What are the merits of endogenising land-use change dynamics into model-based climate adaptation planning?
Article Full Text (PDF)

Supplementary Files

Supplementary Material (PDF)

Keywords

land use
adaptation planning
integrated assessment model

Abstract

Integrated assessment models often treat land-use change as an external driving force. In reality, land-use is influenced by environmental conditions. This paper explores the merits of endogenising land-use change, i.e. making the land-use change a dynamic internal process, in models used for supporting climate adaptation planning. For this purpose, we extend the Waas model, a hypothetical case study used before for testing new model-based climate adaptation approaches. We use a utility-based land-use change model for endogenising the land-use dynamics, evaluate its implications, and identify the conditions under which it becomes important. We find that endogenising land-use dynamics changes the performance of the policies, allows for assessing policies that affect land-use, and widens the outcomes of interest that can be considered. The relevancy of endogenising land-use dynamics depends on (i) the expected severity of future climate change, (ii) the society’s sensitivity to climate events, and (iii) the types of policy options that decision makers want to evaluate. Ignoring the interaction between the environment and the society (in this case land-use) can result in both under- and overestimation of the impacts of adaptation and might limit the adaptation options that are considered.

https://doi.org/10.18174/sesmo.2019a16126
Article Full Text (PDF)

References

Abd El-Kawy, O. R., Rød, J. K., Ismail, H. A., & Suliman, A. S. (2011). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2), 483-494. doi:10.1016/j.apgeog.2010.10.012

Ahmed, A. (2011). Some of the major environmental problems relating to land use changes in the coastal areas of Bangladesh: A review. Journal of Geography and Regional Planning, 4(1), 1-8.

Antle, J. M., Capalbo, S. M., Elliott, E. T., Hunt, H. W., Mooney, S., & Paustian, K. H. (2001). Research Needs for Understanding and Predicting the Behavior of Managed Ecosystems: Lessons from the Study of Agroecosystems. Ecosystems, 4(8), 723-735. doi:10.1007/s10021-001-0041-0

Audsley, E., Trnka, M., Sabaté, S., Maspons, J., Sanchez, A., Sandars, D., Balek, J., & Pearn, K. (2015). Interactively modelling land profitability to estimate European agricultural and forest land use under future scenarios of climate, socio-economics and adaptation. Climatic Change, 128(3), 215-227. doi:10.1007/s10584-014-1164-6

Barton, R. R. (1998). Simulation metamodels. Paper presented at the Proceedings of the 30th conference on Winter simulation, Washington DC, USA.

Brown, D. G., Walker, R., Manson, S., & Seto, K. (2004). Modeling Land Use and Land Cover Change. In G. Gutman, A. C. Janetos, C. O. Justice, E. F. Moran, J. F. Mustard, R. R. Rindfuss, D. Skole, B. L. Turner, & M. A. Cochrane (Eds.), Land Change Science: Observing, Monitoring and Understanding Trajectories of Change on the Earth’s Surface (pp. 395-409). Dordrecht: Springer Netherlands.

Bubeck, P., & Koomen, E. (2008). The use of quantitative evaluation measures in land-use change projections: An inventory of indicators available in the Land Use Scanner. Retrieved from Amsterdam, The Netherlands: https://spinlab.vu.nl/wp-content/uploads/2016/09/Bubeck_Koomen_SL07_v2.pdf

Buishand, T., & Brandsma, T. (1996). Rainfall generator for the rhine catchment: a feasibility study. Retrieved from De Bilt: http://bibliotheek.knmi.nl/knmipubTR/TR183.pdf

Buurman, J., & Babovic, V. (2016). Adaptation Pathways and Real Options Analysis: An approach to deep uncertainty in climate change adaptation policies. Policy and Society, 35(2), 137-150. doi:10.1016/j.polsoc.2016.05.002

Carmona, G., Varela-Ortega, C., & Bromley, J. (2013). Supporting decision making under uncertainty: Development of a participatory integrated model for water management in the middle Guadiana river basin. Environmental Modelling & Software, 50, 144-157. doi:10.1016/j.envsoft.2013.09.007

Cass, O. (2018). Overheated: How Flawed Analyses Overestimate the Costs of Climate Change. Retrieved from New York, United States of America: https://www.manhattan-institute.org/sites/default/files/R-OC-0318.pdf

Chambwera, M., Heal, G., Dubeux, C., Hallegatte, S., Leclerc, L., Markandya, A., McCarl, B. A., Mechler, R., & Neumann, J. E. (2014). Chapter 17 - Economics of adaptation. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the IPCC: Cambridge University Press.

Chang, Y. C., Hong, F. W., & Lee, M. T. (2008). A system dynamic based DSS for sustainable coral reef management in Kenting coastal zone, Taiwan. Ecological Modelling, 211(1), 153-168. doi:10.1016/j.ecolmodel.2007.09.001

Chapman, A., & Tri, V. P. D. (2018). Climate change is triggering a migrant crisis in Vietnam. Retrieved from https://theconversation.com/climate-change-is-triggering-a-migrant-crisis-in-vietnam-88791?utm_source=twitter&utm_medium=twitterbutton

Cofala, J., Amann, M., Asman, W. A. H., Bertok, I., Heyes, C., Hoeglund-Isaksson, L., Klimont, Z., Schoepp, W., & Wagner, F. (2010). Integrated assessment of air pollution and greenhouse gases mitigation in Europe. Archives of Environmental Protection, 36(1), 29-39.

Dale, V. H. (1997). The relationship between land-use change and climate change. Ecological Applications, 7(3), 753-769. doi:10.1890/1051-0761(1997)007[0753:TRBLUC]2.0.CO;2

Davis, P. K., & Bigelow, J. H. (2003). Motivated metamodels: Synthesis of cause-effect reasoning and statistical metamodeling. Retrieved from Santa Monica, United States of America: http://www.dtic.mil/get-tr-doc/pdf?AD=ADA411888

De Moel, H., Aerts, J. C. J. H., & Koomen, E. (2011). Development of flood exposure in the Netherlands during the 20th and 21st century. Global Environmental Change, 21(2), 620-627. doi:10.1016/j.gloenvcha.2010.12.005

Dessai, S., Hulme, M., Lempert, R., & Pielke Jr, R. (2009). Climate prediction: a limit to adaptation. Adapting to climate change: thresholds, values, governance, 64-78.

Dessai, S., & van der Sluijs, J. P. (2007). Uncertainty and climate change adaptation: A scoping study (Vol. 2007): Copernicus Institute for Sustainable Development and Innovation, Department of Science Technology and Society.

Di Baldassarre, G., Brandimarte, L., & Beven, K. (2016). The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human–water systems. Hydrological Sciences Journal, 61(9), 1748-1758. doi:10.1080/02626667.2015.1091460

Diogo, V., Koomen, E., & Kuhlman, T. (2015). An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study. Agricultural Systems, 139, 1-16. doi:10.1016/j.agsy.2015.06.002

Donna, G. (2016). The spatial distribution of extreme climate events, another climate inequity for the world’s most vulnerable people. Environmental Research Letters, 11(9), 091002.

Doorn, N. (2014a). The Blind Spot in Risk Ethics: Managing Natural Hazards. Risk Analysis, 35(3), 354-360. doi:10.1111/risa.12293

Doorn, N. (2014b). Equity and the Ethics of Water Governance. In A. V. Gheorghe, M. Masera, & P. F. Katina (Eds.), Infranomics: Sustainability, Engineering Design and Governance (pp. 155-164). Switzerland: Springer International Publishing.

Fant, C., Schlosser, C. A., Gao, X., Strzepek, K., & Reilly, J. (2016). Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia. PLoS ONE, 11(3), e0150633. doi:10.1371/journal.pone.0150633

Filatova, T., Verburg, P. H., Parker, D. C., & Stannard, C. A. (2013). Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environmental Modelling & Software, 45, 1-7. doi:10.1016/j.envsoft.2013.03.017

Füssel, H. M. (2007). Adaptation planning for climate change: concepts, assessment approaches, and key lessons. Sustainability Science, 2(2), 265-275. doi:10.1007/s11625-007-0032-y

Gao, L., & Bryan, B. A. (2017). Finding pathways to national-scale land-sector sustainability. Nature, 544(7649), 217-222. doi:10.1038/nature21694

Haasnoot, M., Middelkoop, H., Offermans, A., Van Beek, E., & Van Deursen, W. P. A. (2012). Exploring pathways for sustainable water management in river deltas in a changing environment. Climatic Change, 115(3-4), 795-819.

Haasnoot, M., Middelkoop, H., van Beek, E., & van Deursen, W. P. A. (2009). A method to develop sustainable water management strategies for an uncertain future. Sustainable Development, 19(6), 369-381. doi:10.1002/sd.438

Haasnoot, M., Van Deursen, W. P. A., Guillaume, J. H. A., Kwakkel, J. H., van Beek, E., & Middelkoop, H. (2014). Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways. Environmental Modelling & Software, 60, 99-120. doi:10.1016/j.envsoft.2014.05.020

Hall, J. W., Dawson, R. J., Barr, S. L., Batty, M., Bristow, A. L., Carney, S., Dagoumas, A., Ford, A., Harpham, C., & Tight, M. R. (2010). City-scale integrated assessment of climate impacts, adaptation and mitigation. Energy efficient cities: Assessment tools and benchmarking practices, 43-64.

Hamilton, S. H., ElSawah, S., Guillaume, J. H. A., Jakeman, A. J., & Pierce, S. A. (2015). Integrated assessment and modelling: Overview and synthesis of salient dimensions. Environmental Modelling & Software, 64, 215-229. doi:10.1016/j.envsoft.2014.12.005

Harrison, P. A., Dunford, R. W., Holman, I. P., & Rounsevell, M. D. A. (2016). Climate change impact modelling needs to include cross-sectoral interactions. Nature Climate Change, 6, 885. doi:10.1038/nclimate3039

Hauer, M. E. (2017). Migration induced by sea-level rise could reshape the US population landscape. Nature Climate Change, 7, 321. doi:10.1038/nclimate3271

Havlík, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M. C., Mosnier, A., Thornton, P. K., Böttcher, H., Conant, R. T., Frank, S., Fritz, S., Fuss, S., Kraxner, F., & Notenbaert, A. (2014). Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences, 111(10), 3709.

Herman, J. D., Zeff, H. B., Reed, P. M., & Characklis, G. W. (2014). Beyond optimality: Multistakeholder robustness tradeoffs for regional water portfolio planning under deep uncertainty. Water Resources Research, 50(10), 7692-7713. doi:10.1002/2014WR015338

Hilferink, M., & Rietveld, P. (1999). LAND USE SCANNER: An integrated GIS based model for long term projections of land use in urban and rural areas. Journal of Geographical Systems, 1(2), 155-177. doi:10.1007/s101090050010

Holman, I. P., Harrison, P. A., & Metzger, M. J. (2016). Cross-sectoral impacts of climate and socio-economic change in Scotland: implications for adaptation policy. Regional Environmental Change, 16(1), 97-109. doi:10.1007/s10113-014-0679-8

Karssenberg, D., Schmitz, O., Salamon, P., de Jong, K., & Bierkens, M. F. P. (2010). A software framework for construction of process-based stochastic spatio-temporal models and data assimilation. Environmental Modelling & Software, 25(4), 489-502. doi:10.1016/j.envsoft.2009.10.004

Kim, O. L. T., & Le Minh, T. (2017). Correlation between climate change impacts and migration decisions in Vietnamese Mekong Delta. International Journal of Innovative Science, Engineering & Technology.

Kok, M. (2005). Standaardmethode 2005. Schade en slachtoffers als gevolg van overstromingen. (Standard method 2005. Damage and casualties caused by flooding). Lelystad: HKV.

Kolstad, C., Urama, K., Broome, J., Bruvoll, A., Cariño-Olvera, M., Fullerton, D., Gollier, C., Hanemann, W. M., Hassan, R., & Jotzo, F. (2014). Social, economic and ethical concepts and methods. Climate Change 2014: Mitigation of Climate Change, 173-248.

Koomen, E., Diogo, V., Dekkers, J., & Rietveld, P. (2015). A utility-based suitability framework for integrated local-scale land-use modelling. Computers, Environment and Urban Systems, 50, 1-14. doi:10.1016/j.compenvurbsys.2014.10.002

Koomen, E., Hilferink, M., & Borsboom-van Beurden, J. (2011). Introducing land use scanner. In Land-use modelling in planning practice (pp. 3-21): Springer, Dordrecht.

Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2015). Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world. Climatic Change, 132(3), 373-386. doi:10.1007/s10584-014-1210-4

Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2016). Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environmental Modelling & Software, 86, 168-183. doi:10.1016/j.envsoft.2016.09.017

Laliberté, E., Wells, J. A., DeClerck, F., Metcalfe, D. J., Catterall, C. P., Queiroz, C., Aubin, I., Bonser, S. P., Ding, Y., Fraterrigo, J. M., McNamara, S., Morgan, J. W., Merlos, D. S., Vesk, P. A., & Mayfield, M. M. (2010). Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters, 13(1), 76-86. doi:10.1111/j.1461-0248.2009.01403.x

Lambin, E. F., & Meyfroidt, P. (2010). Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy, 27(2), 108-118. doi:10.1016/j.landusepol.2009.09.003

Lempert, R. J. (2003). Shaping the next one hundred years: new methods for quantitative, long-term policy analysis: Rand Corporation.

Lenderink, G., Buishand, A., & van Deursen, W. (2007). Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol. Earth Syst. Sci., 11(3), 1145-1159. doi:10.5194/hess-11-1145-2007

Lesschen, J. P., Verburg, P. H., & Staal, S. J. (2005). Statistical methods for analysing the spatial dimension of changes in land use and farming systems: International Livestock Research Institute.

Li, S., Juhász-Horváth, L., Pintér, L., Rounsevell, M. D. A., & Harrison, P. A. (2018). Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary. Science of the Total Environment, 622-623, 1611-1620. doi:10.1016/j.scitotenv.2017.10.038

Luino, F., Turconi, L., Petrea, C., & Nigrelli, G. (2012). Uncorrected land-use planning highlighted by flooding: the Alba case study (Piedmont, Italy). Natural Hazards and Earth System Sciences, 12(7), 2329.

Maier, H. R., Guillaume, J. H. A., van Delden, H., Riddell, G. A., Haasnoot, M., & Kwakkel, J. H. (2016). An uncertain future, deep uncertainty, scenarios, robustness and adaptation: How do they fit together? Environmental Modelling & Software, 81, 154-164. doi:10.1016/j.envsoft.2016.03.014

Manocha, N., & Babovic, V. (2018). Sequencing Infrastructure Investments under Deep Uncertainty Using Real Options Analysis. Water, 10(2). doi:10.3390/w10020229

McPhail, C., Maier, H. R., Kwakkel, J. H., Giuliani, M., Castelletti, A., & Westra, S. (2018). Robustness Metrics: How Are They Calculated, When Should They Be Used and Why Do They Give Different Results? Earth's Future, 6(2), 169-191. doi:10.1002/2017EF000649

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. nature, 463, 747. doi:10.1038/nature08823

Nair, S., & Howlett, M. (2017). Policy myopia as a source of policy failure: Adaptation and policy learning under deep uncertainty. Policy & Politics, 45(1), 103-118. doi:10.1332/030557316X14788776017743

Newman, J. P., Maier, H. R., Riddell, G. A., Zecchin, A. C., Daniell, J. E., Schaefer, A. M., van Delden, H., Khazai, B., O'Flaherty, M. J., & Newland, C. P. (2017). Review of literature on decision support systems for natural hazard risk reduction: Current status and future research directions. Environmental Modelling & Software, 96, 378-409. doi:10.1016/j.envsoft.2017.06.042

Niemeijer, D., & de Groot, R. S. (2008). A conceptual framework for selecting environmental indicator sets. Ecological Indicators, 8(1), 14-25. doi:10.1016/j.ecolind.2006.11.012

Overmars, K. P., de Groot, W. T., & Huigen, M. G. A. (2007). Comparing Inductive and Deductive Modeling of Land Use Decisions: Principles, a Model and an Illustration from the Philippines. Human Ecology, 35(4), 439-452. doi:10.1007/s10745-006-9101-6

Overmars, K. P., Verburg, P. H., & Veldkamp, T. (2007). Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land Use Policy, 24(3), 584-599. doi:doi.org/10.1016/j.landusepol.2005.09.008

Oxley, T., Dore, A. J., ApSimon, H., Hall, J., & Kryza, M. (2013). Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM). Environment International, 61, 17-35. doi:10.1016/j.envint.2013.09.009

Patt, A. G., van Vuuren, D. P., Berkhout, F., Aaheim, A., Hof, A. F., Isaac, M., & Mechler, R. (2010). Adaptation in integrated assessment modeling: where do we stand? Climatic Change, 99(3), 383-402. doi:10.1007/s10584-009-9687-y

Qureshi, M. E., Whitten, S. M., Mainuddin, M., Marvanek, S., & Elmahdi, A. (2013). A biophysical and economic model of agriculture and water in the Murray-Darling Basin, Australia. Environmental Modelling & Software, 41, 98-106. doi:10.1016/j.envsoft.2012.11.007

Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., & Vanrolleghem, P. A. (2007). Uncertainty in the environmental modelling process – A framework and guidance. Environmental Modelling & Software, 22(11), 1543-1556. doi:10.1016/j.envsoft.2007.02.004

Rotmans, J., De Boois, H., & Swart, R. J. (1990). An integrated model for the assessment of the greenhouse effect: The Dutch approach. Climatic Change, 16(3), 331-356. doi:10.1007/BF00144508

Schmitz, O., Karssenberg, D., de Jong, K., de Kok, J.-L., & de Jong, S. M. (2013). Map algebra and model algebra for integrated model building. Environmental Modelling & Software, 48, 113-128. doi:10.1016/j.envsoft.2013.06.009

Schwanitz, V. J. (2013). Evaluating integrated assessment models of global climate change. Environmental Modelling & Software, 50, 120-131. doi:10.1016/j.envsoft.2013.09.005

Serneels, S., & Lambin, E. F. (2001). Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. Agriculture, Ecosystems & Environment, 85(1), 65-81. doi:10.1016/S0167-8809(01)00188-8

Smajgl, A., Toan, T. Q., Nhan, D. K., Ward, J., Trung, N. H., Tri, L. Q., Tri, V. P. D., & Vu, P. T. (2015). Responding to rising sea levels in the Mekong Delta. Nature Climate Change, 5(2), 167-174. doi:10.1038/nclimate2469

Stonestrom, D. A., Scanlon, B. R., & Zhang, L. (2009). Introduction to special section on Impacts of Land Use Change on Water Resources. Water Resources Research, 45(7), n/a-n/a. doi:10.1029/2009WR007937

Swetnam, R. D., Fisher, B., Mbilinyi, B. P., Munishi, P. K. T., Willcock, S., Ricketts, T., Mwakalila, S., Balmford, A., Burgess, N. D., Marshall, A. R., & Lewis, S. L. (2011). Mapping socio-economic scenarios of land cover change: A GIS method to enable ecosystem service modelling. Journal of Environmental Management, 92(3), 563-574. doi:10.1016/j.jenvman.2010.09.007

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498.

Thai, D. V. H., Cong, V. T., Nestmann, F., Oberle, P., & Trung, N. N. (2014). Land use based flood hazards analysis for the Mekong Delta. Paper presented at the The 19th IAHR-APD Congress, Hanoi, Vietnam.

Trindade, B. C., Reed, P. M., Herman, J. D., Zeff, H. B., & Characklis, G. W. (2017). Reducing regional drought vulnerabilities and multi-city robustness conflicts using many-objective optimization under deep uncertainty. Advances in Water Resources, 104, 195-209. doi:10.1016/j.advwatres.2017.03.023

Van Delden, H., Seppelt, R., White, R., & Jakeman, A. J. (2011). A methodology for the design and development of integrated models for policy support. Environmental Modelling & Software, 26(3), 266-279. doi:10.1016/j.envsoft.2010.03.021

Van Delden, H., Stuczynski, T., Ciaian, P., Paracchini, M. L., Hurkens, J., Lopatka, A., Shi, Y.-e., Prieto, O. G., Calvo, S., van Vliet, J., & Vanhout, R. (2010). Integrated assessment of agricultural policies with dynamic land use change modelling. Ecological Modelling, 221(18), 2153-2166. doi:10.1016/j.ecolmodel.2010.03.023

Van den Hurk, B., Tank, A. K., Lenderink, G., Van Ulden, A., Van Oldenborgh, G. J., Katsman, C., Van den Brink, H., Keller, F., Bessembinder, J., & Burgers, G. (2007). New climate change scenarios for the Netherlands. Water Science and Technology, 56(4), 27-33.

Wada, Y., Bierkens, M. F. P., de Roo, A., Dirmeyer, P. A., Famiglietti, J. S., Hanasaki, N., Konar, M., Liu, J., Müller Schmied, H., Oki, T., Pokhrel, Y., Sivapalan, M., Troy, T. J., van Dijk, A. I. J. M., van Emmerik, T., Van Huijgevoort, M. H. J., Van Lanen, H. A. J., Vörösmarty, C. J., Wanders, N., & Wheater, H. (2017). Human–water interface in hydrological modelling: current status and future directions. Hydrol. Earth Syst. Sci., 21(8), 4169-4193. doi:10.5194/hess-21-4169-2017

Wagner, P. D., Bhallamudi, S. M., Narasimhan, B., Kantakumar, L. N., Sudheer, K. P., Kumar, S., Schneider, K., & Fiener, P. (2016). Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Sci Total Environ, 539, 153-164. doi:10.1016/j.scitotenv.2015.08.148

Wagner, P. D., Bhallamudi, S. M., Narasimhan, B., Kumar, S., Fohrer, N., & Fiener, P. (2017). Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environmental Modelling & Software. doi:10.1016/j.envsoft.2017.06.023

Wagner, P. D., & Waske, B. (2016). Importance of spatially distributed hydrologic variables for land use change modeling. Environmental Modelling & Software, 83, 245-254. doi:10.1016/j.envsoft.2016.06.005

Walker, W., Haasnoot, M., & Kwakkel, J. (2013). Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty. Sustainability, 5(12), 955-979. doi:10.3390/su5030955

Wesselung, C. G., Karssenberg, D.-J., Burrough, P. A., & Deursen, W. P. A. (1996). Integrating dynamic environmental models in GIS: The development of a Dynamic Modelling language. Transactions in GIS, 1(1), 40-48. doi:10.1111/j.1467-9671.1996.tb00032.x

Xu, D., Song, A., Tong, H., Ren, H., Hu, Y., & Shao, Q. (2016). A spatial system dynamic model for regional desertification simulation – A case study of Ordos, China. Environmental Modelling & Software, 83, 179-192. doi:10.1016/j.envsoft.2016.05.017

Zeff, H. B., Herman, J. D., Reed, P. M., & Characklis, G. W. (2016). Cooperative drought adaptation: Integrating infrastructure development, conservation, and water transfers into adaptive policy pathways. Water Resources Research, 52(9), 7327-7346. doi:10.1002/2016WR018771

Zhang, J., Sun, J., Ma, B., & Du, W. (2017). Assessing the ecological vulnerability of the upper reaches of the Minjiang River. PLoS ONE, 12(7), e0181825.

Zhang, L., Nan, Z., Yu, W., Zhao, Y., & Xu, Y. (2018). Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Science of the Total Environment, 622-623, 1016-1028. doi:10.1016/j.scitotenv.2017.12.055

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.