Australian Livestock: Ruminants. 23.

Dunne, T., Western, D., & Dietrich, W. E. (2011). Effects of cattle trampling on vegetation, infiltration, and erosion in a tropical rangeland. Journal of Arid Environments, 75(1), 58–69. https://doi.org/10.1016/j.jaridenv.2010.09.001

Esteban, L. R., & Thompson, J. R. (1988). The Digestive System of New World Camelids - Common Digestive Diseases of Llamas. Iowa State University Veterinarian, 50(2).

FAO. (2000). Country pasture profiles: Peru. Retrieved from http://www.fao.org/faostat/

Fatichi, S., Zeeman, M. J., Fuhrer, J., & Burlando, P. (2014). Ecohydrological effects of management on subalpine grasslands: From local to catchment scale. Water Resources Research, 50(1), 148–164. https://doi.org/10.1002/2013WR014535

Fiedler, F. R., Frasier, G. W., Ramirez, J. A., & Ahuja, L. R. (2002). Hydrologic Response of Grasslands: Effects of Grazing, Interactive Infiltration, and Scale. Journal of Hydrologic Engineering, 7(4), 293–301. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(293)

Ford, H., Garbutt, A., Jones, D. L., & Jones, L. (2012). Impacts of grazing abandonment on ecosystem service provision: Coastal grassland as a model system. Agriculture, Ecosystems & Environment, 162, 108–115. https://doi.org/10.1016/j.agee.2012.09.003

Francesconi, W., Uribe, N., Valencia, J., & Quintero, M. (2018). Modeling for management: a case study of the Caňete watershed, Peru. In M. Rivera, D, Godoy-Faúndez, A and Lillo-Saavedra (Ed.), Andean Hydrology (pp. 84–101). Boca Raton, FL: CRC Press.

Freer, M., Moore, A., & Donnelly, J. (2012). The GRAZPLAN animal biology model for sheep and cattle and the GrazFeed decision support tool. Canberra, ACT.

Gifford, G. F., & Hawkins, R. H. (1978). Hydrologic impact of grazing on infiltration--critical review. Water Resources Research, 14(2), 305–313.

Hamel, P., & Bryant, B. P. (2017). Uncertainty assessment in ecosystem services analyses: Seven challenges and practical responses. Ecosystem Services, 24. https://doi.org/10.1016/j.ecoser.2016.12.008

Hamel, P., Riveros-Iregui, D., Ballari, D., Browning, T., Célleri, R., Chandler, D., Chun, K. P., Destouni, G., Jacobs, S., Jasechko, S., Johnson, M., Krishnaswamy, J., Poca, M., Pompeu, P. V., & Rocha, H. (2018). Watershed services in the humid tropics: Opportunities from recent advances in ecohydrology. Ecohydrology, 11(3). https://doi.org/10.1002/eco.1921

Harden, C. P., Hartsig, J., Farley, K. A., Lee, J., Bremer, L. L., Crespo, P., Célleri, R., Buytaert, W., Ochoa, B., Cárdenas, I., Iñiguez, V., Borja, P., Feyen, J., & Cooper, M. (2013). Effects of Land-Use Change on Water in Andean Páramo Grassland Soils. Annals of the Association of American Geographers, 103(4), 375–384. https://doi.org/10.1659/mrd.00007

Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., Blümmel, M., Weiss, F., Grace, D., & Obersteiner, M. (2013). Biomass Use, Production, Feed Efficiencies, and Greenhouse Gas Emissions from Global Livestock Systems. Proceedings of the National Academy of Sciences, 110(52), 20888–20893. https://doi.org/10.1073/pnas.1308149110.

Herring, W. O. (n.d.). Calving Difficulty in Beef Cattle: BIF Fact Sheet.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276

Holland, E. A., Parton, W. J., Detling, J. K., & Coppock, D. L. (1992). Physiological Responses of Plant Populations to Herbivory and Their Consequences for Ecosystem Nutrient Flow. The American Naturalist, 140(4), 685–706. Retrieved from http://www.jstor.org/stable/2462920

Huanca Palomino, O. (2015). Diagnostico agrostologico de la Reserva Paisajistica Nor Yauyos Cochas. Lima, Peru.

Instituto de Montaña. (2015). Diagnóstico Participativo para el Plan de Manejo de pastos y Agua de la comunidad de Miraflores, Yauyos, Lima. Elaborado en el marco de la implementación de las medidas robustas del proyecto: “Adaptación basada en Ecosistemas de Montaña”. Huancayo.

ISRIC. (2013). World Soil Information. SoilGrids: an automated system for global soil mapping.

Mapfumo, E., Chanasyk, D. S., & Willms, W. D. (2004). Simulating daily soil water under foothills fescue grazing with the soil and water assessment tool model (Alberta, Canada). Hydrological Processes, 18(15), 2787–2800. https://doi.org/10.1002/hyp.1493

Mwendera, E. J. J., & Saleem, M. A. M. a M. (1997). Hydrologic response to cattle grazing in the Ethiopian highlands. Agriculture, Ecosystems & Environment, 64, 33–41. https://doi.org/10.1016/S0167-8809(96)01127-9

NRCS-USDA. (2003). Chapter 7. Rangeland and Pastureland Hydrology and Erosion. In National Range and Pasture Handbook (p. 31).

NRCS-USDA. (2004). Chapter 10. Estimation of Direct Runoff from Storm Rainfall. In United States Department of Agriculture (Ed.), Part 630 Hydrology. National Engineering Handbook. United States Department of Agriculture. http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/?cid=stelprdb1043063:

Ochoa-Tocachi, B. F., Buytaert, W., De Bièvre, B., Célleri, R., Crespo, P., Villacís, M., Llerena, C. A., Acosta, L., Villazón, M., Guallpa, M., Gil-Ríos, J., Fuentes, P., Olaya, D., Viñas, P., Rojas, G., & Arias, S. (2016). Impacts of land use on the hydrological response of tropical Andean catchments [Article]. Hydrological Processes. https://doi.org/10.1002/hyp.10980

Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J.-C., Seastedt, T., Garcia Moya, E., Kamnalrut, A., & Kinyamario, J. I. (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7(4), 785–809. https://doi.org/10.1029/93GB02042

Parton, W. J., Stewart, J. W. B., & Cole, C. V. (1988). Dynamics of C, N, P and S in Grassland Soils: A Model. Biogeochemistry, 5(1), 109–131.

Paruelo, J. M., Lauenroth, W. K., & Roset, P. A. (2000). Technical note : Estimating aboveground plant biomass using a photographic technique. Journal of Range Management, 53(March), 190–193. https://doi.org/10.2307/4003281

Pennington, D. N., Dalzell, B., Nelson, E., Mulla, D., Taff, S., Hawthorne, P., & Polasky, S. (2017). Cost-effective Land Use Planning: Optimizing Land Use and Land Management Patterns to Maximize Social Benefits. Ecological Economics, 139, 75–90. https://doi.org/10.1016/j.ecolecon.2017.04.024

Petz, K., Alkemade, R., Bakkenes, M., Schulp, C. J. E., van der Velde, M., & Leemans, R. (2014). Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Global Environmental Change, 29, 223–234. https://doi.org/10.1016/j.gloenvcha.2014.08.007

Quintero, M., Tapasco, J., & Pareja, P. (2013). Diseño e Implementación de un Esquema de Retribución por Servicios Ecosistémicos Hidrológicos en la Cuenca del Río Cañete.

Reiner, R. J. (1985). Nutrition of Alpacas Grazing High Altitude Rangeland in Southern Peru. Texas Tech University.

Roose. (1996). Land husbandry - Components and strategy. Soils bulletin 70. Rome, Italy.

Savadogo, P., Sawadogo, L., & Tiveau, D. (2007). Effects of grazing intensity and prescribed fire on soil physical and hydrological properties and pasture yield in the savanna woodlands of Burkina Faso. Agriculture, Ecosystems & Environment, 118(1–4), 80–92.

Seppelt, R., & Voinov, A. (2002). Optimization methodology for land use patterns using spatially explicit landscape models. Ecological Modelling, 151(2), 125–142. https://doi.org/10.1016/S0304-3800(01)00455-0

Sharp, R. S., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C. K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M., Mandle, L., Hamel, P., & Chaplin-Kramer, R. (2019). InVEST 3.5 User’s Guide. Available at: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/.

Smith, R., Kasprzyk, J., & Dilling, L. (2017). Participatory Framework for Assessment and Improvement of Tools (ParFAIT): Increasing the impact and relevance of water management decision support research. Environmental Modelling & Software, 95, 432–446. https://doi.org/10.1016/j.envsoft.2017.05.004

Stern, M., & Echavarría, M. (2013). Mecanismos de retribución por servicios hídricos para la cuenca del Cañete, Departamento de Lima, Perú. Mecanismos de Retribución por Servicios Hídricos del Perú. In EcoDecisión. Washington, D.C.

Trimble, S. W., & Mendel, A. C. (1995). The cow as a geomorphic agent - A critical review. Geomorphology, 13(1–4), 233–253. https://doi.org/10.1016/0169-555X(95)00028-4

Tristán Febres, M., Blundo Canto, G., Cruz-García, G., & Quintero, M. (2018). Competing uses and access to hydrological resources in upstream peasant communities of the Cañete River watershed, Perú. In A. Rivera Diago, A. Godoy-Faundez, & M. Lillo-Saavedra (Eds.), Andean Hydrology (pp. 1–20). Boca Raton.

Uribe, N., Quintero, M., & Valencia, J. (2013). Aplicación Del Modelo Hidrológico Swat (Soil and Water Assessment Tool) a La Cuenca Del Río Cañete. Cali, Colombia.

Van Saun, R. J. (2006). Nutrient requirements of South American camelids: A factorial approach. Small Ruminant Research, 61(2), 165–186. https://doi.org/10.1016/j.smallrumres.2005.07.006

Voinov, A. (2017). Participatory Modeling for Sustainability. In M. A. Abraham (Ed.), Encyclopedia of Sustainable Technologies (pp. 33–39). https://doi.org/10.1016/B978-0-12-409548-9.10532-9

Warren, S. D., Thurow, T. L. ., Blackburn, W. H. ., & Garza, N. E. . (1986). The Influence of Livestock Trampling under Intensive Rotation Grazing on Soil Hydrologic Characteristics. Journal of Range Management, 39(6), 491–495. https://doi.org/10.2307/3898755

Weil, C. (2017). Natural Capital Data Visualization - A toolbox to synthesize and visualize complex ecosystem services model outputs. Retrieved from https://github.com/charlottegiseleweil/natcap_viz_toolbox

Wine, M. L., Zou, C. B., Bradford, J. A., & Gunter, S. A. (2012). Runoff and sediment responses to grazing native and introduced species on highly erodible Southern Great Plains soil. Journal of Hydrology, 450–451, 336–341. https://doi.org/10.1016/j.jhydrol.2012.05.012

Wuliji, Davis, Dodds, Turner, Andrews, & Bruce. (2000). Production performance, repeatability and heritability estimates for live weight, fleece weight and fiber characteristics of alpacas in New Zealand. Small Ruminant Research : The Journal of the International Goat Association, 37(3), 189–201.

Zhao, Y., Peth, S., Horn, R., Krümmelbein, J., Ketzer, B., Gao, Y., Doerner, J., Bernhofer, C., & Peng, X. (2010). Modeling grazing effects on coupled water and heat fluxes in Inner Mongolia grassland. Soil and Tillage Research, 109(2), 75–86. https://doi.org/10.1016/j.still.2010.04.005

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.