Integrated modeling of vadose-zone flow and transport processes

Authors

  • M.T. Van Genuchten
  • J. Simunek

Abstract

Enormous advances have been made during the past several decades in our understanding and ability to model flow and transport processes in the vadose zone between the soil surface and the groundwater table. A large number of conceptual models are now available to make detailed simulations of transient variably-saturated water flow, heat movement and solute transport in the subsurface. In this paper we highlight four examples illustrating such advances: (1) coupling physical and chemical processes, (2) simulating colloid and colloid-facilitated transport, (3) integrated modeling of surface and subsurface flow processes, and (4) modeling of preferential flow in the subsurface. The examples show that improved understanding of underlying processes, continued advances in numerical methods, and the introduction of increasingly powerful computers now permit us to make comprehensive simulations of the most important coupled, nonlinear physical, chemical and biological processes operative in the unsaturated zone

Downloads

Published

2005-05-01